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The existence and dynamics of solitons in quasi-one-dimensional Bose-Einstein condensates (BEC)
with spin-orbit coupling (SOC) and attractive two-body interactions are described for two coupled
atomic pseudo-spin components with slowly and rapidly varying time-dependent Raman frequency.
By varying the Raman frequency linearly in time, it was shown that ordinary nonlinear Schrödinger-
type bright solitons can be converted to striped bright solitons and vice versa. The internal Joseph-
son oscillations between atom-number of the coupled soliton components, and the corresponding
center-of-mass motion, are studied for different parameter configurations. In this case, a mecha-
nism to control the soliton parameters is proposed by considering parametric resonances, which can
emerge when using time-varying Raman frequencies. Full numerical simulations confirm variational
analysis predictions when applied to the region where regular solitons are expected. In the limit
of high frequencies, the system is described by a time-averaged Gross-Pitaevskii formalism with
renormalized nonlinear and SOC parameters and modified phase-dependent nonlinearities. By com-
paring full-numerical simulations with averaged results, we have also studied the lower limits for the
frequency of Raman oscillations in order to obtain stable soliton solutions.

PACS numbers: 42.65.-k, 42.65.Sf, 42.81.Dp

I. INTRODUCTION

A progressively growing interest in the physics of
Bose-Einstein condensate (BEC) with spin-orbit coupling
(SOC) has been observed in recent years [1–5]. For
the coupling, different forms of Rashba [6] and Dres-
selhaus [7], as well as mixture of them, have been re-
alized [8]. Important forms for the nonlinear excitations
have been verified with structure of stable solitons, for
condensed systems having attractive and repulsive inter-
actions. In this regard, we can mention that the existence
of solitons in BEC with SOC was investigated in Ref. [9],
for the case that we have repulsive interactions between
atoms; and, in Refs. [10–13], when the interactions are
attractive. Gap solitons are predicted in Ref. [14] for
BEC with SOC in a spatially periodic Zeeman field, cor-
responding to a linear optical lattice. Experimentally, it
is not an easy task to control the SOC parameter, hav-
ing recent suggestions to tune it by applying rapid time
variations of the Raman frequency [15, 16]. The experi-
mental observations reported in Ref. [17] are shown that
the spin-orbit coupling can be tuned in this way. In prin-
ciple, the periodic variation in time of the condensate pa-
rameters can lead to new phenomena as the generation
of new quantum phases [18], artificial gauge fields [19],
compacton matter waves [20], etc. Therefore, actually it
is quite relevant and of interest to investigate how the pe-
riodic time variations of the Raman frequency can affect
the nonlinear modes of the condensate, such as solitons
and vortices. In the limit of high frequencies, as shown
in Ref. [15], the averaged Hamiltonian contains the non-

trivial renormalization of the spin-orbit coupling, as well
as the new effective nonlinear phase, which is sensitive to
the interaction strengths [21].

Our main task in the present work is to investigate the
dynamics of solitons and Josephson-type oscillations be-
tween solitonic components, considering BEC with tun-
able spin-orbit coupling, with attractive interactions be-
tween the atoms, under slow and rapid time modula-
tions of the Raman frequency. In this regard, related to
Josephson oscillations in BEC, we should mention some
previous studies in Refs. [22–25]. In particular, when
considering the Raman frequency modulated in time, to-
gether with changes in other parameters of the system,
one should expect to observe parametric resonance phe-
nomena to occur in the internal Josephson oscillations,
which have been introduced between the atom-number
fraction existent in each of the components of the con-
densate with SOC. The parametric resonances in this
case are introduced by the time-dependence of the Ra-
man frequency and its corresponding relation with spin-
orbit coupling of the two components of the condensate.
Such study can be useful for possible experimental inves-
tigations, which can help the control of BEC parameters
through resonance phenomena observations. We should
point out that previous studies on parametric resonances
in BEC are mainly concerned with time variations in
trap configurations, optical lattices, as well as nonlinear
parameters, looking for direct interference effects mani-
fested in the densities [26–31]. In our present study, by
introducing a time modulation in the Raman frequency,
the main focus is the oscillatory behavior between the in-
ternal atom-number population of the two components,
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during the time evolution of the condensate.
We start our study by first considering the case that

we have defined spin-orbit parameter and constant Ra-
man frequency, in order to verify the characteristics of
the existent soliton solutions, which can be regular or
striped solitons. Next, we introduce an adiabatic time
modulation in the Raman frequency (growing and de-
creasing linearly), such that we can study how to switch
between different kind of solitons. We follow our study
by considering the Josephson oscillations between the
components for both the cases that we have regular and
striped soliton solutions. Parametric resonance effects
in the oscillations are verified by considering periodically
time variation of the Raman frequency at some given
SOC parameters. The case of rapid time modulations
of the Raman frequency can be treated by using a time-
averaging approach, which is implemented over the time-
dependent coupled system, implying in a renormalization
of the SOC and nonlinear parameters. In this way, the
interactions are effectively time independent. This case
is being discussed in the final part (section IV) of the
present work.

We are considering exact numerical simulations in all
the cases, complemented by theoretical analysis, using
variational approaches, whenever simplified solutions can
be performed. As shown, the predictions derived by us-
ing the variational approach (VA) are verified to be fully
consistent with the given numerical results in the region
where regular bright solitons are obtained. In other cases,
where the solutions are striped ones, demanding more pa-
rameters in the ansatz, the VA is quite helpful to indicate
regions of stability, as well as initial starting profiles for
the full numerical computation. By using the multi-scale
expansion method for the averaged system, solitonic solu-
tions are also found and confirmed by our numerical sim-
ulations of the full coupled system with time-dependent
Raman frequency.

