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Abstract The water quality index (WQI) is an impor-
tant tool for water resource management and planning.
However, it has major disadvantages: the generation of
chemical waste, is costly, and time-consuming. In order
to overcome these drawbacks, we propose to simplify
this index determination by replacing traditional analyt-
ical methods with ultraviolet-visible (UV–Vis) spectro-
photometry associated with artificial neural network
(ANN). A total of 100 water samples were collected
from two rivers located in Assis, SP, Brazil and calcu-
lated the WQI by the conventional method. UV–Vis
spectral analyses between 190 and 800 nm were also
performed for each sample followed by principal com-
ponent analysis (PCA) aiming to reduce the number of
variables. The scores of the principal components were
used as input to calibrate a three-layer feed-forward
neural network. Output layer was defined by the WQI
values. The modeling efforts showed that the optimal
ANN architecture was 19-16-1, trainlm as training func-
tion, root–mean–square error (RMSE) 0.5813, determi-
nation coefficient between observed and predicted

values (R2) of 0.9857 (p < 0.0001), and mean absolute
percentage error (MAPE) of 0.57% ± 0.51%. The impli-
cations of this work’s results open up the possibility to
use a portable UV–Vis spectrophotometer connected to
a computer to predict the WQI in places where there is
no required infrastructure to determine the WQI by the
conventional method as well as to monitor water body’s
in real time.
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Abbreviations
ANN Artificial neural network
BOD5 Biochemical oxygen demand
CCM Cost of the conventional methodology
CH Hardware cost
CPM Proposed methodology cost
Cuv Unit variable cost
DO Dissolved oxygen
FCI Fixed capital investment
HLS Humic-like substances
MAPE Mean absolute percentage error
Nminimum Minimum number of samples
NSFWQI National Sanitation Foundation Water

Quality Index
PCA Principal component analysis
PLS Partial least square
R2 Determination coefficient
RMSE Root–mean–square error
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UV–Vis Ultraviolet–visible
WQI Water quality index

Introduction

Water quality indexes (WQI) are dimensionless single
numbers (0–100), resulting from mathematical equa-
tions, which are based on physical, chemical, and mi-
crobiological parameters. Thus, these indexes provide
an indication of overall water quality, allowing timeline
comparison of points distributed in the same waterbody
or among different water sources (Brown et al. 1972).
There are different water quality indexes developed
worldwide since different national and international
agencies involved in water quality assessment and pol-
lution control define water quality criteria for different
water uses, considering different indicator parameters
(Bharti and Katyal 2011). In the early 1970s, the Na-
tional Sanitation Foundation (NSF) supported the crea-
tion of a water quality index that became known as
NSFWQI, which comprises a comprehensive study that
has been discussed in various papers (Bharti and Katyal
2011). Brown et al. (1972) developed this index
(NSFFWQI) by selecting nine parameters rigorously
(biochemical oxygen demand BOD5, dissolved oxygen
(DO), fecal coliforms, pH, nitrate, phosphate, tempera-
ture, suspended solids, and turbidity), developing a
common scale and assigning weights to the parameters.
Based on experts’ opinions, rating curves were also
developed to attribute values for the variation of the
water quality level caused by different levels of each
of the selected parameters (Poonam et al. 2013). The
assessment of the index aims to summarize a great
number of information in a form that allows quick
recognition and interpretation of trends over time and
space. The WQI results are useful in the operational
management to easily identify points requiring priority
action and helps in the modification of the policies,
which are formulated by various environmental moni-
toring agencies (Tyagi et al. 2013). Besides this, the
index facilitates the communication with the laypeople,
while maintaining the initial precision of measurement.
On the other hand, one of the major disadvantages of
NSFWQI is that some analyses have a significant cost,
are time-consuming, and generate chemical waste re-
quiring subsequent treatment. Moreover, any lack of
data in one of the nine parameters limits its calculation.

Due to these disadvantages, new approaches using spec-
trophotometric techniques have been proposed in order
to make the determination of some WQI parameters by
indirect estimation (Van den Broeke et al. 2006).

