
Few-Body Syst (2018) 59:19
https://doi.org/10.1007/s00601-018-1347-1

M. T. Yamashita · D. S. Rosa · J. H. Sandoval

Few-Body Techniques Using Momentum Space for Bound
and Continuum States

Received: 8 December 2017 / Accepted: 17 February 2018 / Published online: 6 March 2018
© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Abstract This article is based on the notes (arxiv:1710.11228) written for a set of three lectures given in a
school at the Max Planck Institute for the Physics of Complex Systems in October/2017 before the workshop
“Critical Stability of Quantum Few-Body Systems”. The last part of the article includes the specific topic
presented in the workshop related to the dimensional effects in three-body systems. These notes are primarily
dedicated to the students and are only a tentative to show a technique, among many others, to solve problems
in a very rich area of the contemporary physics—the Few-Body Physics.

1 Introduction

The first question we probably think by reading “Few-Body Physics” along the title1 is what is the meaning
of the word “Few-Body”. This term may seem a little vague and use it in order to define an area of the physics
also seems incautious, mainly by the use of a so subjective word like “few”. In our case, the word “body”
corresponds to any particle that may be present in several contexts of the physics like, e.g., quarks, protons,
neutrons, atoms or molecules. Each of these different constituents should have a common characteristic: they
should be a very well-defined object. They should not be treated as an approximation like in a mean-field theory,
for example. Thus the word “few” should be understood taking into account the technical and computational
difficulties that appear as the number of particles increase. A few-body system may represent 3, 4, 5, etc.
particles since the individuality of each object is respected.

This article is based on my notes (arxiv:1710.11228) [2] without the introductory part related to the formal
scattering theory and development of the Faddeev equations. Section 2 describes in detail how to calculate
three-body bound and scattering states using the subtracted Faddeev equations with a pairwise zero-range
interaction [3]. In Sect. 3 we show how the effective dimension generated inside atomic traps may affect the
Efimov states. The summary and conclusions are presented in Sect. 4.

This article belongs to the Topical Collection “Critical Stability of Quantum Few-Body Systems”.

1A curiosity to mention here is that we usually hear that the classical few-body problem doesn’t have a solution for three or more
particles, as demonstrated by Henri Poincaré when he was 35 years old. In fact, the N -body classical problem was already solved
in 1991 by Qiudong Wang, at that time, a student in the beginning of his Ph.D. [1].
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2 Bound and Scattering States

The following formalism will be developed in momentum space. We will focus only in universal situations
in which the range of the potential is much smaller than the typical sizes of the system in a manner that the
observables do not depend on the form of the short-range potential.

2.1 Two-Body T -Operator for a Separable Potential

A potential, V , is called separable if
〈p |V |p ′〉 = λg(p )g�(p ′), (1)

where p is the relative momentum between two particles. We can write generically a rank-1 separable potential
in the form of a projection operator as

V ≡ λ|χ〉〈χ |, (2)

where λ is the strength of the potential and 〈p |χ〉 = g(p) and 〈χ |p 〉 = g∗(p) are the form factors.
Let us start replacing the separable potential, written in the form of Eq. (2), in the T -operator equation

calculated at a given energy E . G0(E) is the free Green operator.

t (E) = V + VG0(E)t (E), (3)

t (E) = λ|χ〉〈χ | + λ|χ〉〈χ |G0(E)t (E), (4)

multiplying by 〈χ |G0(E) from the left side and isolating 〈χ |G0(E)t (E) we have:

〈χ |G0(E)t (E) = λ〈χ |G0(E)|χ〉〈χ | + λ〈χ |G0(E)|χ〉〈χ |G0(E)t (E),

(1 − λ〈χ |G0(E)|χ〉)〈χ |G0(E)t (E) = λ〈χ |G0(E)|χ〉〈χ |,

〈χ |G0(E)t (E) = λ〈χ |G0(E)|χ〉〈χ |
1 − λ〈χ |G0(E)|χ〉 . (5)