In the next, the basic formalism of the model is being
presented in section II. For reference to other sections,
we add two subsections: The first (A) where we provide
some details on the linear energy dispersion, which is
defining two regions for the kind of soliton solutions that
we can obtain (regular or striped). In the subsection B,
we add already some results to exemplify the two possi-
ble solutions and how to transform solitons between the
two regions by considering adiabatic linear time variation
of the Raman frequency. In section III, by considering
Raman frequency modulated in time and Josephson os-
cillations, we analyze the possibility to obtain resonant
responses. The case with Raman having high frequency
modulations is presented in section IV. Finally, in section
IV, we present our main conclusion.

II. MODEL FORMALISM

In our approach, we consider a spin-orbit coupled BEC
with equal Rashba and Dresselhaus contributions for the

spin-orbit coupling terms, as in Ref. [11], which can be
described by a one-dimensional (1D) coupled equation
for the two pseudo-spin components. For that, let us
consider an harmonic trap where the frequency along
one direction, ωx, is much smaller than the frequency in
the perpendicular direction, ω⊥. In this case, given the
units of energy, length and time, respectively, by h̄ω⊥,

a⊥ =
√

h̄
mω⊥

and 1/ω⊥ (where m is the mass of both

atomic components), we can write in dimensionless units
the corresponding SOC formalism for the two pseudo-
spin components, u ≡ u(x, t) and v ≡ v(x, t), of the total
wave function

ψ ≡ ψ(x, t) ≡
(
u
v

)
. (1)

The corresponding matrix-formatted non-linear
Schrödinger type coupled equation can be written
as

i
∂

∂t

(
u
v

)
=

[
−1

2

∂2

∂x2
− ikLσz

∂

∂x
+ Vtr + Ω(t)σx

](
u
v

)
−
(
|u|2 + β|v|2 0

0 β|u|2 + γ|v|2

)(
u
v

)
, (2)

where Vtr ≡ Vtr(x) ≡ (ωx/ω⊥)
2
x2/2 is the trap po-

tential, assumed to be zero (Vtr = 0) in the present
study. σx,z are the usual Pauli matrices, with kL be-
ing the strength of the spin-orbit coupling and Ω(t) the
time-dependent Raman frequency (also given in units of
the trap frequency ω⊥). In the non-linear terms we have
the dimensionless parameters β and γ, which are given
by the ratio between the two-body scattering lengths,
aij (i, j = 1, 2), of the two atomic components, such that
β = |a12/a11| , γ = |a22/a11|. In the present work, we
are going to consider attractive two-body interactions,
such that we have an overall minus signal for the non-
linear interaction. From the symmetry of the coupled
equations (2) for γ = 1, we can extract a simple relation
between the two components u and v: Let us consider
that, for a given parameter kL we are identifying the
solution for u by u(x, t) ≡ u(kL)(x, t). In this case, a par-
ticular solution decoupling the equations can be verified
with v(x, t) = ±u(−kL)(x, t).

A. Linear energy spectrum

For a constant Raman frequency Ω(t) = Ω0, the
linear energy spectrum can be derived by consider-
ing a plane wave-function with momentum k, (u, v) =
(u0, v0) exp[i(kx− w(k)t)], which will give us the follow-
ing dispersion relation:

w±(k) =
1

2
k2 ±

√
k2
Lk

2 + Ω2
0. (3)

This relation, also shown in Ref. [11], is plotted as a
function of k in Fig. 1, where two different regions (I
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and II) can be distinguished, according to the choice of
parameters we have for the spin-orbit coupling kL and
Raman frequency Ω0.
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FIG. 1: Energy dispersions, w+(k) (dashed curves) and
w−(k) (solid curves), given by (3), are shown for two regions
of parameters: Region I, when k2L < Ω0 (upper panel, exem-
plified with Ω0 = 2k2L); and region II, when k2L > Ω0 (lower
panel, exemplified with Ω0 = 0.3k2L). In both panels, the
dot-dashed and dotted lines indicate the extremes, with the
minima of w+ being at (k,w+) = (0,Ω0). The minima of w−
are at (k,w−) = (0,−Ω0) in region I; and at (±k0, wmin) in
region II, where k20 = k2L − Ω2

0/k
2
L and wmin = −k2L + k20/2.

In region I, which happens when k2
L < Ω0, we can only

obtain two single minima in the dispersion relation; when
w±(k) = w±(0) = ±Ω0. For k2

L > Ω0, we are in region II,
where w+(k) has just one minimum (at k = 0, as in the
case of region I). However, in this case, the dispersion re-
lation for w−(k) presents a local maximum at k = 0 with

two minima at k = ±k0, where k0 ≡ kL
√

1− Ω2
0/k

4
L;

both with wmin = k2
0/2− k2

L = −
(
k2
L + Ω2

0/k
2
L

)
/2.

As already verified in Ref. [11], bright soliton solu-
tions of the NLSE are obtained in region I. However, for
k2
L > Ω0 (region II), the solutions are striped-type bright

solitons. In Fig. 1, the two regions are represented, ex-
emplified for particular values of Ω0, = 2k2

L (region I)
and = 0.3k2

L (region II). The bright solitonic solutions
can be found by the multiple scale analysis, which will
be used in section IV to investigate the soliton dynamics
under rapid modulations of parameters. Here, we should
remark that observation of striped phases have been re-
cently reported in Ref. [5] for BEC with SOC. In the fol-
lowing subsection, we are exemplifying the kind of soliton
solutions we obtain in both regions, using constant and
linearly time-varying Raman frequencies.