The spectrophotometry in the ultraviolet and visible
ranges (UV–Vis) is a fast and simple technique that
allows the obtainment of extremely relevant data able
to identify and quantify compounds in water
(Vanrolleghem and Lee 2003). Several scientific com-
munications support spectral information as an alterna-
tive to water analysis, since the characteristics of the
water UV–Vis spectrum can be used for qualitative
detection of changes in its composition (Rieger et al.
2006; Torres and Bertrand-Krajewski 2008). According
to Van den Broeke et al. (2006), the principles used in
submersible UV–Vis spectrophotometer probes allow
the determination of multiple parameters in the UV–
Vis range with just a sample. This approach can effi-
ciently replace conventional analysis methods including
chemical oxygen demand, biochemical oxygen demand,
total organic carbon, dissolved organic carbon, nitrates,
nitrites, turbidity, and suspended solids. Many other
studies have been found in the literature dealing with
the use of absorbance as surrogate of different contam-
inants in water (Anumol et al. 2015; Gerrity et al. 2012;
Roccaro et al. 2015; Yan et al. 2014). Although being
promising, only the use of spectrophotometric tech-
niques is not enough to determine theWQI, since it only
replaces some of the parameters that are taken into
account in the calculations of this index.

The artificial neural networks (ANNs) are versatile
and have been applied to predict water salinity (Maier
and Dandy 1996), total dissolved solids, electrical con-
ductivity turbidity (Najah et al. 2009), chemical oxygen
demand, biochemical oxygen demand (Rene and
Saidutta 2008), and even other parameter such as eutro-
phication (Kuo et al. 2007), rainfall (Wu et al. 2010),
and suspended sediment load estimation (Chen and
Chau 2016; Olyaie et al. 2015). Besides the use of
spectrophotometric techniques, other approaches, such
as artificial intelligence, is being increasingly used to
predict and forecast water quality parameters (Alizadeh
and Kavianpour 2015; Khuan et al. 2002). The ANNs
are computational techniques based on biological neu-
rons, capable of gradual learning over time as well as to
recognize extremely complex patterns (Farmaki et al.
2010). The ANNs are composed by several computa-
tional units called artificial neurons, which perform a
number of simple operations and transmit the results to
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neighboring neurons through connections characterized
by weights. The presence of weights between connec-
tions is critical, since they define the signal propagation
along the network. The architecture of an ANN restricts
the type of problem on which the network can be used
and is defined by the number of layers, the number of
neurons in each layer, and the type of connection be-
tween neurons (Ferneda 2006).

Knowing the water quality of a region gives a mea-
sure of environmental equilibrium and is a useful tool
for the rational and sustainable management of available
resources. Nonetheless, the major challenge in this con-
text is to guarantee that every municipality is able to
monitor and supervise the quality of their water sources
as quickly and efficiently as possible. In order to over-
come this issue, we propose in this work to simplify the
determination of WQI by replacing all the traditional
analytical methods with UV–Vis spectrophotometry as-
sociated with ANN.

UV–Vis spectral changes of water in defined collec-
tion points could be well correlated with theWQI, so the
use of an appropriate ANN would estimate the value of
WQI from spectrophotometric patterns. The use of wa-
ter UV–Vis spectrophotometric patterns associated with
ANN to the prediction of the WQI contributes to the
innovative nature of this study simplifying the determi-
nation of the index, reducing costs, analysis time, and
generation of chemical waste.

Thus, the main stages for establishment of this meth-
odology were (a) to determine the WQI of two rivers
located in Assis, SP, Brazil, (b) to obtain the UV–Vis
spectrum of each sample collected, and (c) to obtain an
ANN to determine the WQI value from the water UV–

Vis spectrophotometric patterns. The methodology pre-
sented here could be applied with certain adjustments to
any other river and places with lack of infrastructure as a
useful alternative to WQI prediction. The adjustments
for reproducibility of this methodology are related with
the calibration of an ANN for a specific site before its
establishment. A data set containing results of wave-
length scan and WQI from water samples of a specific
site could be used to calibrate an ANN according to the
approach disclosed here.