Replacing Eq. (5) in (4) we get the two-body T -operator:

t (E) = λ|χ〉〈χ | + λ2|χ〉〈χ |G0(E)|χ〉〈χ |
1 − λ〈χ |G0(E)|χ〉 ,

t (E) = λ|χ〉
(

1 + λ〈χ |G0(E)|χ〉
1 − λ〈χ |G0(E)|χ〉

)
〈χ |. (6)

Then, we can write it as:
t (E) = |χ〉τ(E)〈χ |, (7)

note here that a separable potential results in a separable T -operator. The function τ is given by:

τ(E) = 1

λ−1 − 〈χ |G0(E)|χ〉 . (8)

Writing explicitly the matrix element of Eq. (7), we have that:

τ(E) =
(

λ−1 −
∫

d3 p
|g(p)|2

E − p2

2M + iε

)−1

, (9)

where M is the reduced mass of the two-body system.
Since now, we just assumed that the two-body potential is separable. From this point we will restrict it a little

more. We will focus here only on the universal characteristics of the system. The universal characteristics appear
in systems that present an important property called universality. In these systems the calculated observables
do not depend on the details of the short-range potential. This peculiar situation occurs when the size of the
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system, represented by a typical scale (the two-body scattering length, for example), is much larger than the
range of the potential. This situation can be achieved by construction using a Dirac-delta potential. As this
potential has a range equal to zero, any size of the system is infinitely larger than the range of the potential,
then any quantity calculated is universal by definition. For a zero-range potential V (r) = λδ(r) and the form
factor g(p) = 〈p |χ〉 = 1.

The consequence of replacing g(p) = 1 is that the integral in

τ−1(E) = λ−1 −
∫

d3 p
1

E − p2

2M + iε
(10)

diverges for large momenta. In order to transform Eq. (10) into a finite value we need that λ−1 should also be
infinite. Calculating τ−1(−|E2|) at the two-body binding energy, E2, and remembering that a bound state is a
pole in the T -operator we have that:

τ−1(−|E2|) = 0 = λ−1 −
∫

d3 p
1

−|E2| − p2

2M

(11)

λ−1 =
∫

d3 p
1

−|E2| − p2

2M

, (12)

then we can replace λ−1 in Eq. (10) (note that λ−1 also diverges) obtaining:

τ−1(E) = −
∫

d3 p

(
1

|E2| + p2

2M

+ 1

E − p2

2M + iε

)
. (13)

Now the integral is finite and can be calculated using the residue theorem giving:

τ−1(E) = 2π2(2M)3/2
(√|E2| − √|E |

)
. (14)

Note that the introduction of the physical scale E2 not only regularizes the integral but also renormalizes it.

2.2 Three-Body T -Operator for a Separable Potential

We saw that the regularization (and renormalization) of Eq. (10) appears naturally after calculating τ at a bound
state energy and noting that such energy is a pole in the T -operator. However, the choice of the two-body energy
|E2| as a scale is arbitrary—it could be another observable or we could just put a cuttoff for high momenta
and further relate it with some observable.

The three-body T -operator may also be regularized in a similar way. Let us start defining the three-body
T -operator in a given energy E = −μ2

T (−μ2) = [
1 + T (−μ2)G0(−μ2)

]
V,

V = [
(1 + T (−μ2)G0(−μ2))

]−1
T (−μ2), (15)

replacing the above V into T (E) = V + VG(+)
0 (E)T (E) we get:

TR(E, μ2) = TR(−μ2) + TR(−μ2)
(
G(+)

0 (E) − G0(−μ2)
)
TR(E), (16)

where we inserted the subscript R to indicate a regularized (renormalized) T -operator.
We can show that T (E, μ2) does not depends on the subtraction point μ2 in such a way we will write the

T -operator simply as

TR(E) = TR(−μ2) + TR(−μ2)
(
G(+)

0 (E) − G0(−μ2)
)
TR(E). (17)

Note that Eq. (17) has the same operatorial form as the original equation for the T -operator (this can be

seen making the following replacements TR(−μ2) ≡ V (−μ2) and
(
G(+)

0 (E) − G0(−μ2)
)

≡ G0(E; −μ2)).
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Let us assume an ansatz and define the three-body T -operator in the subtraction point as the sum of all pairs
of the renormalized two-body T -operators (tRα )

TR(−μ2
(3)) =

∑
α,β,γ

tRα

(
−μ2

(3) − q2
α

2mβγ,α

)
, (18)

where α, β, γ = 1, 2, 3 (α �= β �= γ ) and mβγ,α is the reduced mass of the pair βγ and α. Note that the
argument of tR is the energy of the center of mass of the pair. From this point the two and three-body T -
operators will be represented, respectively, by t and T . The counterpart of regularized/renormalized two and
three-body T -operators is the addition of two physical scales which will be generically represented by μ2

(i),
where the subscript i = 2, 3 distinguishes between the two and three-body scales. The original T -operator is
recovered in the limit μ → ∞.