B. Regular and striped soliton interchanged by
adiabatic time variation of Ω(t)

With adiabatic time variation of the Raman frequency,
Ω(t), we can transform solitons from one region to an-
other region, for a given fixed kL. By considering a reg-
ular soliton obtained in region I for Ω(t) = Ω0, it can
be transformed to a striped soliton by decreasing Ω(t);
or, the other way, if started in region II. For that, let us
consider a variation of the form

Ω(t) = Ω0(1±∆t). (4)

Recently such variation has been used in numerical
simulations for dark soliton generations in BEC with
SOC [32]. The transition of a soliton solution obtained
in region II (striped soliton) to the region I (regular soli-
ton), and back from region I to region II, is illustrated
in Fig. 2, by considering several panels, obtained for dif-
ferent values of a the time-dependent Raman frequency,
such that we have an adiabatic transition. In terms of
the step-function Θ(x) (=0 or 1, respectively for x < 0 or
x ≥ 0), we can write the time varying Raman frequency
as Ω(τ) = (45+τ)Θ(20−τ)+(85−τ)Θ(τ−20). In these
cases, the results are obtained with the same values of
the nonlinear parameters, which are related to the scat-
tering length ratios, β = γ = 1, implying that the inter-
and intra-species scattering lengths remain the same.

0

1

2

|ψ
|2

Ω=50, τ=5

0

1

2 Ω=60, τ=15

−2 −1 0 1 2

x

Ω=45, τ=40

Ω=50, τ=35

Ω=65, τ=20

−2 −1 0 1 2

x

0

1

2 Ω=45, τ=0

FIG. 2: A soliton profile is shown in the above set of panels,
for Ω(t) varying in time as Ω(τ) = (45 + τ)Θ(20− τ) + (85−
τ)Θ(τ − 20) [where Θ(x) = 0 for x < 0, and 1 for x > 0].
The parameters are kL = 8, β = 1 and γ = 1. The soliton
is generated as a striped one (region II, lower-left panel with
Ω = 45), being converted to a regular soliton (region I, in
the upper-right panel with Ω = 65); returning to region II by
inverting the time variation. All quantities are dimensionless.
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In all the cases considered in the present work, we are
using exact full-numerical solutions of the coupled Gross-
Pitaevskii (GP) formalism (2), by applying an imaginary-
timer propagation method [33], using the Crank-Nicolson
algorithm, followed by real-time evolution of the soli-
ton profiles. The time steps, as well as the total
x−space interval and corresponding discretization, have
been adapted to obtain convergent and accurate results.
In most of the cases, considering our dimensionless units,
we found the time step δt = 10−3 to be sufficient in
the imaginary-time relaxation procedure, and 10−4 in the
real-time evolution. In this regard, we can mention that
particular care has to be considered in the time-evolution
of striped solitons, where stable solutions demand a large
enough number of grid points δx within a large x inter-
val (to avoid border effects). In view of that, for some
results we decrease the time step to δt = 10−5. Along
the text, we are providing some theoretical analysis by
using variational ansatzes, which are verified to be more
efficient in region I, where the solutions are regular soli-
tons. For the case that rapid modulations are used for
the Raman frequency, in region II, it was also shown to
be quite useful to employ a multi-scale expansion for the
averaged coupled system.

III. TIME-MODULATED RAMAN
FREQUENCY AND INTERNAL JOSEPHSON

OSCILLATIONS

An interesting case that can be explored is the influ-
ence of time-varying Raman frequency on the oscillations
in atomic populations, which can occur between the com-
ponents of the soliton solutions (the internal Josephson
effect) in the regions I and II. The time-periodic modu-
lation of the Raman frequency may lead to resonant re-
sponses of solitons in BEC with SOC. This phenomenon
is possible to occur for the imbalanced populations be-
tween soliton components, which are produced initially
with different phases. To study the dynamics of this kind
of process, in both the cases of region I (Ω0 > k2

L) and
region II (Ω0 < k2

L), we first implement the Josephson
oscillations for constant Raman frequencies Ω0, by in-
troducing a phase between the two soliton components,
before starting the time evolution of the coupled system.

For the time modulated Raman frequency, we consider
the following expression:

Ω(t) = Ω0 + Ω1 cos(ωt), (5)

where Ω1 is the amplitude, with ω the frequency of the
oscillations. Different regimes are possible in the depen-
dence of the values of the modulating frequency ω, such
that we can have slow (ω � Ω0), resonant (ω ∼ Ω0)
or rapid (ω � Ω0) modulations. In this section, we are
mainly concerned with the intermediate regime, where we
can have resonant responses, such that we are going to as-
sume small amplitude for the oscillations, Ω1 � Ω0. The

case of very slow frequency can be reported to the previ-
ous study presented in section II-B. The other regime for
the time-perturbed Raman, with high frequencies ω and
large amplitudes Ω1, we are considering in section IV.

The studies in this section are done by a full numerical
simulation, as well as by some analytical considerations
through a variational procedure. In order to study the
interference effect on the Josephson oscillation due to a
time-modulated Raman frequency, we employ a varia-
tional approach in region I (where k2

L < Ω0, and regular
soliton solutions are obtained), considering the ansatz(

u
v

)
=

(
A1e

−[(x−x0)2/(2a2)−ik1x−iφ1]

A2e
−[(x−x0)2/(2a2)−ik2x−iφ2]

)
, (6)

where Ai, a ,x0, ki and φi(i = 1, 2) are time-dependent
parameters, where we have the assumption that the soli-
tons have the same width a and center-of-mass x0 (i.e.,
both components overlap), which are confirmed by nu-
merical simulations. By considering the Lagrangian den-
sity for Eq. (2) and the above variational ansatz, we have

L(x, t) =
[
i

2

(
u∗ du

dt
+ v∗

dv

dt

)
+
ikL
2

(
u∗ du

dx
− v∗ dv

dx

)
+ cc

]
− 1

2

∣∣∣du
dx

∣∣∣2 − 1

2

∣∣∣dv
dx

∣∣∣2 − Ωu∗v − Ωv∗u

+
1

2
|u|4 +

γ

2
|v|4 + β|u|2|v|2, (7)

with the Lagrangian given by L =
∫∞
−∞ dxL(x, t):

