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A B S T R A C T

There is increasing evidence of the shortage of solver-based models for solving logically-constrained AC optimal
power flow problem (LCOPF). Although in the literature the heuristic-based models have been widely used to
handle the LCOPF problems with logical terms such as conditional statements, logical-and, logical-or, etc., their
requirement of several trials and adjustments plagues finding a trustworthy solution. On the other hand, a well-
defined solver-based model is of much interest in practice, due to rapidity and precision in finding an optimal
solution. To remedy this shortcoming, in this paper we provide a solver-friendly procedure to recast the logical
constraints to solver-based mixed-integer nonlinear programming (MINLP) terms. We specifically investigate the
recasting of logical constraints into the terms of the objective function, so it facilitates the pre-solving and
probing techniques of commercial solvers and consequently results in a higher computational efficiency. By
applying this recast method to the problem, two sub-power- and sub-function-based MINLP models, namely SP-
MINLP and SF-MINLP, respectively, are proposed. Results not only show the superiority of the proposed models
in finding a better optimal solution, compared to the existing approaches in the literature, but also the effec-
tiveness and computational tractability in solving large-scale power systems under different configurations.

1. Introduction

Logical constraints, which are one particular kind of discrete or
numerical constraints such as logical-and, logical-or, negation, and
conditional statements, are considered as the nature of most practical
optimization problems, and the practical power systems are no excep-
tion. Although the logical constraints exist in most decision-making
problems of power systems, due to disjoint functioning regions of
generating units, more often than not, for the sake of simplicity and
computational tractability, these constraints are neglected. This may
facilitate finding an optimal solution, however, on the other hand, an
accurate model should embody all operational constraints, otherwise, it
may lead to a solution with an unsatisfactory outcome. Thus, an ap-
propriate model or tradeoff, between model accuracy and computa-
tional efficiency, should be investigated to counteract the aforemen-
tioned drawback.

The AC optimal power flow (ACOPF) problem, even in the theore-
tical studies, is a highly nonlinear problem, due to active and reactive
power flow constraints [1], and considering logical constraints makes it
even a more complex and highly nonconvex-nonlinear problem. On the
other hand, to have a more practical model, the valve-point effect
should be considered [2,3], and this exponentially increases the degree

of nonlinearity of the problem. Moreover, considering shunt VAr
compensator and more specifically thyristor controlled series capacitor
(TCSC) and thyristor controlled phase shifter (TCPS) play a crucial role
in practical power system operation and planning problems, by im-
proving the efficiency, voltage fluctuations, and loadability. In plan-
ning-based problems, the optimal siting and sizing of FACTS devices are
taken into account [4,5], while in operating-based problems, the ad-
justment of these devices, which have already been optimally placed
and sized, is considered [6–8]. Incorporating such devices with high-
nonlinearity characteristics besides the integer variables of logical
constraints results in a complex mixed-integer nonlinear programming
problem. The price to be paid for considering the logical constraints and
the flexible AC transmission systems (FACTS) is a dramatic increase in
the degree of computational complexity, which if handled without care
may lead to intractability. This is one of the main motivations of widely
using heuristic-based approaches to solve the practical OPF-based
problems [9–12]. These approaches may work well in finding an op-
timal solution for specific systems or models; however, finding an ac-
ceptable solution for other systems and models, especially when logical
constraints are taken into account, may require major modifications
and adjustments. On the other hand, the most successful approaches,
among others, to solve OPF problems such as interior point method
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(IPM) [13], primal–dual IPM [14], predictor corrector IPM (PCIPM)
[15], decomposed PCIPM [16], trust region and IPM [17], which are
known as the standard methods to solve OPF problems, may properly
find an optimal solution for the conventional OPF problems, but when
applied to OPF problems with logical constraints and FACTS devices
(with discrete decision variables), the reliability of them should be
seriously questioned [18]. This shows the exigency of proposing a
trustworthy model for logical constrained problems.

Until now, to the best of our knowledge, for the logically con-
strained ACOPF (LCOPF) problems (with or without considering VAr
compensators) there is no solver-based model, although, for the logi-
cally constrained economic dispatch (LCED) problem, which is a sim-
plified OPF problem, several solver-based models have been proposed.
First, in [19], a mixed-integer quadratic programming (MIQP) model
has been proposed, and later, in [20] and [21], the authors have de-
veloped the MIQP model by proposing a big-M based MIQP (M-MIQP)
model and an unambiguous distance-based MIQP (UDB-MIQP) model,
respectively. These models could obtain the global optimal solution of
ED problems; however, their incapability in dealing with non-smooth
and nonlinear terms is still an undeniable shortcoming that prevents
them to be applied to LC-ACOPF problems. In order to consider the
nonlinear terms such as transmission losses, first, in [22], and later, in
[23], a novel transformation has been introduced. Such transformation

may cause significant difficulties for the commercial solvers since (a) it
results in non-constant upper and lower limits, and (b) the operation of
a unit in only one operating zone is guaranteed by forcing the product
of two continuous variables, correspond with two different operating
zones of that unit, equals to zero, which is a very-hard equality con-
straint and causes severe difficulties for commercial nonlinear solvers.
Therefore, to deal with this problem, in [22], a semidefinite approach,
and in [23], a decomposition technique has been used. Although the
aforementioned models are not capable of solving practical-constrained
models (either complex ED or OPF problems), they have brought new
insights into this area of research by showing the importance of solver-
based models. Even in some existing linear models for ACOPF pro-
blems, [24] and [25], due to the complexity of linearization that highly
depends on the approximation techniques, the logical constraints have
been neglected. Therefore, the main motivations of proposing the
solver-based MINLP models that may fill the existing gap in this area of
research can be summarized as (a) the popularity and efficient out-
comes of solver-based models in other areas, and (b) the lack of an
efficient solver-based model for LCOPF-based problems. Accordingly,
the contributions of this paper are threefold:

(1) A transformation of logical characteristics to mixed-integer non-
linear terms by recasting them to the objective function as:

Nomenclature

(a) Indices

i j, bus indices
k index for disjoint operating zones
ij index for the transmission line or device between bus i and

j
d index for direct power flow
r index for reverse power flow

(b) Sets

Ωb set of buses, … N{1,2, , }b
Ωg set of generating units, … N{1,2, , }g , ⊆Ω Ωg b
Ωl set of transmission elements, … N{1,2, , }l