Replacing Eq. (18) in (17) we have:

TR(E) =
∑
α,β,γ

tRα

(
−μ2

(3) − q2
α

2mβγ,α

)[
1 +

(
G(+)

0 (E) − G0(−μ2
(3))

)
TR(E)

]
. (19)

Defining the component 1 of the three-body T -operator as

TR1(E) = tR1

(
−μ2

(3) − q2
1

2m23,1

) [
1 +

(
G(+)

0 (E) − G0(−μ2
(3))

)
TR(E)

]
, (20)

and writing TR(E) as the sum of the components corresponding to an interacting pair (we are using the
odd-man-out notation where the subscript 1 says that the pair (23) interacts, 2 (13) and 3(12)) as

TR(E) =
∑

α=1,2,3

TRα (E), (21)

we may finally write the Faddeev component 1 as a function of the other two:

TR1(E) = tR1

(
E − q2

1

2m23,1

) {
1 +

(
G(+)

0 (E) − G0(−μ2
(3))

)

× [
TR2(E) + TR3(E)

]}
, (22)

2.3 Bound State Equations

Consider the following completeness relation:

1 =
∑
B

|ΦB〉〈ΦB | +
∫

d3k|
(+)
k 〉〈
(+)

k |, (23)

where the first and second terms containing |ΦB〉 and |
(+)
k 〉, decomposes, respectively, a given state into

bound and scattering states of initial momentum k. Inserting Eq. (23) in the T -operator equation we have:

T (E) = V +
∑
B

VG(+)(E)|ΦB〉〈ΦB |V +
∫

d3kVG(+)(E)|
(+)
k 〉〈
(+)

k |V ;

T (E) = V +
∑
B

V |ΦB〉〈ΦB |V
E − EB + iε

+
∫

d3k
V |
(+)

k 〉〈
(+)
k |V

E − Ēk + iε
, (24)

where the complete propagator G(+)(E) was explicitly written in terms of the bound (EB < 0) and continuous
(Ēk > 0) state eigenvalues. The T -operator written in the form of Eq. (24) is called Low equation [4]. For a
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given bound states (E ≈ EB) we have that the second term is dominant due to the presence of a pole. Then,
we can write:

T (E) ≈ V |ΦB〉〈ΦB |V
E + |EB | = |�B〉〈�B |

E + |EB | , (25)

where we defined |�B〉 = V |ΦB〉. The same applies to a Faddeev component of the T -operator:

Tα = vα + vαGV (26)

Tα(E) ≈ vα|Φα〉〈Φα|V
E + |Eα| = |�α〉〈�|

E + |Eα| , (27)

with α = 1, 2, 3, |�α〉 = vα|Φα〉 and 〈�| = 〈Φα|V . Replacing Eq. (27) in (22), we have:

|�1〉〈�|
E + |E1| ≈ tR1

(
E − q2

1

2m23,1

) {
1 +

[
G(+)

0 (E) − G0(−μ2
(3))

]

×
( |�2〉〈�|
E + |E1| + |�3〉〈�|

E + |E1|
)}

, (28)

where E1 is the energy of the bound pair 23. Cancelling the common terms on both sides we finally have the
homogeneous equation

|�1〉 = tR1

(
E − q2

1

2m23,1

)(
G(+)

0 (E) − G0(−μ2
(3))

)
(|�2〉 + |�3〉) . (29)

Remember that this approximation is as good as closer to the limit E → −|E1|.
Writing explicitly the two-body T -operator in the operatorial form given by Eq. (7):

|�1〉 = |χ〉τ
(
E − q2

1

2m23,1

)
〈χ |

(
G(+)