L = −
2∑
i=1

Ni

[
dφi
dt

+
dki
dt
x0 +

1

4a2
+
k2
i

2
+ (−)ikikL

]
− 2Ω(t)

√
N1N2e

−a2k2− cos(2k−x0 + φ)

+
1

2
√

2π a
(N2

1 + γN2
2 + 2βN1N2). (8)

Here, and in the following, we are using the definitions
k± ≡ (k1±k2)/2 and φ ≡ φ1−φ2. The number of atoms
for each component i = 1, 2 is given by Ni ≡

√
πA2

i a,
with the total number N = N1 + N2 being conserved.
By assuming weak SOC parameter, k− ≈ kL, following
arguments given in Ref. [34], the corresponding Euler-
Lagrange equations for the parameters are given by

dx0

dt
= k+,

dk+

dt
= 2e−k

2
La

2

Ω(t)kL
√

1− Z2 sin(ϕ),

dZ

dt
= −2e−k

2
La

2

Ω(t)
√

1− Z2 sin(ϕ),

dϕ

dt
= 2kLk+ + ΛZ +

2e−k
2
La

2

Ω(t)Z√
1− Z2

cos(ϕ),



(9)

where Z ≡ (N1 − N2)/N , ϕ ≡ 2k−x0 + φ, Λ ≡ N(1 −
β)/(
√

2πa) and, for simplificity, we fix γ = 1. In case
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of a hyperbolic-type ansatz, the exponential factor in
the above equations, derived from a Gaussian ansatz, is

changed as e−k
2
La

2 → (πkL/η)/ sinh(πkL/η) (where η is
the soliton amplitude). In the weak SOC limit, when
kL � η/π or kL � 1/a, this factor reduces to one.

This system is analogous to the one considered in [34]
for a constant Ω = Ω0, where it was shown that in the
Euler-Lagrange system for the parameters, the equation
for the center-of-mass, x0 = (x1 + x2)/2, can be approx-
imately solved as x0 ≈ (kL/2Ω0) cos(2Ω0t). Thus, the
center-of-mass oscillations are small, with its amplitude
being of the order of ≈ kL/2Ω0. By considering our nu-
merical simulations, as discussed in more detail in the
next subsection, with results given in Figs. 3 and 4, for
the case that kL = 4 and Ω0 = 20, we have confirmed
that the center-of-mass oscillations agree with the esti-
mated value, being ∼ 0.1, as shown in Fig. 4.

Then, for small values of kL (as compared with Ω0),
we can consider the following coupled system:

dφ

dt
= ΛZ +

2e−k
2
La

2

Ω(t)Z√
1− Z2

cos(φ), (10)

dZ

dt
= −2e−k

2
La

2

Ω(t)
√

1− Z2 sin(φ), (11)

which describes the internal Josephson oscillations of
atomic populations between two pseudo-spin compo-
nents. For a constant Raman frequency, these oscillations
have been studied in Ref. [35]. It appeared when in-
vestigating the macroscopic quantum tunneling obtained
in a double-well potential having a barrier between the
wells with constant height [36]. This was also studied in
Refs. [37–39] for the case that the barrier between wells
have their heights oscillating in time.

At some frequencies of the modulations, it is possible
to verify parametric resonance in the Josephson oscilla-
tions. In the following we will discuss the full numerical
results, by considering the two possible regions defined
in Fig. 1 by the relations between the Raman and SOC
parameters. The results obtained in region I, where we
have bright type solitons, are shown to be fully compati-
ble with a variational approach. However, for the region
II, where we have striped soliton solutions, the coupled
system is not so amenable to simplified variational anal-
ysis, such that we can provide only rough estimates for
some limiting situations. Therefore, in the case of time
evolution for the striped solitons, with constant and time-
dependent Raman frequencies, our study relies mostly in
full-numerical simulations, which are shown to provide
convergent results with high numerical precision.

A. Results for Josephson oscillations in region I

The results in this case are for Ω0 > k2
L, considering the

Raman frequency constant, as well as time-modulated.
In the case of time-modulated Raman frequency, we have
also introduced a variational analysis to provide an es-

timate for the localization of the modulation frequency
leading to the resonant behavior.

1. Constant Raman frequency: Ω(t) = Ω0

When Ω0 is constant, the frequency of the free oscilla-
tions is given by

ωJ =
√

2Ω0(2Ω0 + Λ) (= 2Ω0, for β = 1) . (12)

From numerical simulations for free Josephson oscilla-
tions of the full system of the GP equation, the results
obtained in the region I (k2

L > Ω0) are represented in
Figs. 3 and 4, by considering the spin-orbit coupling pa-
rameter kL = 4, with two constant Raman frequencies,
given by Ω0 = 80 (upper panel) and Ω0 = 20 (lower
panel). In Fig. 4 we show the density plots, for |u|2, |v|2
and |u|2 + |v|2, corresponding to the case that Ω0 = 20,
for the time interval 0 < t < 1.

1.0 1.2 1.4 1.6 1.8 2.0
t

−1.0

−0.5

0.0

0.5

1.0

N
1
−

N
2

φ=π/2, π/4, π/8    Ω
0
=20, k

L
=4

−1.0

−0.5

0.0

0.5

1.0
φ=π/2, π/4, π/8   Ω

0
=80, k

L
=4

FIG. 3: (color on-line) The atom-number oscillations, with
the corresponding dependence on the phase φ introduced be-
tween components for solitons in region I, are shown for Ω0 =
80 (upper panel) and 20 (lower panel). The given results are
for φ = π/8 (green, smaller amplitudes), π/4 (blue, interme-
diate amplitudes) and π/2 (red, larger amplitudes), with the
spin-orbit coupling and nonlinear parameters, respectively,
given by kL = 4 and γ = β = 1. All quantities are in di-
mensionless units.