(c) Variables and Functions

F (·)i fuel cost function of unit i
flij power flow at branch ij
ni nonnegative integer decision making variable for shunt

VAR compensator at bus i
nij nonnegative integer decision making variable for LTCT at

branch ij
Pgi active power generation of unit i
Pik active power corresponding to the operating zone k of unit

i; used in MINLP models
p p/ij

d
ij
r direct/reverse active power between bus i and bus j of

branch ij
q q/ij

d
ij
r direct/reverse reactive power between bus i and bus j of

branch ij
Qci shunt VAR compensation of bus i
Qgi reactive power generation of unit i
tpij transformer tap of branch ij
uik binary decision making variables of unit i and operating

zone k
vi voltage magnitude at bus i
xij

c reactance of TCSC at branch ij
δi voltage angle of bus i

θij voltage angle difference between bus i and j, = −θ δ δij i j.
φij phase shift angle of TCPS at branch ij

(d) Constants

a b c, ,i i i cost coefficients of unit i
bij

ch charging susceptance of branch ij
bi

sh shunt susceptance of bus i (℧)
bij susceptance of branch ij (℧)
e f,i i valve-point cost coefficients of unit i
flij maximum power flow of branch ij
gij conductance of branch ij (Ω)
gi

sh shunt conductance of bus i (Ω)
PDi active power demand at bus i
Pgi , Pgi minimum and maximum active power generation limits of

unit i, respectively
Pgik , Pgik minimum and maximum active power limits correspond to

operating zone k of unit i, respectively
Pik, Pik minimum and maximum active power limits correspond to

operating zone k of unit i, respectively; used in MINLP
models

QDi reactive power demand at bus i
QCi , QCi upper and lower limits of shunt VAR compensator at bus i,

respectively
Qgi , Qgi minimum and maximum reactive power generation limits

of unit i, respectively
rij resistance of branch ij (Ω)
tpij, tpji minimum and maximum limits of transformer tap of

branch ij, respectively
vi, vi minimum and maximum voltage magnitude limits of bus i,

respectively
xij reactance of branch ij (Ω)
xij

c, xij
c minimum and maximum reactance of TCSC at branch ij

zi number of operating zones for unit i
τi predefined step size for shunt VAR compensator at bus i
τij predefined step size for LTCT at branch ij
φij, φij minimum and maximum limits of phase shift angle of

TCPS at branch ij
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(a) the sub-objective function terms; this results in a sub-function-
based LCOPF (SF-LCOPF) in which each sub-function corre-
sponds with an operating zone.

(b) the sub-generating regions terms; this results in a sub-power-
based LCOPF (SP-LCOPF) in which each sub-power corresponds
with an operating region.

(2) The mathematical formulations of the proposed models, unlike the
other practical models in the literature, are adapted to the pre-
solving and probing techniques of commercial solvers. This results
in a reduction of the model complexity by reducing the size of the
problem via eliminating unnecessary variables and constraints in
the pre-solve step and improving the formulation via pre-processing
and probing techniques, which rely mainly on the model’s simpli-
city. During preprocessing, the infeasibility and redundancy,
bounds improvement, and rounding (for MIP) are considered, while
in probing, fixing the variables, coefficients improvement and the
logical implications are taken into account [21]. Another advantage
of these solver-friendly models is that they can be easily im-
plemented in modeling language-based systems such as AMPL [26],
GAMS [27], etc.

(3) Testing the flexibility of the proposed logically-constrained models
for dealing with cost or loss minimization problems under different
topologies such as (a) power systems operation considering pro-
hibited operating zones, (b) power systems operation considering
nonsmooth terms, such as valve-point effect, and (c) power systems
operation considering flexible AC transmission system (FACTS),
such as thyristor controlled series capacitor (TCSC) and thyristor
controlled phase shifter (TCPS).

To evaluate and validate the proposed MINLP models and demon-
strate their effectiveness compared to the existing approaches in the
literature, the commonly used IEEE 30-bus system is considered in
detail, while in order to show their performance in solving large-scale
and very large-scale power systems the IEEE 118-bus and Polish 2383-
bus test systems are investigated, respectively.

The rest of this paper is organized as follows. Section 2 contains the
mathematical formulation of the proposed MINLP models. Case studies
and results are presented in Section 3. Section 4 contains the concluding
remarks and the prospects for future works.

2. Mixed integer nonlinear programming model for logically
constrained OPF

The mathematical model of the logically constrained OPF (LCOPF)
is presented, first, and then its equivalent mixed-integer nonlinear
programming models are considered in detail.

2.1. Mathematical formulation of LCOPF

In order to show the wide application of our proposed recast tech-
nique, three mathematical formulations correspond with three different
configurations are presented, such as (a) OPF with prohibited operating
zones, named as logically-constrained OPF (LCOPF), (b) LCOPF con-
sidering shunt VAR compensator and load-tap-changing transformer,
and (c) LCOPF with TCSC and TCPS.

2.1.1. F1: Logically constrained OPF (LCOPF)
The OPF problem with considering disjoint operating zones, as lo-

gical constraints, is formulated as follows.

∑
∈

F P

s t

min ( )

. .
i

i g
Ωg

i

(1)

∑ ∑− − − − = ∈
∈ ∈

P P g v p p i0, Ωg D i
sh

i
ij

ij
d

ji
ji
r

b
2

Ω Ω
i i

l l (2)

∑ ∑− + − − = ∈
∈ ∈

Q Q b v q q i0, Ωg D i
sh

i
ij

ij
d

ji
ji
r

b
2

Ω Ω
i i

l l (3)

⎧

⎨
⎪

⎩⎪

= ⩽ ⩽
⩽ ⩽ ∀ ⩽ ⩽ −
⩽ ⩽ =

P P P P
P P P k z
P P P P

,or
, 2 ( 1),or

g g g g

g g g i

g g g g

i i i i

i i i

izi i izi i

1 1

k k

(4)

⩽ ⩽ ∈Q Q Q i, Ωg g g gi i i (5)

⩽ ⩽ ∈v v v i, Ωi i i b (6)

⩽ ∈fl v θ tp fl ij| ( , , )| , Ωij ij l (7)

where F (·)i is mostly approximated by a quadratic function, as (8).

= + +F P a P b P c( )i g i g i g i
2

i i i (8)

However, in practice, multiple valves result in the ripples and
therefore considering the valve-point effects in cost function is in-
evitable [28]. The valve-point effect is modeled as a rectified sinusoidal
term as (9).