Materials and methods

Study area

The chosen study area is located in the Médio
Paranapanema watershed and essentially corresponds
to the two headwaters of Assis, SP, the Água da Porca
stream and Jacu stream. Five sampling points were
chosen in each stream from their respective headwaters
(Table 1).

We highlight that any other river could be a feasible
alternative as a study case to apply the proposed meth-
odology. The implication of choosing this area is that it
has population of approximately 100,000 inhabitants.
According to a census conducted in 2017 by the Brazil-
ian Institute of Geography and Statistics (IBGE 2017),
94.6% of the Brazilian municipalities have population
with less than 100,000 inhabitants; thus, the chosen area
is representative regarding to the urbanization impact on
water body’s caused by the major Brazilian cities.

Table 1 Sampling point locations

Sampling points Latitude S Longitude W Sampling site description

AP-P1 22 38 34.85 50 25 6.05 Headwater next to Assis’ bus station

AP-P2 22 38 35.34 50 25 5.06 Lake formed by damming of the headwater

AP-P3 22 38 7.61 50 25 10.84 Point 2 km downstream from the headwater

AP-P4 22 36 32.05 50 26 8.49 Before Assis’ supply reservoir

AP-P5 22 36 32.51 50 26 58.90 After Assis’ supply reservoir

JS-P1 22 39 56.10 50 24 36.49 Headwater next to Perimetral Avenue

JS-P2 22 40 2.76 50 24 30.33 Headwater behind the town hall of Assis

JS-P3 22 40 51.20 50 24 17.02 Point 1.7 km downstream from JS-P2

JS-P4 22 41 36.86 50 24 15.73 Before Assis’ wastewater treatment station

JS-P5 22 42 27.34 50 23 56.24 After Assis’ wastewater treatment station

AP Água da Porca stream, JS Jacu stream
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WQI determination

Water samples were collected once a month fromMarch
to December 2015, in the five collection points of each
river, totaling 10 replicates of each collection point and a
total set of 100 samples. The samples were collected in
1-L Duran Schott bottles (Duran, USA), previously
autoclaved and identified. The volume collected at each
point was 2 L. The measurement of pH and temperature
was done in situ using a portable multiparameter meter
(Orion 5-Star Plus, Thermo Scientific, Beverly, USA).
After sample collection (between 8:00 and 10:00 a.m.),
they were transported to the Laboratory of Process
Engineering of Sao Paulo State University—Campus/
Assis for the accomplishment of physical, chemical, and
microbiological analyses. The holding times for these
samples were maximal 3 h.

The water quality index was determined according to
the NSFWQI described by Brown et al. (1972). The
equations used in this index are as follows:

WQI ¼ ∑n
i¼1Wi∙Qi ð1Þ

∑n
i¼1Wi ¼ 1 ð2Þ

where Wi is the weighting factor associated with ith
water quality parameter, Qi is the rating value for ith
parameter, and n is the number of parameters.

The physical, chemical, and biological parameters
analyzed were as follows: temperature change, pH, total
nitrogen, DO, BOD5, total phosphorus, thermotolerant
coliform, turbidity, and suspended solids. Analyses of
water samples for each parameter followed the method-
ology presented by American Public Health Association
(APHA 2005).

UV–Vis spectrophotometry

A wavelength scan between 190 and 800 nm, at inter-
vals of 1.0 nm, was conducted for each collected sample
using a spectrophotometer (UV-M51, Bel Engineering,
Piracicaba, Brazil). The analyses were carried out in
quartz cuvettes, with 1.0 cm path length, after 3 h of
sampling, as a time standardization. This procedure was
performed in order to occur sedimentation of particles
and thus prevent maximum absorbance values. Deion-
ized water was used to set the spectrophotometer to
zero. Afterwards, the graph of absorbance versus

wavelength was plotted for each sample usingMicrosoft
Excel 2013 (Microsoft Corporation, Redmond, WA,
USA), saving the data for subsequent analyses.