0 (E) − G0(−μ2
(3))

)
(|�2〉 + |�3〉) , (30)

where τ(E) is the function given by Eq. (14). Multiplying Eq. (30) by 〈p1,q1| from the left, where p1 is the
relative momentum of particles 2 and 3 and q1 the momentum of particle 1 with respect to the center of mass
of particles 2 and 3, we get:

〈p1,q1|�1〉 = 〈p1|χ〉τ
(
E − q2

1

2m23,1

)
〈χ |〈q1|

(
G(+)

0 (E) − G0(−μ2
(3))

)

× (|�2〉 + |�3〉) , (31)

using that

〈p1,q1|�1〉 = 〈p1,q1|V |Φ1〉 =
∫

dp ′〈p1|χ〉〈χ |p ′〉〈q1,p ′|Φ1〉 = f1(q1), (32)

where we used that the form factor for a Dirac-delta potential is g(p) = 〈p|χ〉 = 1, we have the homogeneous
equation for a three-body bound state for the Faddeev component 1.

f1(q1) = 〈p1|χ〉τ
(
E − q2

1

2m23,1

)
〈χ |〈q1|

(
G(+)

0 (E) − G0(−μ2
(3))

)

× (|�2〉 + |�3〉) . (33)

The function f is called spectator function [5]. Note that for the specific case of three identical bosons, the
three spectator functions are exactly the same, such that:

〈q1| f1〉 = 〈q2| f2〉 = 〈q3| f3〉. (34)

Then, we have now to calculate the matrix elements on the right side of Eq. (33).
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The homogeneous equation for three identical bosons reads:

f (q ) = 2τ

(
−|E3| − 3

4
q2

)

×
∫

d3q ′
(

1

−|E3| − q2 − q ′2 − q ′ · q − 1

−μ2
(3) − q2 − q ′2 − q ′ · q

)
f (q ′), (35)

where we removed all indexes. This is the Skorniakov and Ter-Martirosian (STM) equation for the bound state
and zero-range potential [6]. It is worth to remind that the three-body scale μ(3) is arbitrary. All momenta and
E3 can be rescaled with respect to μ(3) in order to have dimensionless quantities as |ε3| = |E3|

μ2
(3)

, y = q
μ(3)

and

x = q ′
μ(3)

. Thus, the homogeneous equation (35) for the three-body bound state is rewritten as

f (y) = 4πτ

(
−|ε3| − 3

4
y2

) ∞∫
0

dxx2

−1∫
1

dz

[
1

|ε3| + y2 + x2 + xyz

− 1

1 + y2 + x2 + xyz

]
f (x), (36)

with z ≡ cos(q · q ′).
Here, we might be tempted to use the solution coming from the Fredholm theory, however, we have here

two problems: we don’t know neither f nor ε3. Among several numerical methods that we can use to solve this
problem, we will focus in only one. Generically, the structure of this integral equation reads (after integrating
out the angular part)

f (y) =
∫

dxK (y, x; E) f (x). (37)

In order to calculate this equation numerically we should discretize it. Let us call by fi ≡ f (yi ) the value of
f calculated in a given mesh point yi (i = 1, . . . , N ). We then have

f (yi ) =
N∑
j=1

(wx) j K (yi , x j ; E) f (x j ) (38)

fi =
N∑
j=1

w j Ki j (E) f j (39)

N∑
j=1

(
δi j − w j Ki j (E)

)
f j = 0 → MF = 0, (40)

where K (yi , x j ; E) ≡ Ki j (E), (wx)i ≡ wi is a given weight associated to the mesh point xi (if you are not
familiar with these terms, search for Gauss-Legendre quadrature), and δi j is a Kronecker delta. We then have
a homogeneous equation with matrices M and F given by:

M =

⎛
⎜⎜⎝

1 − w1K11(E) −w2K12(E) · · · −wN K1N (E)
−w1K21(E) 1 − w2K22(E) · · · −wN K2N (E)

...
...

. . .
...