= + + + −( )F P a P b P c e f P P( ) | sin( ( ))|i g i g i g i i i g g
2

i i i i i (9)

The active and reactive equality constraints are represented in (2)
and (3) [29,30], respectively.

The set of equations in (4) stands for disjoint operating zones [31];
this set brings the concept of logical constraints to the OPF problems.
The limits of reactive power generations and bus voltages are re-
presented by (5) and (6), respectively.

In (7), the power flows of branches, fij, can be defined by (10) or in
some texts only the active power flow of lines are taken into account
[32].

= +fl p q( ) ( )ij ji ij ji
d r

ij ji
d r

/ /
/ 2

/
/ 2

(10)

2.1.2. F2: LCOPF with shunt VAR compensator and load-tap-changing
transformer (LTCT)

In this model, the load-tap-changing transformer (LTCT) and shunt
VAR compensator are considered in LCOPF. By incorporating the LTCT
devices in a power system, as Fig. 1, the direct and reverse flows of
active and reactive powers in transmission lines are defined as follows,
(11)-(14) [33].

= − +p tp v g tp v v g θ b θ( ) ( ) [ cos( ) sin( )]ij
d

ij i ij ij i j ij ij ij ij
2

(11)

= − −p v g tp v v g θ b θ( ) [ cos( ) sin( )]ij
r

j ij ij i j ij ij ij ij
2

(12)

= − ⎛

⎝
⎜ + ⎞

⎠
⎟− −q tp v b

b
v v g θ b θ( )

2
[ sin( ) cos( )]ij

d
ij i ij

ij
ch

i j ij ij ij ij
2

(13)

= − ⎛

⎝
⎜ + ⎞

⎠
⎟ + +q v b

b
tp v v g θ b θ

2
( ) [ sin( ) cos( )]ij

r
j ij

ij
ch

ij i j ij ij ij ij
2

(14)

where each tap must satisfy its lower and upper limits as (15).

⩽ ⩽tp tp tpij ij ij (15)

Fig. 1. A transmission line model at the presence of LTCT.
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And to incorporate the effects of shunt VAR compensator, as Fig. 2,
the reactive equality constraint (3) is modified as (16).

∑ ∑+ − + − − = ∈
∈ ∈

Q Q Q b v q q i0, Ωg C D i
sh

i
ij

ij
d

ji
ji
r

b
2

Ω Ω
i i i

l l (16)

where each shunt VAR compensator has its limitations [34,35], as (17).

⩽ ⩽Q Q QC C Ci i i (17)

On the other hand, in practice, the LTCTs and shunt VAR compen-
sators are discrete controllers with predefined step sizes [34]. These
devices can be modeled by using integer decision maker variables, as
follows.

= + ∀ ∈ ⩾tp tp n τ n,ij ij ij ij ij 0 (18)

= + ∀ ∈ ⩾Q Q n τ n,C C i i i 0i i (19)

2.1.3. F3: LCOPF with TCSC and TCPS
In this model, the effects of specific FACTS devices such as the

thyristor controlled series capacitor (TCSC) and thyristor controlled
phase shifter (TCPS) are considered.

By considering TCPS, which can be modeled by a phase shifter
transformer with control variable φij, as Fig. 3, the direct and indirect
active and reactive powers are defined as follows, (20)-(23), respec-
tively.

= − + + +p
v g

φ
v v

φ
g θ φ b θ φ

cos cos
[ cos( ) sin( )]ij

d i ij

ij

i j

ij
ij ij ij ij ij ij

2

2 (20)

= − + − +p v g
v v

φ
g θ φ b θ φ

cos
[ cos( ) sin( )]ij

r
j ij

i j

ij
ij ij ij ij ij ij

2

(21)

= − ⎛

⎝
⎜ + ⎞

⎠
⎟− + − +q

v
φ

b
b v v

φ
g θ φ b θ φ

cos 2 cos
[ sin( ) cos( )]ij

d i

ij
ij

ij
ch

i j

ij
ij ij ij ij ij ij

2

2

(22)

= − ⎛

⎝
⎜ + ⎞

⎠
⎟ + + + +q v b

b v v
φ

g θ φ b θ φ
2 cos

[ sin( ) cos( )]ij
r

j ij
ij
ch

i j

ij
ij ij ij ij ij ij

2

(23)

And by taking into account the TCSC with the control variable xij
c, as

Fig. 4, the direct and indirect active and reactive power flows are de-
fined as follows, (24)-(27), respectively, while taking into account (28)
and (29) [36].

= − +p v g v v g θ b θ[ cos( ) sin( )]ij
d

i ij i j ij ij ij ij
2

(24)

= − −p v g v v g θ b θ[ cos( ) sin( )]ij
r

j ij i j ij ij ij ij
2

(25)

= − ⎛

⎝
⎜ + ⎞

⎠
⎟− −q v b

b
v v g θ b θ

2
[ sin( ) cos( )]ij

d
i ij

ij
ch

i j ij ij ij ij
2

(26)

= − ⎛

⎝
⎜ + ⎞

⎠
⎟ + +q v b

b
v v g θ b θ

2
[ sin( ) cos( )]ij

r
j ij

ij
ch

i j ij ij ij ij
2

(27)

where the conductance, gij, and susceptance, bij, of lines with TCSC are
calculated as follows.

=
+ −

g
r

r x x( )ij
ij

ij ij ij
c2 2 (28)

= −
−

+ −
b

x x
r x x( )ij

ij ij
c

ij ij ij
c2 2 (29)

Therefore by considering the aforementioned modifications as well
as taking into account the two following constraints, (30) and (31), the
LCOPF model with FACTS devices, TCSC and TCPS, is obtained.