Data preprocessing

In order to ensure convergence of the ANN modeling,
the absorbance values between 190 and 800 nm (611
variables) were preprocessed by normalization to the
range from 0 to 1. These 611 variables correspond to
the absorbance values obtained by the wavelength scan
of each single sample from 190 to 800 nm using the
cited spectrophotometer. The normalization process ad-
justs values measured on different scales to a common
scale. Then, principal component analysis (PCA) was
performed in the data set as described by Wu et al.
(2010) for the purpose of dimension reduction with a
minimum loss of information. The PCA approach uses
all of the original variables to obtain a smaller set of
principal components (PCs) which can be used to ap-
proximate the original variables (Sumi et al. 2012). As a
result of the transformation, the first principal compo-
nent has the largest possible variance; each succeeding
component has the highest possible variance under the
constraint that it is orthogonal to (i.e., uncorrelated with)
the preceding components.

Artificial neural network calibration

A simple three-layer ANN, equipped with the
Levenberg–Marquardt training algorithm and hyperbol-
ic tangent sigmoid transfer functions, was used as the
benchmark model to obtain the WQI value based on the
samples UV–Vis spectrophotometric patterns (Fig. 1).
ANNs with one hidden layer can fit multidimensional
mapping problems arbitrarily well and are considered to
provide enough complexity to accurately simulate the
nonlinear properties of this kind of problem by given
consistent data and enough neurons in its hidden layer.
The feed-forward back-propagation algorithm was
employed to speed up the condition of convergence.

The obtained data, pretreated spectra, and WQI
values were randomly distributed into three groups
(70, 15, and 15% of the total data) to train, to test, and
to validate, respectively, the ANN model. The imple-
mentation of the ANN was performed by using an
algorithm developed in MATLAB platform that selects
the minimum number of principal components used as
inputs, and the number of neurons in the hidden layer
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that gives the best ANN model. The root–mean–square
error (RMSE), coefficient of determination (R2), and
mean absolute percentage error (MAPE) between the
ANN predicted data and the real data were used for
evaluation of the quality of the developed model. The
RMSE, MAPE, and R2 are frequently used as criteria to
evaluate the performance of a network by comparing the
error obtained from converged neural network runs and
the measured data. For more details about equations and
the advantages of adopting these particular evaluation
criteria, see Olyaie et al. (2015) and Nabavi-Pelesaraei
et al. (2017).

Economic analysis

An economic analysis was done in order to define the
minimum number of samples (Nminimum), from which it
would be financially viable to introduce a device that
incorporates the methodology developed in this work.
The operational variable costs, such as reagents, electric
power, and labor, were considered; thereby, the unit
variable cost (Cuv) for WQI single determination was
defined. For fixed capital investment (FCI), all equip-
ment and glassware utilized for physical, chemical, and
microbiological assays for WQI quantification were
taken into account. The cost of the conventional meth-
odology (CCM) can be represented mathematically as
the following equation:

CCM ¼ FCIþ Cuv∙N ð3Þ
On the other hand, the overall cost of the possible

device derived from proposed methodology (CPM)

includes the cost with hardware (CH) (a portable spec-
trophotometer and a computer) and the cost for ANN
standardization using 100 samples. The CPM can be
represented mathematically as the following equation:

CPM ¼ CH þ Cuv∙100 ð4Þ

The costs for sample collection and laboratory build-
ing were not included in the economic analysis, since
this simplification does not interfere in Nminimum calcu-
lations. Brazilian currency (Brazilian Real, BRL) was
used as reference currency.

Results

WQI

The average WQI values for each sampling point over
the 10-month study are shown in Fig. 2 (see Appendix
Table 5 for a table showing the results of all physical,
chemical, and biological parameters analyzed in each
sample). As observed, only the points AP-P1, AP-P4,
AP-P5, and JS-P1 have, on average, good rating (Fig.
2a, b). On the other hand, JS-P5 point stands out with
the lower WQI on average. For the other points, a
precise classification cannot be inferred, because their
standard error values cover both good and medium
classes.