The purpose, in this case, is to verify the dependence of
the oscillating behavior on different values of the initial
phase φ introduced between components when starting
the evolution. By considering three values for the initial
phase φ, it is shown that the maximum of the periodic
atom transfer occurs at φ = π/2, reaching almost 100%
of atoms in the case that Ω0 = 80. It is also shown that
the phase φ affects only the amplitude of the oscillations,
but not the frequency. The constant Raman parameter
will determine the frequency of the oscillations, which
is given by ≈ 2Ω0, confirming the theoretical prediction
(12).
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FIG. 4: Density plots for soliton profiles corresponding to
the lower panel of Fig. 3 (Ω0 = 20), for |u(x, t)|2 (upper
panel), |v(x, t)|2 (middle panel), and |u(x, t)|2 + |v(x, t)|2
(lower panel), obtained at the positions x in the time interval
0 ≤ t ≤ 1. The density levels are indicated in the right-hand-
side. (all quantities are dimensionless).

2. Time-modulated Raman frequency:
Ω(t) = Ω0 + Ω1 cos(ωt)

Now, let us analyze the case when Ω(t) is modulated in
time, such that Ω(t) = Ω0 +Ω1 cos(ωt), in order to verify
the localization of possible resonant behaviors. For that,
we can consider two limiting conditions for the Eq. (10):
one applied for Z � 1, when φ(0) ≈ 0; the other for the
regime of macroscopic quantum localization, as follows.

Let us consider the linear regime case, when φ(0) ≈ 0
and Z � 1. Within these conditions in Eq. (10), using
the second derivative for Z, we obtain a modified Mathieu
differential equation, with the main term in Z oscillating
with a frequency ω0, where ω2

0 ≡ 2Ω0(2Ω0 + Λ) + (2Ω1)2.
For that, when considering small values of Λ and Ω1, the
standard analysis as given in Ref. [40] can be applied,
which leads to a resonance at ω = 2Ω0 (in case β = 1,
so Λ = 0). In this case, parametric resonances are also
expected to occur for ω = 2ωJ , where ωJ is the frequency
of free Josephson oscillations given in Eq. (12).

Results of our investigations on resonant interferences
which can occur in region I are being presented in Figs. 5
to 8. They are obtained from numerical simulations of
the full coupled system (2), with the Raman and SOC pa-
rameters Ω0 = 320 and kL = 8, respectively. For the time
modulation of the Raman parameter, given by Eq. (5), we
assume the amplitude given by Ω1 = 0.1Ω0. The choice
of these parameters in region I are to distinguish more
clearly the manifestation of resonant interferences in the
Josephson oscillations between the atom numbers of the
two components, Z = N1 −N2, (N = 1). We found also
illustrative to provide some density plots, for the com-
ponents and total profiles, corresponding to the results

presented in Fig. 5. Therefore, in Fig. 6 we are showing
the case where we have β = 0 in Fig. 5. Here, we should
remark that, the perturbed results obtained when we are
not close to the resonant interference regions are shown
to be almost identical to the unperturbed results (as ob-
served by comparing the first column of panels of Fig. 6
with the third column). Indeed, quite small center-of-
mass oscillations are verified near the initial localization.
Another point that can be observed from these results is
that the center of mass of the soliton is strongly affected
by the resonant behavior, such that, it can be verified in
the central panels of Fig. 6 that the central position is
moving from x = 0 at t = 0 to x ≈ 2 at t = 16. There
is no change observed in the center of mass for the other
cases, outside the resonant region. The numerical simula-
tions of the variational system (8) confirms this behavior
of the motion of the center of mass for the solitonic com-
ponents and the oscillations of the atomic imbalance at
the resonance.
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FIG. 5: (color on-line) Resonant interference patterns verified
for ω = 2Ω0 are shown in the atom-number oscillations for the
case that Ω0 = 320, Ω1 = 0.1Ω0, kL = 8 and γ = 1, consid-
ering different values of the parameter β (as indicated by the
corresponding arrows). We have β =0 and 0.5 in the upper
panel; and β =1 and 2 in the lower panel. The shadowing ar-
eas, in each case, are representing the range of the oscillations
in the real-time propagation of the two-components. In all
these cases, the time evolution was performed with δt = 10−4,
with a starting phase π/4 introduced between the two com-
ponents. All quantities are in dimensionless units.

We should comment that, for the values of the fre-
quency ω, the resonant position (“window”) is quite
sharp, verified in our numerical simulation, such that the
resonant perturbations are being confirmed only for ω
very close to 2 and 4 Ω0, which makes the simulations
quite time demanding. As shown in Fig. 5 and in the
left panel of Fig. 7, for a large time interval going up
to t = 50, one of the resonant position are detected for
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FIG. 6: Density plots for soliton profiles corresponding to the case with β = 0 shown in Fig. 5 (Ω0 = 320), for |u(x, t)|2 (upper
panels), |v(x, t)|2 (middle panels), and |u(x, t)|2 + |v(x, t)|2 (lower panels), obtained at the positions x in the time interval
0 ≤ t ≤ 16. In the left frames we have the non-perturbed oscillations (Ω1 = 0); in the middle frames, the oscillations at
resonant position (Ω1 = 0.1Ω0 = 32, with ω = 2Ω0); and, in the right frames, the non-resonant perturbed case, with ω = 2.5Ω0.
All quantities are in dimensionless units.