⩽ ⩽ ∈x x x ij, Ωij
c

ij
c

ij
c

l (30)

⩽ ⩽ ∈φ φ φ ij, Ωij ij ij l (31)

2.2. Mixed integer nonlinear programming models for LCOPF

Since the existing commercial nonlinear solvers are not capable of
solving the logical constrained problems, the logical constraints must be
recast to solver-friendly terms, and it becomes possible via mixed-in-
teger reformulations. On the other hand, because of the highly non-
linear and nonconvex nature of LCOPF problems, the existing solver-
based models for ED problems are not suitable, as these models bring
difficulties in MINLP solvers’ process. In such models, increasing the
number of variables, by assigning the decision-making variables to the
upper and lower limits of the corresponding constraints, is not the only
hurdle that makes it inutile for LCOPF-based problems; however, the
potential shortage of the existing mixed-integer nonlinear solvers is
another obstacle. The main idea of our proposed mixed-integer non-
linear programming (MINLP) models comes from this fact that an
MINLP solver shows higher performance when the decision-making
variables are included in the objective function. Therefore, to address
the aforementioned shortcomings, in this paper, two MINLP models for
LCOPF problems are proposed where the logical constraints are recast
to the term of objective function. These models are explained in detail
as follows.

2.2.1. Sub-power-based LCOPF
Fig. 5 demonstrates the input–output curve of unit i with con-

sidering valve-point effects and POZs where the dashed and solid blue
curves stand for the quadratic cost function (8), and the cost function
considering the valve-point effect (9), respectively. The red hachured
regions represent the POZs of unit i.

Constraint (4) demonstrates that each unit can generate in only one
operating zone. As it can be seen in Fig. 5, in order to obtain the MINLP
model, first, the unit’s input–output curve is divided into several sub-
power regions (Pi1, Pi2, and Pi3) corresponding to the operating zones.
The boundaries of each sub-power are defined as (32).

⩽ ⩽ ∀ ∈ ∈ …P P P i k z; Ω , {1, , }i i i g ik k k (32)

Then, to select one sub-power region, the binary decision-making
variables uik are assigned to these regions as (33) and (34). Constraint
(34) guarantees that only one of the decision-making variables is set to
one, and consequently, only one of the sub-power regions is selected to
calculate the output power of unit i in (33).

∑= + + + + =− −
=

P P u P u P u P u P u···g i i i i iz iz iz iz
k

z

ik ik1 1 2 2 1 1
1

i i i i i

i

(33)

∑ = ∀ ∈
=

u u1 , {0,1}
k

z

ik ik
1

i

(34)

By putting (33) in the objective function, (8) or (9), the sub-power-
based MINLP (SP-MINLP) model is obtained.

Fig. 2. Shunt VAR compensator connected to a bus.
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∑ ∑= ⎛
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= =
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ik ik i
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ik ik i
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1
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i i

(35)
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⎞
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⎞
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= =

=

F P a P u b P u c

e f P P u

( )

sin

i g i
k

z

ik ik i
k

z

ik ik i

i i g
k

z

ik ik

1

2

1

1

i

i i

i

i

(36)

As it is clear from these objective functions, the decision-making
variables are included in the objective function, which makes it adap-
table with pre-solving and solving processes of the commercial MINLP
solvers.

Therefore, by modifying the mathematical formulations presented
in Section 2.1, the SP-MINLP model is obtained. These modifications
are (a) replacing Pgi in (1) and (2) by (33), and (b) taking into account
the (32) and (34).

2.2.2. Sub-function-based LCOPF
Another MINLP model can be obtained by assigning a cost function

to each disjoint operating zone. Therefore, as it can be seen from Fig. 5,
instead of selecting the sub-powers, the sub-cost functions correspond
to the operating zones (F P( )i i1 1 , F P( )i i2 2 , and F P( )i i3 3 ) can be selected. In
this regard, the cost function (8) of unit i is defined as a logical sub-
function-based objective (37).

⎧

⎨
⎪

⎩⎪

= + +
= + + ∀ ⩽ ⩽ −
= + +

F P a P b P c
F P a P b P c k z
F P a P b P c

( ) , or
( ) , 2 ( 1), or
( )

i i i i i i i

ik ik i ik i ik i i

iz iz i iz i iz i

1 1 1
2

1
2

2
i i i i (37)

And the cost function considering the valve-point effects, (9), after
the modifications is represented by (38).

⎧

⎨
⎪

⎩⎪

= + + + × × −
= + + + × × − ∀ ⩽ ⩽ −
= + + + × × −

F P a P b P c e P P
F P a P b P c e P P k z
F P a P b P c e P P

( ) | sin (f ( ))|,or
( ) | sin (f ( ))|, 2 ( 1), or
( ) | sin (f ( ))|

i i i i i i i i i i i

ik ik i ik i ik i i i i ik i

iz iz i iz i iz i i i i iz

1 1 1
2

1 1
2

2
i i i i i

(38)

By reformulating the aforementioned logical sub-functions, (37) and
(38), to an equivalent MINLP model, the sub-function-based MINLP (SF-
MINLP) for solving LCOPF problems is obtained as follows.

∑ ∑
∈ =

F P uMinimize ( ( ))
i k

z

ik ik ik
Ω 1g

i

(39)

In order to guarantee that only one of the decision-making variables
uik can be set to 1, (40) is taken into account, and consequently, only
one of the sub-functions can be selected.

∑ = ∀ ∈
=

u u1 , {0,1}
k

z

ik ik
1

i

(40)

However, to obtain the mixed-integer programming model, some
more definition such as (41) is necessary while the Pgi in (2) must be
replaced by (42).

⩽ ⩽ ∀ ∈ ∈ …P P P i k z; Ω , {1, , }i i i g ik k k (41)

∑=
=

P P ug
k

z

ik ik
1

i

i

(42)

Therefore, by making some modifications in the mathematical for-
mulations presented in Section 2.1, SF-MINLP model is obtained. These
modifications are (a) replacing the objective function (1) with a sub-
function-based objective (37) or (38), (b) putting (42) in (2), and (c)
considering (40) and (41).

Fig. 3. A transmission line model at the presence of TCPS.

Fig. 4. A transmission line model at the presence of TCSC.

Fig. 5. The input–output curve of unit i with con-
sidering valve-point effect and POZs.
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3. Case studies and results

In order to verify and validate the proposed models, the results of
testing on a commonly used IEEE 30-bus system under different
topologies and conditions are compared with the existing works in the
literature. However, to show the effectiveness, usefulness, and the
computational tractability and efficiency of the proposed models in
facing with logically-constrained large-scale power systems and also to
compare their potential with each other, two systems such as IEEE 118-
bus and Polish 2383-bus are studied. In this paper, to implement the
proposed models, a modeling language for mathematical programming
(AMPL) is used and to solve the proposed mixed integer nonlinear
programming models via a 3.3-GHz computer with 3 GB of RAM. After
testing the models by different MINLP solvers such as Localsolver,
Counne, Bonmin, and Knitro, we concluded that the nonlinear com-
mercial solvers Knitro is the most reliable and efficient solver for our
proposed models [37]. Since the model has been created to be adap-
table to the pre-solving techniques of commercial solvers, the pre-solve
option of Knitro that is on by default is remained on, otherwise, it can be
disregarded by setting the user option “presolve= 0”. It is worth
mentioning that, Knitro uses a MIP heuristic search approach to find the
initial integer feasible points. Once the initial integer feasible points
have been defined, the branch-and-bound procedure is started [37].
Moreover, in order to compare the CPU times of different approaches,
in this paper the adjusted CPU time (43) is used [38].