... 

y1

C1

C2

C3

C4...

input layer 
(principal component scores)

hidden layer output layer 
(WQI) 

Cn

Fig. 1 ANN architecture and
information pathway
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Water UV–Vis spectrum

Figure 3 shows the average absorbance between 190
and 800 nm for each sampling point. The UV–Vis
spectra were characterized by peaks with maximum
absorbance around 190 and 210 nm (Fig. 3a, b).
Looking closely at the JS-P5 spectrum, a subtle decreas-
ing concave shape on a wide range of wavelengths can
be observed, with a slight shoulder at around 260–
280 nm. A decreasing profile at this same wavelength
range was observed for points AP-P2, AP-P3, AP-P4,
and AP-P5, however without a marked shoulder. For the
major part of the spectra for both streams from 500 nm
on, the absorbance values were found tending to zero.

Artificial neural network

The best ANN architecture was reached by using the
scores of the first 19 principal components as inputs and

16 neurons in the hidden layer (Table 2). As shown in
Table 3, the first 19 significant components explained
the variability of original spectral data in 99.99% (cu-
mulative coefficient of determination, R2 = 0.9999, cor-
responds to the fraction of the variance in original data
that is explained by the significant principal compo-
nents), which comprised 611 descriptor variables (ab-
sorbance values related to 611 wavelengths, 190–
800 nm). The UV–Vis spectral data were well correlated
with WQI values (Fig. 4). WQI modeling by optimal
ANN showed satisfactory correlations: 0.9933 for train-
ing, 0.9940 for validation, and 0.9880 for testing. The
optimal ANN performance was assessed by the R2

(0.9857), which measures the proportion of the variance
in the dependent variable that is predictable from the
independent variable and by the RMSE (0.5813), which
indicates the discrepancy between the observed and
forecasted values. Briefly, the predictions of the model
are optimum if R2 and RMSE are found to be close to 1
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Fig. 2 WQI average value along the Água da Porca stream (a) and Jacu stream (b) between March and December 2015. Error bars are the
standard deviations
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and 0, respectively. The accuracy of ANN modeling,
evaluated bymeans ofMAPE, showed a value of 0.57%
with a standard deviation of 0.51%.

Economic analysis

The economic analysis was based on a rigorous calcula-
tion of operational costs and fixed capital investment for
conventional WQI methodology, as well as the cost for
the possible device that can be produced using the pro-
posed approach (Table 4). The cost for ANN standardiza-
tion using 100 samples (354,414.88 BRL) and the cost of
a portable spectrophotometer and computer (7500 BRL)
composed the overall cost of the proposed methodology
(42,914.88 BRL). Then, theminimum number of samples
(465) that justified financially the present methodology
was calculated by the interception of lines, which repre-
sent costs of conventional and proposed methodologies as
functions of sample number (Fig. 5).

Discussion

UV–Vis spectroscopy has been increasingly used in water
quality monitoring, since many of the compounds that
affect negatively the water have characteristic absorbance
profile. Normally, if the UV spectrum of natural water is
flat and close to zero, the pollution probability is very low
(Thomas and Burgess 2007). In this way, several studies
have shown the correlation between UV absorption and
some pollutants. Rieger et al. (2004) developed a

methodology for the measurement of nitrite and nitrate,
simultaneously, based on UVabsorption followed by data
analysis using partial least square (PLS). According to
them, both nitrate and nitrite have their highest absorbance
between 210 and 240 nm and only very weak absorption
peak at 300 nm (nitrate) and at 360 nm (nitrite). Thus, the
peaks withmaximum absorbance around 190 and 210 nm
observed in the present work could be explained by the
presence of nitrate. As nitrate is the most stable form of
nitrogen in water, resulting from the oxidation of all other
dissolved N compounds (nitrite, ammonia or organic
nitrogen), it is contained in the majority of surface water,
specially wastewater (Thomas et al. 2017).