ω = (2±0.001)Ω0. By a slight larger deviation of this fre-
quency the results for the oscillations are about the same
as given for the non-perturbed case (Ω1 = 0) shown in
the left panel of Fig. 7. The other resonant position, as
shown in the right panel of Fig. 7, for β = 0, is found in
an even smaller range of ω, given by ω = 3.998Ω0, with
fluctuation start appearing when we have ω exact 4Ω0.
In Fig. 5 we are also showing how the resonant behaviors
are affected by changes in the nonlinear parameter β. As
shown it is enhanced in case that β = 0, with the vari-
ation N1 − N2 having peaks with maxima close to 0.9.
The case of β = 0, for ω = 2Ω0, is also presented in the
left frame of Fig. 7, for comparison with the unperturbed
results of the Josephson oscillations.

With Fig. 8, we conclude the analysis of the results
shown in Figs. 5 Figs. 6 and 7, by presenting the behav-
iors of density profiles (total and for each component) in
two-dimensional plots, for different time positions of the
evolution.

B. Results for Josephson oscillations in region II

Now, let us consider the Josephson oscillations between
components of the striped soliton solutions, correspond-
ing to the region II in the dispersion relation, which are
given by Ω0 < k2

L. We perform this study by consider-
ing full numerical simulations of the corresponding GP
coupled equations. First, we provide some results ob-
tained for Josephson oscillations in the case that we have
constant Raman frequency. Next, we consider the more
general case, where the Raman frequency is modulated in
time, and we can have resonant results at some particular
values of the modulating frequency ω.

We start the study of this section by considering a
variational analysis, where we need to introduce the mo-
mentum k0 = ±kL

√
1− Ω2

0/k
4
L, which provides the mo-

mentum position of the minima shown in the lower panel
of Fig. 1. By observing that the coupled equations for the
imbalanced populations and relative phase are not easy
to be derived in explicit form, in a more general case, let
us assume that the tunneling between components occurs
for the same sign of k0. The time modulations for Ω(t) are
not inducing transitions between oppositely propagating
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FIG. 7: (color on-line) Parametric resonant behaviors ver-
ified in the atom-number oscillations N1 − N2 during the
time-propagation of a two-component soliton, with Ω0 = 320,
kL = 8, Ω1 = 0.1Ω0, β = 0 and γ = 1. In both panels, we also
indicate with dashed-bullet lines the extremes of the oscilla-
tions for the case Ω1 = 0, for comparison. In the left panel,
the oscillations at resonant position, ω = 2Ω0, are within the
shadowing region. In the right panel, we show the results
for two frequencies (ω = 4Ω0 and ω = 3.998Ω0) close to the
region where parametric resonance are expected. The shad-
owing region with oscillations close to the non-perturbed case
is for ω = 4Ω0. In all these cases, for the time interval shown,
the time step was δt = 10−5, with a starting phase π/4 in-
troduced between the two components. All quantities are in
dimensionless units.
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FIG. 8: (color on-line) Density profiles, |ψ|2 (solid-blue), |u|2
(circled-red) and |v|2 (triangle-green) for different time posi-
tions in the evolution of the coupled soliton, considering the
case shown in the right panel of Fig. 7, where ω = 3.998Ω0.
The parameters are kL = 8, Ω0 = 320, Ω1 = 0.1Ω0, β = 0
and γ = 1, with a starting phase π/4. All quantities are in
dimensionless units.

modes with ±k0. To have such transitions, so called mo-
mentum Josephson oscillations, we need parameters with
periodic modulation in space [41, 42]. Therefore, by as-
suming for the components the same ansatz as given in
Eq. (6), but with ki=1,2 = k0 and considering the center
fixed at x = 0, we arrive to the same coupled expres-
sions (10) and (11), except that the equation for dφ/dt
contains an additional term 2kLk0. By linearizing the
system relative to Z, we obtain

dφ

dt
= 2kLk0 + [Λ + 2Ω(t)]Z cos(φ), (13)

dZ

dt
= −2Ω(t) sin(φ). (14)

For a constant Ω and with 2kLk0 � Λ + 2Ω0, we have

φ ≈ φ0 + (2kLk0)t, (15)

implying that the population imbalance Z is oscillating
with the frequency ωstr ≈ 2kLk0. Therefore, we should
expect a different behavior of the results, in comparison
with the region I, in the initial stage (defined by kLk0).
For larger time of the propagation, the frequency for the
oscillations should approach the same ones as verified for
the region I.

1. Constant Raman frequency: Ω(t) = Ω0

For the numerical simulation of the Josephson oscilla-
tions obtained in region II, we first select some results
obtained for constant values of Ω0, which are given in
Figs. 9 and 10, by considering an initial phase difference
between components given by π/2. In these cases, by
considering kL = 4 (Fig. 9) and kL = 8 (Fig. 10), with
several values of Ω0 < k2

L, we can verify clearly that
we have an initial stage of the oscillations, where the fre-
quencies are not depending on Ω0, but only on the values
of kL, being ω ∼ 10π for kL = 4 and ω ∼ 40π for kL = 8.
The values of Ω0 affects only the amplitude of the initial
oscillations. However, for larger times, the behavior of
the frequencies are similar as in region I. Another obser-
vation from these results is that, for long-time interval
the Josephson oscillations are being damped as we in-
crease the difference k2

L −Ω0. In Fig. 10, we present two
inset panels from where we can verify the initial and in-
termediate oscillation patterns. In the inset with t ≤ 0.2,
just after starting the evolution, the frequency is about
the same for all the three cases, ω ∼ 40π, not depend-
ing on Ω0. In the other inset, for 0.2 ≤ t ≤ 0.4, after a
transient time interval, the frequency change to 2Ω0 (as
in case of region I).