−w1KN1(E) −w2KN2(E) · · · −wN KNN (E)

⎞
⎟⎟⎠ and F =

⎛
⎜⎜⎝

f1
f2
...
fN

⎞
⎟⎟⎠ . (41)

Now, if we want a different solution from the trivial one we have to find an E = E3 that gives a determinant
det(M(E3)) = 0. Once a bound state energy is determined, we can now discuss how to determine the three-
body wave function.

The three-body wave function may be written as a function of the spectator function. So, let us first consider
how to determine f . As the determinant is equal to zero, one of the equations of our homogeneous system
is redundant and it can be eliminated. Then, f1, for example (it could be another position than 1), can be set



Few-Body Techniques Using Momentum Space Page 7 of 11 19

arbitrarily as f1 ≡ 1 and the other f ’s are calculated with respect to this f1. This is not a problem at all as the
wave function will be further normalized and this arbitrariness will be washed out. Thus, we have now that

N∑
j=1

Mi j f j = 0 ⇐⇒
N∑
j=2

Mi j f j = −Mi1 f1 = −Mi1, (42)

with i = 2, . . . , N . Representing by M̄ the remaining matrix after eliminating the first column and line of M ,
and by C the first column of M , Mi1 (i = 2, . . . , N ), without the element M11, we have that

N∑
j=2

f j = F̄ = −M̄−1C. (43)

Remember that we are considering only the case where the particles are identical. For two or three different par-
ticles we will also have, respectively, two or three different spectator functions. For a general three-body system
with three distinct spectator functions, the three-body wave function emerges directly from the Schroedinger
equation as:

⎛
⎝H0 +

∑
α=1,2,3

λα|χα〉〈χα|
⎞
⎠ |
〉 = E |
〉 (44)

(E − H0)|
〉 =
∑

α=1,2,3

λα|χα〉〈χα|
〉, (45)

where the two-body separable potential was replaced by vα = λα|χα〉〈χα| and H0 is the free Hamiltonian.
Multiplying Eq. (45) by 〈q1,p1| from the left we may write the three-body wave function in terms of the
spectator functions in the coordinates q1,p1 as:

〈q1,p1|
〉 = f1(|q1|) + f2(|p1 − q1
2 |) + f3(|p1 + q1

2 |)
|E3| + H0

. (46)

We have now the full picture to calculate the three-body binding energies and wave function.

2.4 Scattering States Equation

In order to write the Lippmann-Schwinger equation in momentum space, we have to insert in Eq. (35) the
inhomogeneous term coming from the solution of the free problem. In configuration space this term is given
by a plane wave eiq·r and in momentum space it can be written as (2π)3/2δ(q − ki ). Here, the momentum q
represents the relative momentum between the free particle and the center of mass of the bound pair. The in
and outcoming momenta given, respectively, by ki and k f are related to the total energy of a free particle and a
bound pair as E3 = −E2 + k2

i /2m23,1 = −E2 + k2
f /2m23,1. Thus, the full equation with the inhomogeneous

term reads:

f (q ) = (2π)3/2δ(q − ki ) + 2τ

(
E3 − 3

4
q2

)

×
∫

d3q ′
(

1

E3 − q2 − q ′2 − q ′ · q − 1

−μ2
(3) − q2 − q ′2 − q ′ · q

)
f (q ′),

(47)

with E3 > 0. Now, we have to insert in Eq. (47) the boundary condition for the elastic scattering given by:

f (q ) → (2π)3/2δ(q − ki ) + h(q , ki )

E3 ± iε − q2 , (48)
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where h(q , ki ) is the scattering amplitude. After replacing Eq. (48) in (47) we have that

h(q , ki ) = V(q, ki ; E3) +
∫

d3q ′ V(q, q ′; E3)

E3 ± iε − q ′2 h(q ′ , ki ), (49)

where

V(q, ki ; E3) = 2τ

(
E3 − 3

4
q2

) (
E3 − q2)

×
(

1

E3 − q2 − k2
i − q · ki

− 1

−μ2 − q2 − k2
i − q · ki

)
. (50)

Note that we are not being very precise here as there is a missing factor (2π)3/2 dividing the function h.
However, this is meaningless as we could in principle redefine another function as h̄ ≡ h/(2π)3/2. Now, after
integrating out the angular part we will arrive in a equation very similar to Eq. (37), but with an inhomogeneous
term

h(x, y) = g(x, y; E) +
∫

dx ′K (x, x ′; E)h(x ′, y). (51)