= ×ACT
given CPU speed (GHz)

3.3 GHz
given CPU time (s)

CPU time from MINLPs (s) (43)

3.1. IEEE 30-bus test system

The IEEE 30-bus system, among the other systems in the literature,
is a commonly used system that has been tested under different con-
ditions and topologies. In some works, the LCOPF with shunt VAR
compensator and LTCT have been considered, while in some other
works the LCOPF with TCSC and TCPS have been studied. In this paper,
to verify and show the effectiveness of the proposed MINLP frame-
works, both the aforementioned configurations via the corresponding
formulations (second and third models) in Section 2.1, are studied. This
system consists of 30 buses (9 buses with shunt VAR compensator), 41
branches (4 branches with transformer), and 6 generating units [39].
For this system, four different cases are considered. The detail data of
cases 1–3 and POZs are obtained from [10], while the detail data of case
4 is obtained from [36]. The minimum and maximum bounds of vol-
tages at load buses are 0.95 p.u. and 1.05 p.u. while for the generator
buses are 0.95 p.u. and 1.1 p.u., respectively. The minimum and max-
imum bounds for the transformer tap setting are 0.9 p.u. and 1.1 p.u
with the step size of 0.0125 p.u.; the minimum and maximum bounds of
shunt VAr compensators are 0.0 p.u. and 0.05 p.u with the step size of
0.01 p.u.; the minimum and maximum limits of reactance of TCSCs are
0 p.u. and 0.034 p.u; and the minimum and maximum limits of phase

shift angles of TCPS are −5 and 5 degrees, respectively.

3.1.1. Case 1: F2 considering prohibited operating zone (POZ)
This case is used to validate the proposed SP-MINLP and SF-MINLP

models in facing with POZs comparing with several existing approaches
in the literature. Table 1 presents the optimal results of proposed
models and the other existing approaches in the literature such as Ge-
netic Algorithm (GA) [40], Particle Swarm Optimization (PSO) [40],
Simulated Annealing (SA) [40], Shuffle Frog Leaping Algorithm (SLFA)
[40], Hybrid SFLA and SA (HSLFA-SA) [40], Enhanced GA (EGA)
[41,10], and three Efficiency Improvement Metaheuristic Algorithms
(EIMA1, EIMA2, and CEIMA) [10] where in EIMA1 a hybrid EGA
Combined with a Successive Approximation using Linear Programming
(SALP) or Quadratic Programming (QP) is used, while the EIMA2 is
performed by determining the lower and upper bounds, and CEIMA is a
combination of EIMA1 and EIMA2 approaches. It is worth mentioning
that the result of SF-MINLP model is used as the basis of per unit cal-
culations of adjusted CPU time (ACT).

As it can be seen from Table 1, the best result in the literature was
obtained by HSLFA-SA with a total cost of $805.8/h within 22.19 s
(2.38 p.u.) and considering the CPU times shows that the three ap-
proaches presented in [10] such as EIMA1, EIMA2, and CEIMA, com-
pared to other approaches in the literature as well as the proposed SP-
MINLP and SF-MINLP models, have higher computational efficiencies
where the CEIMA, with the best CPU time among all, requires only 0.49
p.u to find an optimal solution. However, the price of obtaining this
computational efficiency was reducing the quality of optimal solution
where the results of these approaches are not even as good as the
HSLFA-SA. On the other hand, the optimal results show that the pro-
posed SP-MINLP and SF-MINLP models have obtained much better
optimal solution than other approaches with $800.7/h, which is $5.1/h
less than the best result in the literature. Results also show that the
proposed SF-MINLP model, comparing with the SP-MINLP that obtains
the same result as the SF-MINLP model, is about 5.65 times faster, and
comparing with the CEIMA, which is the fastest among all, obtains a
much higher quality solution, with $6.0/h fewer cost. Comparing the
proposed models show that the number of nodes and subproblems to be
solved to obtain the optimal solution of the problem via SF-MINLP
model are 235 and 238, while via the SP-MINLP model these numbers
are 882 and 1062, respectively, which are much higher than those
numbers resulted via the SF-MINLP model.

3.1.2. Case 2: F2 considering POZ and valve-point effect (VPE)
Considering POZs and VPE simultaneously brings more difficulties

for the nonlinear solver, however, we use this model to reveal the po-
tential of the proposed models in facilitating the solver’s processes in
finding an optimal solution.

Table 2 presents the comparison among the optimal solutions of the
proposed models and other existing approaches in the literature. The
optimal solution of the proposed models is $828.1/h, which is much
better than the best optimal solution in the literature, which belongs to

Table 1
Comparison of the Optimal Results of the Proposed Models with Other Approaches for IEEE 30-bus System considering POZ.

Methods Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11 (MW) Pg13 (MW) Cost ($/h) Time (s) ACT