2. Time-modulated Raman frequency:
Ω(t) = Ω0 + Ω1 cos(ωt)

When studying the phase-dependence of the atom-
number oscillations for striped soliton solutions, we first
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FIG. 9: (color on-line) Atom-number oscillations between
components are shown as functions of time, for kL = 4 in
the region II, where larger initial amplitudes correspond to
larger values of Ω0 (indicated inside the panel). As verified,
the amplitude of the oscillations decay faster for smaller val-
ues of Ω0. The initial phase is φ = π/2 (to enhance the
amplitude of the oscillations), with β = γ = 1. All quantities
are dimensionless.
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FIG. 10: (color on-line) Atom-number oscillations between
components are shown as functions of time, for kL = 8 in the
region II, for few values of Ω0 (indicated inside the panels). As
in Fig. 9, larger initial amplitudes correspond to larger values
of Omega0. The two inset panels are given in appropriate
scales to clarify the change in the oscillating behavior in two
time intervals. As in Fig. 9, here the initial phase was fixed
at φ = π/2, with β = γ = 1. All quantities are dimensionless.

observe that the amplitude of the oscillations depends on
the initial phase difference, as already verified in the case
that we have constant Raman frequency parameter, given
by Ω0. Therefore, before considering the case where we
have the Raman frequency perturbed in time, we have
studied the phase-dependence of the atom-number oscil-
lations for striped soliton solutions during time evolu-
tion. In this numerical study, we have verified that for
arbitrary initial fixed phase φ (from 0.01 to π/2) intro-
duced between components, only the amplitude of the
oscillations are being affected, which are being verified
by the transient time just after starting the evolution of
the solutions. The frequency of the oscillations does not
depend on the strength of the Raman frequency Ω0, at
least during the transient time till the oscillations become
stable. In a longer time interval, after the transient time,
the frequency of the oscillations will correspond to the
Raman frequency, being given by 2Ω0, as discussed for
the case of regular soliton solutions. As the initial phase
between the components can be arbitrary and will not
affect the natural frequency of the oscillations between
N1 and N2, when studying time-perturbed Raman fre-
quency, in general we choose this phase to be π/4, such
that the amplitude of the natural oscillations is not too
large, as well as not too small.
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FIG. 11: (color on-line) Resonant interferences in the atom-
number oscillations are shown for striped solitons, for kL = 8,
β = γ = 1 and initial phase π/4. In the upper panel, we
have Ω0 = 40, with Ω1 =2 (red-with-circles line) and 4 (blue-
solid line) being compared with the unperturbed case Ω1 =0
(black-dotted line). In the lower panel, for Ω0 = 60 more close
to k2L, we have Ω1 =3 (red-with-circles line) and 6 (blue-solid
line), being compared with the case Ω1 =0 (black-dotted line).
In both the cases, the resonant interferences are verified for
ω ∼ 40π. All quantities are in dimensionless units.

In the case of periodic modulations of Ω(t) in the re-
gion II (Ω0 < k2

L) the results of our numerical simulations
to identify parametric resonances is first being exempli-
fied by the Figs. 11 and 12. In Fig. 11, for kL = 8,
we present two panels considering Ω0 = 40 (upper) and
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FIG. 12: (color on-line) Dynamics of the density oscillations
between components for striped-solitons are represented by
two static panels: In the upper panel, the densities |u(x, t)|2
and |v(x, t)|2 are given for a fixed instant of time t = 0.8,
with the lower panel given for t = 0.825, where the period
of oscillations is about 0.05 (as verified from Fig. 11). The
corresponding values of Ω0 and Ω1 are indicated inside the
panels. The other parameters are such that β = γ = 1,
kL = 8. All quantities are in dimensionless units.

60 (lower). In both we are plotting the perturbed case
considering the amplitude of the oscillations given by
Ω1 = 0.05Ω0 and 0.1Ω0, with the frequency ω ≈ 2π×
the linear frequency verified in the transient time inter-
val (about 126∼127). The non-perturbed case (Ω1 = 0)
is also shown for comparison, in both the cases. We
should emphasize that in general the Josephson oscil-
lating behavior is about the same as it happens for the
unperturbed case Ω1 = 0, except close to the specific val-
ues for ω and Ω1 where resonant interference behaviors
are detected. With Fig. 12, for a time interval of half-
period of the Josephson oscillations, we are representing
the profiles of the two component densities (|u(x, t)|2 and
|v(x, t)|2), for the case shown in the upper panel of Fig. 11
with Ω0 = 40 and Ω1 = 2 (the other parameters are the
same). The oscillation dynamics is represented in two
panels, given for t = 0.8 (upper panel) and t = 0.825
(lower panel), considering that a complete period is close
to ≈ 0.05. The panels are indicating (through the corre-
sponding densities) the atom-number oscillation between
the components

For a long-time interval, resonant behaviors are ex-
pected to occur when considering cases where the natu-
ral frequency of the oscillations are still surviving in the
unperturbed case. For that, in Fig. 13, we are showing
results for a simulation with kL = 4 and Ω0 = 10, with
β = 0.5 and initial phase π/8. In this case, by taking
Ω1 = 4, we can observe a resonant interference that oc-
curs for ω1 ∼ 2Ω0. For this case, the striped soliton
profiles of both components are also being represented in
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FIG. 13: (color on-line) Atom-number oscillations, N1 − N2

(upper panel), for striped solitons obtained in region II, for
kL = 4, Ω0 = 10, with corresponding resonant behavior that
occurs at ω = 21.1. In the two lower panels we show the
densities for the two components at t = 0 and t = 8, where
the second case shows the effect of the time perturbation that
was introduced. The other parameters are γ = 1, β = 0.5, and
the initial phase φ = π/8. All quantities are dimensionless.

the two lower panels of the figure. In the left panel we
have them at t = 0, and in the right panel for t = 8.