The numerical method we used to solve this problem is very close to the one used for bound states. The
difference is that now the spectrum is continuous and the energy E enters as an input. Let us call hi j =
h(yi , x j ), gi j = g(yi , x j ) and Ki j (E) = K (yi , x j ; E) the values of h, g and K calculated in the mesh points
yi , xi (i = 1, . . . , N ). Then, the discretization reads:

hi j = gi j (E) +
M∑
k=1

wk Kik(E)hk j

M∑
k=1

(δik − wk Kik) hk j = gi j → DH = g (52)

where wk is a given weight associated to the Gauss point xk and δik is the Kronecker delta. Now, the matrix
H returns the function h which is directly associated with the differential cross section dσ

d�
= |h(q, ki )|2.

3 Dimensional Effects in Efimov States

In 1970, Vitaly Efimov published a paper [7] where he studied the energy spectrum of a system formed by bound
states of three-identical bosons, interacting by a two-body short-range potential. He observed a very curious
behaviour: the number of three-body bound states increased to infinity if the two-body binding energy tends
to zero. It took more than 30 years to have an experimental evidence of this counter-intuitive phenomenon in
the context of ultracold atoms [8]. These bound states still present a very interesting scaling: the ratio between
two consecutive bound states is given by E (N )

3 /E (N+1)
3 = e2π/s (N = 0, 1, . . .), where s = 1.006 for three

identical bosons. Also, the ratio of two consecutive root-mean-square hyperradius, is exactly the square root
of the energy ratios eπ/s .

For a system AAB, formed by two identical bosons of masses mA and a different particle with mass mB , s
depends on the mass ratio A = mB/mA and also on the dimension D where the system is embedded. Nielsen
and collaborators [9] showed that for three identical bosons the Efimov effect ceases to exist in the interval
2.3 < D < 3.8. It is possible to reproduce and extend the previous result for an AAB system noting that the
wave function which results in the characteristic Efimov energy spectrum is scale invariant for large relative
momenta. The following equation extends the Skorniakov and Ter-Martirosian equation (STM) [6] for an AAB
system and generalizes it to an arbitrary dimension

f A(q) = τAB

(
E3 − A + 2

2(A + 1)
q2

)

×
∫

dDk

(
fB(k)

E3 − q2 − A+1
2A k2 − k · q + f A(k)

E3 − A+1
2A (k2 + q2) − 1

Ak · q

)
, (53)
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fB(q) = 2 τAA

(
E3 − A + 2

4A q2
)∫

dDk
fA(k)

E3 − A+1
2A q2 − k2 − k · q , (54)

The subindexes distinguish between the two different spectator function. The two-body transition amplitudes
τAB and τAA are given by

τ−1
AB

(
E3 − A + 2

2(A + 1)
q2

)
=

∫
dDk

(
1

−|E AB
2 | − A+1

2A k2

− 1

E3 − A+2
2(A+1)

q2 − A+1
2A k2

)
, (55)

τ−1
AA

(
E3 − A + 2

4A q2
)

=
∫

dDk

(
1

−|E AA
2 | − k2

− 1

E3 − A+2
4A q2 − k2

)
, (56)

where E AB
2 and E AA

2 are the two-body energies of the bound AB and AA systems, respectively. For large
values of q , relevant for exploring the Efimov effect, the integrals in Eqs. (55) and (56) are determined by
the region of large values of k [10] and, therefore, the energies E3, E AA

2 and E AB
2 can be set to zero in those

integrals. In this situation, one can obtain closed forms for the amplitudes τAB and τAA:

τ−1
AB

(
− A + 2

2(A + 1)
q2

)
= −qD−2

( A + 2

2(A + 1)

)D/2−1 (
2A

A + 1

)D/2
πD/2

�(D/2)

×� (D/2 − 1) � (2 − D/2) , (57)

τ−1
AA

(
−A + 2

4A q2
)

= −qD−2
(A + 2

4A
)D/2−1

πD/2

� (D/2)