Brookman (1997) investigated the absorbance at
280 nm for farm slurry effluents and found a good
exponential relationship between absorbance and BOD5,
showing that this approach could be used to predict this
parameter. Dobbs et al. (1972) showed that UVabsorption
of total organic matter at 254 nm can be applied for its
quantification in effluents and surface waters. The UV
abortions between 260 and 270 nm observed in this study,
including the slight shoulder, is likely due to the presence
of organic matter and phenolic-type chromophores,

Table 2 The best fitting models of the applied ANN modeling

Topology R2 RMSE MAPE (%)

16-18-1 0.9659 1.4194 0.8755

17-18-1 0.9757 0.9883 0.6603

18-16-1 0.9803 0.7995 0.6488

19-16-1 0.9857 0.5813 0.5715

20-14-1 0.9779 0.8947 0.5946

21-18-1 0.9809 0.7733 0.5896

The italicized numbers are relatively high values for R2 and
relatively low values for RMSE and MAPE. Scanning was per-
formed with input neurons number ranging from 1 to 30. Topol-
ogies with input neuron numbers below 16 and over 21 presented
no good performances and were not listed in the table

ANN artificial neural network, R2 coefficient of determination,
RMSE root–mean–square error, MAPE mean absolute percentage
error

Table 3 Percentage of the total variance explained by each one of
the first 19 principal components

ith principal
component

Percentage (%) Cumulative
percentage (%)

1 87.3137 87.3137

2 8.0653 95.3790

3 2.0272 97.4062

4 1.0675 98.4737

5 0.9526 99.4263

6 0.2779 99.7042

7 0.1323 99.8365

8 0.0842 99.9207

9 0.0262 99.9469

10 0.0216 99.9685

11 0.0107 99.9792

12 0.0042 99.9834

13 0.0034 99.9867

14 0.0020 99.9887

15 0.0013 99.9900

16 0.0011 99.9911

17 0.0010 99.9922

18 0.0009 99.9930

19 0.0008 99.9938
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respectively. According to Thomas and Burgess (2007),
humic substances or humic-like substances (HLS) com-
posed of humic acids, fulvic acids, and related substances
correspond to the major part of organic matter. These
substances have chromophore groups susceptible to be
significantly absorbed by the UV light, but no specific
spectrum shape is usually associated with this organic
matrix. However, higher percentage of phenolic-type
chromophores associated with some HLS of ponds or
wetlands was found to be responsible to produce marked
shoulders.

According to Huber and Frost (1998), analysis of the
general shape of the spectrum or absorption at a specific
wavelength can be also used to derive more specific
parameters, such as turbidity and suspended solids by
using algorithm for compensation of light scattering
caused by suspended particles. Due to this physical

diffuse absorption, the absorbance value and the general
mean slope of the spectrum in the 250–350 nm region
can vary. Therefore, a large amount of valuable infor-
mation can be obtained using the entire spectrum of
UV–Vis absorption of the water, which supports its
use as a consistent alternative to the WQI determination
when associated with artificial intelligence techniques.

Many articles use ANN to predict some of the water
quality parameters due to its capability to predict non-
linear time series. Neto et al., 2014) demonstrated the
effectiveness of virtual sensors in monitoring physico-
chemical parameters and metal concentrations in water
of reservoirs in the Amazon area by ANN and remote
sensing images. Their results provide researches an
accurate and less expensive alternative resource in en-
vironmental monitoring processes. Gazzaz et al. (2012),
in a previous study, developed an ANN model for the
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Fig. 4 Comparison of observed
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for each individual observation

Table 4 Primary data used for economic analysis

Cost type Item Unit variable cost
(BRL/WQI sample)

Operational variable costs (conventional methodology) Reagents 2.34

Electric power 6.97

Labor 11.25

Total unit variable cost (Cuv) 20.56

Item Value (BRL)

Fixed capital investments (FCI) (conventional methodology) Equipments 32,055.00

Glassware 1304.00

Total 33,359.00

Device based on present methodology Portable computer 1000.00

Portable spectrophotometer 6500.00

Total 7500
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prediction of water quality index for Kinta River, Ma-
laysia from physical, chemical, and microbiological
data. The results demonstrated that the proposed
model was able to simplify all the mathematical
calculations involved with the WQI, reducing the
computation time, but not to reduce the analytical
work. Alizadeh and Kavianpour (2015) examined the
ability of ANN and wavelet-neural network (WNN)
models to predict daily values of salinity, temperature
and DO based on the existing measured data of chloro-
phyll, DO, salinity, turbidity, and water temperature in
Hilo Bay, Pacific Ocean. The results showed that the
model was able to monitor the ocean parameters even
when data were missing. Apart from this applicability,
the use of soft computing techniques such as ANN is
related to many studies aiming to reduce the computa-
tion time and effort and the possibility of errors in the
calculation. The approach here presented allows the
prediction of the WQI and reduces, in addition to the
mathematical calculations, all the analytical work in-
volved in the quantification of the nine parameters that
composes the WQI, when the method is standardized.