GA [40] 175.1155 44.5947 23.392 23.6505 11.5278 15.9364 809.2 NA NA
PSO [40] 174.2634 57.0264 23.5392 14.1558 11.003 14.5145 806.4 24.94 2.68
SA [40] 181.1696 57.9178 17.1063 16.5193 10 12 808.7 123.86 13.29
SLFA [40] 182.8236 45 21.0399 20.4853 12.0338 13.3021 806.2 24.74 2.66
HSLFA-SA [40] 181.453 45 21.5269 22.0786 11.9854 12 805.8 22.19 2.38
EGA [10] 177.6082 44.4762 22.3846 18.84 15.3382 13.7368 806.5 33.0397 4.32
EIMA1 [10] 182.9833 42.315 21.6154 20.5372 11.0452 14.1265 806.9 6.4699 0.85
EIMA2 [10] 178.311 44.5311 20.6239 24.1148 12.5788 12.2325 806.7 7.5270 0.98
CEIMA [10] 177.6929 44.8573 19.0112 21.5042 16.4863 14.4460 806.7 3.7395 0.49
SP-MINLP 179.309 45 21.5328 22.3159 12.26 12.0001 800.7 42.451 5.65
SF-MINLP 179.311 45 21.5323 22.3132 12.2607 12.0001 800.7 7.512 1.00
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HSLFA-SA with $834.6/h. This means that by using the proposed
models, the generation side will decrease the costs by about $6.5/h,
which is an acceptable decrease for such small scale system via the
optimization tool. Moreover, results show that the SF-MINLP model not
only capable of obtaining a better optimal solution but also shows
higher computational efficiency than the fastest approach in the lit-
erature, CEIMA with 1.47 p.u ACT, and the other proposed model, SP-
MINLP with 2.67 p.u. ACT. Therefore, the SF-MINLP model by per-
forming an acceptable trade-off between model accuracy and com-
plexity facilitates finding the optimal solution for the nonlinear solver.
It is worth mentioning that the numbers of nodes and solved sub-
problems for SF-MINLP model are 1737 and 1774, while for the SP-
MINLP model are 1864 and 2249, respectively. This shows that for this
case, SP-MINLP model faces with more difficulties to obtain the optimal
solution by solving 475 subproblems more than the SF-MINLP model.

3.1.3. Case 3: F2 with loss minimization objective
Although in this case the POZ is not considered, based on the ex-

isting integer decision-making variables related to LTCTs and shunt VAr
compensators, (18) and (19), the problem is still a highly mixed-integer
nonlinear programming problem. In this case, because there is no

disjoint operating zone, the SP-MINLP and SF-MINLP models are the
same, however, we use this case to show the flexibility and potential of
the proposed models in facing with different types of mixed-integer
based problems under different system configurations.

Table 3 presents the optimal solution of different approaches by
providing the active power output, voltages of generator buses, trans-
formers’ tap settings, shunt VAr compensator settings, total cost, system
loss, and the CPU time. As it is clear from this table, the proposed
MINLP model obtains a better optimal solution, with 3.0911MW
transmission loss, than the best optimal solution reported in the lit-
erature which belongs to DE with 3.1315MW transmission loss.
Therefore, the transmission loss obtained by the DE approach, com-
pared with the MINLP model, is about 1.3% higher yet it requires about
184.96 times more CPU time to converge [10]. Comparing the con-
vergence velocity of the MINLP model shows its superiority over the
other approaches in the literature where it is 5.10 times faster than the
fastest approach, the CEIMA with 3.3109 s [10]. Moreover, the detailed
results verify that the MINLP model by providing a different pattern for
shunt VAr compensator and LTCTs performs a more appropriate dis-
patch, and consequently the loss is decreased. This shows that how an
appropriate tradeoff between the model accuracy and complexity helps

Table 2
Comparison of the optimal results the proposed models with other approaches for IEEE 30-bus System considering POZ and VPE.

Methods Pg1 (MW) Pg2 (MW) Pg5 (MW) Pg8 (MW) Pg11 (MW) Pg13 (MW) Cost ($/h) Time (s) ACT

GA [40] 226.1783 24.3344 16.9393 10.00 10.1525 12.00 838.2 Na Na
PSO [40] 221.1471 30.8367 15.00 10.00 10.00 12.00 835.5 31.62 9.26
SA [40] 217.6117 32.7708 16.5177 10.00 10.00 12.00 836.5 152.32 44.60
SLFA [40] 219.4201 31.1173 15.8535 10.0415 10.00 12.00 834.8 30.72 8.99
HSLFA-SA [40] 219.816 29.7707 16.667 10.00 10.00 12.00 834.6 27.57 8.07
EGA [10] 219.3148 24.7033 17.7778 13.3211 10.337 12.00 835.2 36.8067 13.13
EIMA1 [10] 199.3421 44.00 15.5556 10.1465 12.7057 12.9709 835.8 7.1784 2.56
EIMA2 [10] 219.1556 24.0293 15.1111 10.1954 12.7106 15.535 835.2 8.3179 2.97
CEIMA [10] 206.6835 32.5275 15.5214 16.3309 11.6606 12.4991 835.2 4.1280 1.47
SP-MINLP 212.499 30.2251 17.9767 11.5671 10.6367 12.0011 828.1 7.354 2.67
SF-MINLP 212.421 30.2414 18.0011 11.4883 10.7416 12.0011 828.1 2.753 1.00

Table 3
Comparison of the optimal results of the minlp model with other approaches for IEEE 30-bus system, loss minimization objective.