×� (D/2 − 1) � (2 − D/2) , (58)

where �(z) is the gamma function, defined for all complex numbers z except for the non-positive integers.
This restricts the validity of our results to the interval 2 < D < 4. Their solutions are homogeneous functions,
that is, the amplitudes f A(q) and fB(q) are given by

f A(q) = CA q
r+is and fB(q) = CB qr+is, (59)

where r and s are real numbers. These solutions are the well-known log-periodic functions, associated with
the infinitely many three-body bound states in the Efimov limit. Using Eq. (53) in Eqs. (54) and (59) leads to
a complex homogeneous linear matrix equation for the coefficients CA and CB . The parameters r and s are
found by solving the corresponding characteristic equation. We have determined numerically that r = 1 − D
for all D, which removes any ultraviolet divergence. Once s and r have been found numerically, we have than
made a consistency check, in that we replaced r = 1 − D + ε in the characteristic equation and expanded it
in powers of ε and checked analytically that the only possible solution for epsilon is ε = 0 when we insert the
value of s found numerically for all D and mass ratios. The characteristic equation is a transcendental equation
in r and s and is given by

( A + 2

2(A + 1)

)D/2−1 (
2A

A + 1

)D/2

= FD

[
A I1(A, s) + 2

(
4A

A + 2

)D/2−1

× FD I2(A, s)I3(A, s)] , (60)
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Fig. 1 Discrete scaling factor as a function of the mass ratio A = mB/mA, and dimension D. The black dashed line shows the
well-known situation of D = 3 and the red dotted line the values for the heteronuclear 6Li-133Cs mixture, A = 6/133

where

FD = 1

� (D/2 − 1) � (2 − D/2)
, (61)

and

I1(A, s)=
∞∫

0

dz
zis

z
log

[
(z2 + 1)(A + 1) + 2z

(z2 + 1)(A + 1) − 2z

]
, (62)

I2(A, s)=
∞∫

0

dz
zis

z
log

[
2A(z2 + z) + A + 1

2A(z2 − z) + A + 1

]
, (63)

I3(A, s)=
∞∫

0

dz
zis

z
log

[
2A(1 + z) + (A + 1)z2

2A(1 − z) + (A + 1)z2

]
, (64)

which are the same integrals found in Ref. [11] for the D = 3 problem.
Figure 1 shows the value of the discrete scaling factor exp (π/s) as a function of the mass ratio A. The

black dashed line indicates the well-known result for D = 3 [12]. The most symmetrical case, where A = 1,
presents the worst situation to observe consecutive Efimov excited states as for any D the scaling factor presents
a maximum for this mass ratio. The red dotted line shows a more favourable case of a heteronuclear 6Li-133Cs
system, A = 6/133, where the gap between the energy levels is decreased comparing to A = 1.

The experimental connection of the present result for 6Li-133Cs can be made through the Fig. 2 where it
is plotted the effective dimension, D, as a function of an oscillator length in the squeezed direction, bω. The
inset shows the ratio of the first to second excited state three-body energies calculated by solving the Faddeev
equations in momentum space with a compactified dimension as detailed in Ref. [13]. With this ratio we can
extract s and then Fig. 1 returns D [14]. a3 is the AB scattering length for D = 3, for the situation in which
E AB

2 is kept fixed to its value for D = 3 (dashed curves in Fig. 2 of Ref. [13]).

4 Conclusions

Excluding the Sect. 3, the text in this article was written focusing the students. We tried to include the concepts
which we judged to be important to start a study in momentum space techniques in Few-Body Physics. Section 3
shows our prediction of the Efimov discrete scaling factor, exp (π/s), as a function of a wide range of values
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Fig. 2 Effective dimension D for A = 6/133 as a function of bω/a3, where a3 is the AB scattering length for D = 3 and bω is the
oscillator length in the squeezed direction. The inset shows the ratio of the first to second excited state three-body energies [13]

of A and D, which can be tested in experiments through the measurements of consecutive peaks associated to
the loss of the atoms of the ultracold trap due to three-body recombination processes. A direct connection of
the effective dimension with the oscillator length in the squeezed direction is showed for the realistic case of
a 6Li-133Cs system.
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