The ANN model developed in this work was created
using pretreated absorbance values as input data, one
hidden layer, and a single output layer defined by the
WQI. This ANN benchmark architecture was similar to
other previously reported for water quality index model-
ing, where one hidden layer were also suitable (Khuan
et al. 2002). According to Sheremetov et al. (2014), one
hidden layer is sufficient for the large majority of prob-
lems, and ANNs with more hidden layers are extremely
hard to train.

The appropriate number of neurons in one hidden layer
suggested by Fletcher and Goss (1993) should range from

(2n1/2 +m) to (2n + 1), where n is the number of input
neurons and m is the number of output nodes. In this
work, the best ANN model showed n = 19 and m = 1;
therefore, the hidden layer neuron number (16 neurons) is
in compliance with this law, once it ranges from 10 to 39.
Increasing the number of neurons in the hidden layer
increases the non-linear mapping capacity of the network.
However, when this number is too large, the model may
overadjust to the data in the presence of noise in the
training samples. It is said that the network is subject to
overfitting. On the other hand, a network with few neu-
rons in the hidden layer may not be able to perform the
desired mapping, which is called underfitting.

Regarding the network performance, Prajithkumar
et al. (2014) obtained a correlation coefficient between
the measured and predicted values by ANN close to our
study (R = 0.9900, p < 0.01) when studied the prediction
of the WQI for the Pavana River, India using modular
ANN model. However, this study used as input data the
following parameters: concentration of DO, nitrates, cal-
cium, total suspended solids, total hardness, alkalinity,
chlorides and values of pH, turbidity, and conductivity.
Thus, this ANN modeling, despite the good results
achieved, still has the disadvantage regarding the need
of time-consuming analysis and the generation of pollut-
ants to the prediction of WQI.

From the results of the present work, a portable UV–
Vis spectrophotometer coupled to a computer could be
used to predict the WQI in situ, at low cost, without
chemical waste generation, and almost in real time,
which would allow quickly decisions regarding the
preservation of the water resources. Brazil is a
privileged country with regard to the water, being the
first placed in water availability in the world. Although
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Fig. 5 Determination of
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plentiful, this resource is unevenly distributed between
the regions and the use of certain water sources has been
restricted due to contamination. In addition, most of the
rivers located in small towns do not have the quality of
their waters monitored. Therefore, all advantages of the
proposed approach would be very useful, as it makes
possible to monitor the water quality in places where
there is no needed infrastructure to determine the WQI
by the conventional method.

The economic analysis demonstrated that the devel-
oped methodology can be used when intensive moni-
toring of water resources is demanded. Chovanec and
Winkler (1994) described the national river monitoring
program of Austria. The program was established, fol-
lowing a Federal Act on Water Law in 1990, with 140
sampling sites, and subsequently was extended to 250
sites aiming to allow more detailed interpretations. As
samples were taken bimonthly, a total of 500 samples
were analyzed per month. Therefore, the presented
methodology could be, for example, a financially viable
alternative to water quality monitoring programs such
that cited. Moreover, it can be useful for geographical
regions or cities with many aquifers and/or rigorous
environmental policies to ensure watershed protection.

Conclusion

Through this work, it was possible to verify that UV–
Vis spectroscopy in combination with ANN model was
able to determine the WQI. The implications of this
work’s results open up the possibility to use a portable
UV–Vis spectrophotometer connected to a computer to
predict the WQI in places where there is no required
infrastructure to determine the WQI by the conventional
method. Once this methodology is established, no sam-
ple preparation and no reagents are required, reducing
the analysis cost, time, and the generation of chemical
waste. Suggested improvements and recommendation
for future work is to use samples from different aquifers
in order to demonstrate the comprehensiveness of the
presented approach.
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