Output PSO [42] EEA [42] GA [42] EIMA2 [10] CEIMA [10] EGA [42] EGA–DQLF [43] DE [10] MINLP

Pg1 (MW) 56.6613 59.3216 56.1602 65.7984 63.3470 51.674 51.6008 51.9581 51.4912
Pg2 (MW) 78.9597 74.8132 77.82 71.003 69.5824 79.97 80 79.9121 80.0
Pg5 (MW) 49.1795 49.8547 49.94 49.8547 49.6667 50 50 49.9743 50.0
Pg8 (MW) 35 34.9084 34.75 33.0464 34.8169 35 35 34.8657 35.0
Pg11 (MW) 29.8242 28.1099 29.897 27.3773 29.9170 30 30 29.8339 30.0
Pg13 (MW) 37.094 39.7538 38.11 39.5897 39.3299 40 40 39.9863 40.0
V1 (p.u.) 1.0694 1.0547 1.058 1.0912 1.0918 1.0518 1.0435 1.06 1.06317
V2 (p.u.) 1.0729 1.0418 1.051 1.0812 1.0882 1.0488 1.04353 1.0558 1.05675
V5 (p.u.) 1.05 1.0247 1.034 1.0735 1.0629 1.027 1.02470 1.0341 1.03730
V8 (p.u.) 1.0476 1.0335 1.042 1.0759 1.0835 1.0306 1.03470 1.04 1.04362
V11 (p.u.) 1.0176 1.0229 1.089 1.0559 1.02 1.0612 1.07 1.0588 1.07978
V13 (p.u.) 1.0576 1.0776 1.042 1.0924 1.0988 1.0382 1.043 1.0941 1.05098
T6-9 (p.u.) 0.95 1.0125 1.0625 1.025 0.9875 1.075 1.0375 0.95 0.95
T6-10 (p.u.) 1.0125 0.9125 1.0125 0.9375 0.9250 0.95 0.925 0.95 1.0875
T4-12 (p.u.) 0.9875 1.0125 1.025 1.0125 1.0250 0.9875 0.975 0.925 1.0125
T28-27 (p.u.) 1.0375 1.0125 1.0125 0.975 1.00 1.0125 0.975 1.0625 1.025
QC10 (p.u.) 0.05 0.04 0.04 0.05 0.02 0.04 0.05 0.05 0.01
QC12 (p.u.) 0.05 0.02 0.03 0.04 0.04 0.04 0.03 0.00 0.03
QC15 (p.u.) 0.05 0.05 0.05 0.05 0.00 0.02 0.0 0.03 0.05
QC17 (p.u.) 0.03 0.01 0.02 0.02 0.05 0.05 0.01 0.04 0.05
QC20 (p.u.) 0.04 0.05 0.04 0.01 0.04 0.03 0.04 0.00 0.04
QC21 (p.u.) 0.05 0.0 0.02 0.01 0.02 0.01 0.02 0.04 0.05
QC23 (p.u.) 0.02 0.02 0.05 0.05 0.02 0.0 0.05 0.01 0.03
QC24 (p.u.) 0.0 0.05 0.0 0.02 0.05 0.03 0.05 0.0 0.05
QC29 (p.u.) 0.01 0.02 0.0 0.04 0.01 0.04 0.05 0.0 0.02
Cost ($/h) 954.3483 952.3785 957.84 940.9685 944.7613 967.93 967.86 966.7930 967.592
Losses (MW) 3.318 3.2823 3.2772 3.2695 3.2601 3.244 3.2008 3.1315 3.0912
Time (s) NA 5.7167 NA 6.9117 3.3109 29.7118 NA 120.0 0.637
ACT NA 8.81 NA 10.65 5.10 45.79 NA 184.96 1.00
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in proper settings and accordingly finding a better optimal solution. It
should be noted that to obtain the optimal solution the numbers of
nodes and subproblems to be solved are 56 and 57, respectively.

3.1.4. Case 4: F3 considering POZ and VPE
Unlike the other three cases, this case considers the TCSC and the

TCPS devices. Consequently, as it can be seen from formulation F3 in
Section 2.1, in regards with non-convexity and nonlinearity, the pro-
blem is more complicated than the problem of F1 and F2. It is relevant
to mention that this case is used to validate and examine the perfor-
mance (obtaining an optimal solution and computational efficiency) of
the proposed SP-MINLP and SF-MINLP models in solving highly non-
linear and nonconvex mixed-integer problems.

Table 4 presents the results of the proposed models for LCOPF
problems considering FACTS devices. Since the qualities of optimal
results are almost the same, to show the efficiency of the proposed
models, the decision making variables, CPU time, and solving process
are considered in details. Considering the output of generating units
obtained by SF-MINLP model, which has a negligible higher quality
result, shows that several units such as 1, 8, 11, and 13 are adjusted to
their lower or upper limits of an operating zone, however, the SP-
MINLP model fails of such precise adjustments. This failure is a result of
difficulties in finding a precise adjustment of TCSC and TCPS control
variables in which negatively, although negligible, affects in generation
costs. Such difficulties become even clearer by considering the CPU
times, the number of nodes to be probed, and the number of sub-
problems to be solved. The SF-MINLP model finds the optimal solution
at the first node and by solving only three subproblems. This shows the
potential of SF-MINLP model to facilitate the pre-solving and probing
techniques of commercial solver that results in converging to an op-
timal solution within 0.187 s. On the other hand, the SP-MINLP model
probes 235 nodes and solves 238 subproblems to converge to an op-
timal solution within 9.547 s, which is about 51 times slower than the
SF-MINLP model. This shows the importance of using an appropriate
model for MINLP problems in finding a more precise optimal solution
with a higher computational efficiency. The results of this case de-
monstrate the superiority of SF-MINLP model in solving such highly
non-convex and nonlinear LCOPF problems considering multiple con-
trol devices.

3.2. IEEE 118-bus system

This system consists of 118 buses, 186 branches, and 54 generators
where 20 out of 54 generating units have a total 42 prohibited oper-
ating zones. For this system, the lower and upper limits of LTCTs are,
respectively, 0.9 p.u. and 1.1 p.u. and shunt VAr compensators can vary
between 0 and 0.05 p.u. It is worth mentioning that, in this case, for the
sake of simplicity the tap and VAr control variables are considered to be
continuous. The data of this system is obtained from [44], and the
additional data of POZs, buses with shunt VAr compensator and bran-
ches with LTCT are provided in the appendix, Tables A1 and A3, re-
spectively.

The optimal solutions of this system that contains 62 disjoint op-
erating zones by SP-MINLP and SF-MINLP models are almost the same,
about $129,619.67/h. Therefore, to reveal the efficiency and potential
of the proposed models, the details of solving process is taken into
consideration. After the pre-solving process of Knitro solver, the
number of nonzero elements in Hessians for SP-MINLP and SF-MINLP
models are, respectively, 1584 and 1320. Although these numbers show
that the SF-MINLP method may need fewer calculations and acts better
in the pre-solving process, the model simplicity will be revealed after
considering the solving process. Results show that, for branch and
bound method of Knitro, the number of nodes to be probed and sub-
problems to be solved for SP-MINLP are 121 and 122, respectively,
while via SF-MINLP model only five nodes and five subproblems are
processed. Moreover, the SF-MINLP model needs only 4.3 s to find the

optimal solution, while the CPU time of SP-MINLP model is 24.87 s,
which is about 4.87 times slower than SF-MINLP model. This demon-
strates the superiority of the SF-MINLP model for solving systems with
many disjoint operating zones.

3.3. Polish 2383-bus system

The Polish system, which is a very large-scale power system, con-
tains 2383 buses, 2896 branches, 327 generators with 24 POZs, and
1826 load buses with 24558.4MW and 8143.9 MVAr active and re-
active demands, respectively. By taking into account the LTCTs and VAr
compensators, this large-scale system becomes a very complicated op-
timization problem. In this system, the lower and upper limits of LTCTs
are, respectively, 0.9 p.u. and 1.1 p.u. and shunt VAr compensators can
vary between 0 and 0.05 p.u. while the tap and VAr control variables
are continuous. The data of this system is obtained from [44] while the
additional data of POZs are provided in the appendix, Tables A2 and
A3. In order to reveal the strength and drawbacks of our proposed
models, this system is studied under four different configurations,
shown in Table 5. The POZ is considered for all cases while the com-
bination of shunt VAR compensators, LTCT, and line limit makes the
other system configurations to be considered.

Results from Table 5 show that, for the first case, the total genera-
tion cost obtained by SF-MINLP is $1,860,059.9/h, which is $103.8/h
less than the result obtained by SP-MINLP model, yet the SP-MINLP
model requires 117.07 s more CPU time to converge. Considering the
optimal solutions of cases 2, 3, and 4 demonstrate that both of the
proposed models have found the same generation costs. It is worth
mentioning that, for the third case in which the line limits are con-
sidered, although the SP-MINLP model finds the same solution as the
SF-MINLP model, its integrality gap is −695, and for a solution to such
largely negative integrality gap the Knitro solver is unable to verify the
optimality even if it claims [37]. Moreover, for this case, the SP-MINLP
problem even with probing fewer nodes and solving fewer subproblems
shows less computational efficiency, with 1201.48 s, where comparing
to the SF-MINLP model it needs 566.45 s more CPU time to converge.
Considering case 4 in which among all cases more decision variables
should be adjusted shows a higher computational efficiency of SF-
MINLP by requiring only 150.94 s, while the SP-MINLP model with
716.08 s CPU time is 4.74 times slower than it. This shows the super-
iority of the SF-MINLP model in bringing more facilities for the com-
mercial nonlinear solver in finding an optimal solution for highly
complex systems.

Table 4
Comparison the units’ outputs and FACTS adjustments for SP-MINLP and SF-MINLP
models, IEEE 30-bus system.

Optimal Output SP-MINLP SF-MINLP

Pg1 (MW) 199.999999 200.00
Pg2 (MW) 43.376381 43.376388
Pg5 (MW) 18.627491 18.627488
Pg8 (MW) 10.000003 10.00
Pg11 (MW) 10.000002 10.00
Pg13 (MW) 12.000001 12.00

−x c
3 4 (p.u.) 0.0325116 0.0325137

−xc
19 20 (p.u.) 0.0339927 0.0339999

−φ5 7 (deg.) 0.0364783 0.0364786

−φ10 22 (deg.) −0.00068501 −0.00068499
Cost ($/h) 831.069700 831.069696
Loss (MW) 10.603877 10.603876
Time (s) 9.547 0.187
# of nodes 235 1
# of subproblems 238 3
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4. Conclusion

From the practical standpoint, the solver-based models are of much
interest. On the other hand, the existing commercial nonlinear solvers
are not capable of solving logic-based problems. In this paper, by
considering the pre-solving and solving processes of the commercial
nonlinear solver, the logical constraints have been recast into the terms
of objective function. These recasts may facilitate the pre-solving and
probing techniques of the commercial solver and consequently, results
in computational and solution efficiency. By recasting the logical con-
straints to sub-powers corresponding to the disjoint operating zones,
the SP-MINLP model obtains, while by recasting them into sub-func-
tions, the SF-MINLP model results. The proposed models, as the first
solver-friendly models for nonconvex logically-constrained OPF pro-
blems, have addressed the existing shortcoming in the literature for
solving such problems by commercial solvers. Results show that the
proposed models are much better than, faster with a higher potential
for finding a high-quality optimal solution, the existing approaches in
the literature. It is relevant to highlight the effectiveness and usefulness
of the proposed models in finding the optimal solution for very large-

scale practical Polish power system under different conditions and
system configurations. Comparing to the existing approaches in the
literature, which all of them are heuristic-based, to solve logically
constrained ACOPF problems, our well-defined solver-friendly MINLP
models, by facilitating the pre-solving and solving processes, show
higher performance and efficiency in finding an optimal solution.
However, the SF-MINLP model by bringing more facilities for nonlinear
solver can be the best option for companies for solving such highly
nonlinear non-convex mixed-integer logically constrained OPF pro-
blems as the SP-MINLP model fails in finding a high-quality solution
where the SF-MINLP model finds. All in all, it can be deduced that al-
though a nonlinear solver may not guarantee to find the globally op-
timal solution, a well-defined model via an efficient recast method re-
sults in finding a much higher quality solution than the heuristic-based
approaches.
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Appendix A

This appendix contains the necessary data for POZs, buses with shunt VAR compensator, and branches with LTCT for IEEE 118-bus and Polish
2383-bus systems, Tables A1–A3.

Table 5
Results of different cases for polish 2383-bus system.

Case Method Cost ($/h) Time (s) # of nodes # of sub- problems POZ LTCT & VAR Line Limit

Case 1 SP-MINLP 1860163.7 358.60 7 9 ✓ –
SF-MINLP 1860059.9 241.53 6 7

Case 2 SP-MINLP 1858989.7 387.6 7 9 ✓ ✓ –
SF-MINLP 1858989.7 368.8 7 9

Case 3 SP-MINLP 1906024.4a 1201.48 10 11 ✓ – ✓
SF-MINLP 1906024.4 635.03 11 12

Case 4 SP-MINLP 1893506.0 716.08 12 14 ✓ ✓ ✓
SF-MINLP 1893506.0 150.94 12 14

a The integrality gap is largely negative.

Table A1
POZs for IEEE 118-bus system.

Buses with POZ POZs

1, 4, 6, 15, 34, 70 (20 30) (60 85)
10 (15 45) (165 200) (395 410)
25 (40 65) (190 200)
26 (75 95) (260 280)
40, 42, 85, 104, 116, 99 (20 30) (45 55)
49 (45 60) (185 200)
59 (95 105) (140 155)
61 (145 155) (210 230)
65 (180 200) (350 360)
89 (120 145) (410 460) (500 525)

Table A2
POZs for polish 2383-bus system.

Bus with POZ POZs Bus with POZ POZs

18 (1850 1950) (2020 2200) 139 (410 490) (560 580)
95 (55 65) (75 90) 176 (470 510) (580 598)
123 (25 45) (75 90) 494 (224 227) (229 231)
125 (160 175) (180 190) 755 (87 92) (130 160)
131 (865 885) (890 930) 1182 (45 50) (95 102)
132 (72 85) (145 190) 1416 (320 335) (355 360)
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