To conclude our study related to striped solitons and
resonant interference effects, we present results obtained
in longer time intervals, for the case that the unperturbed
Raman is given by Ω0 = 10, with kL = 4, as in Fig. 13,
but with a much smaller amplitude of the modulations,
such that Ω1 = 0.05Ω0. The investigation of the inter-
val of ω where interferences can be found is shown in
Fig. 14, considering a small initial phase of oscillations
between components given by φ = π/8. As shown by the
set of five panels (for 1 ≤ t ≤ 8) with given values of
ω, resonant interference effects due to the perturbation
are verified only in the interval 39 > ω > 22, with max-
ima interferences occurring for ω ∼ 32 (the middle panel,
where we have also included with dashed line the unper-
turbed case, for comparison). The results for ω > 39
and < 22 are almost identical with the non-perturbed
case, Ω1 = 0. Therefore, we select the case with ω = 32
to show in more detail the oscillating behavior, which is
presented in Figs. 15 and 16. In the lower panel of Fig. 15,
we consider a larger time interval with 0 ≤ t ≤ 16 (lower
panel). The middle panel (2 ≤ t ≤ 7) serves to show
the change in the frequency of the oscillations, such that
for each two cycles another cycle is emerging, which can
be verified for 10 ≤ t ≤ 16. In all the three given pan-
els, for comparison we are including in dashed line the
unperturbed case.
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FIG. 14: (color on-line) Atom-number oscillations, N1 −N2,
for striped solitons in region II, for kL = 4 and Ω0 = 10,
with fixed very small amplitude Ω1 = 0.5 and initial phase
between components given by φ = π/8. The frequency ω
of the time-perturbed Raman is being varied within the re-
gion where resonant interferences are verified. For ω = 32,
the unperturbed case is also shown with dashed-line. As in
Fig. 13, the nonlinear parameters are γ = 1 and β = 0.5. All
quantities are in dimensionless units.
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FIG. 15: (color on-line) The case with ω = 32 (solid lines) was
selected from Fig. 14, including the unperturbed case (black-
dashed line). In the lower panel we have a larger time interval
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All quantities are dimensionless.

FIG. 16: Density plots, |u(x, t)|2, |v(x, t)|2 and |u(x, t)|2 +
|v(x, t)|2, corresponding to the case shown in the lower set of
three panels of Fig. 15, at positions x for the time interval
1 < t < 3. All quantities are in dimensionless units.

IV. HIGH FREQUENCY MODULATIONS.
AVERAGED GP EQUATIONS

In the case that we have rapidly and strongly vary-
ing Raman oscillations Ω(t), it is useful to derive the
corresponding averaged GP equation, such that one can
reduce the time-dependent modulated Raman frequency
to the constant one Ω0, by renormalizing the spin-orbit
coupling and the non-linear parameters, as we are go-
ing to show in this section. By matching the averaged
results with the full-numerical ones, obtained with real-
time evolution, we are also verifying numerically how fast
and strong should be the time oscillations in order to
validate the averaging approach. In order to derive the
averaged over rapid modulations system of equations, we
first apply the following unitary transformation [15, 21]
in Eq. (1):

Φ ≡
(
U
V

)
=

(
cos(q) i sin(q)
i sin(q) cos(q)

)(
u
v

)
, (16)

where q ≡ q(t) = (Ω1/ω) sin(ωt) is given by the require-
ment that the time-dependent part of the Raman fre-
quency does not appear explicitly in the coupled equa-
tion for Φ. When performing the time averaging of the
interactions, together with the SOC parameter kL, the
parameters of the non-linear interaction have also to be
renormalized. They are replaced by parameters that con-
tains zero-order Bessel function, considering that

1

2π

∫ 2π

0

d(ωt) exp

(
inΩ1

ω
sin(ωt)

)
= J0

(
nΩ1

ω

)
. (17)
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Then, by defining χ ≡ 2Ω1/ω, the coupled equation,
averaged over the period of rapid modulations, with
Vtr = 0, can be written as[15]:

i
∂Φ

∂t
=

[
−1

2

∂2

∂x2
− ikLJ0(χ)σz

∂

∂x
+ Ω0σx

](
U
V

)
(18)

−
(
α+|U |2 + α1|V |2 α0U

∗V
α0V

∗U α−|V |2 + α1|U |2

)(
U
V

)
,

where

α0 ≡
(
β − 1+γ

2

) 1−J0(2χ)
4 ,

α± ≡ α0 + 1+γ
2 ±

1−γ
2 J0(χ),

α1 ≡ β − 2α0.

 (19)

In the case of gauge symmetry, with β = γ = 1, we
have α0 = 0 and αi6=0 = 1; i.e., the nonlinear part of the
above coupling equation for (U, V ) is exactly the same is
the ones obtained for (u, v), such that the time averaging
is only renormalizing the SOC parameter kL to

κeff = kLJ0

(
2Ω1

ω

)
, (20)

as one can verify by comparing the coupled Eqs. (18)
with (2). This approach for tuning of the SOC parameter
has been confirmed recently in an experiment reported in
Ref. [17]. Therefore, when considering rapid variations of
the Raman frequency, the spin-orbit coupling kL can be
tuned in order to control the solitons in a BEC with SOC.
In particular, it can be quite useful to transform striped
solitons to regular solitons, and vice versa. With the ap-
propriate ratio between amplitude Ω1 and frequency ω
of the Raman oscillations, a given value of kL for region
II, where k2

L > Ω0, can be changed to κ2
eff < Ω0, where

we obtain regular soliton solutions, such that all the the-
ory developed before (in sections II and III) for constant
Raman frequency, can be applied.

The above can be exemplified by the results shown in
Fig. 3, which are for regular soliton solutions, with kL=
4 and Ω0 =80 and 20, respectively. These results are for
region I, but can also be applied to the case that we have
originally kL larger than Ω0, if the time modulation of the
Raman frequency Ω(t), given by Eq. (5), is such that the
ratio between Ω1 and ω will give us κeff = kLJ0(χ) =4.
We could take initially, kL = 10, for example, as it is
larger than Ω0 in both the cases shown in Fig. 3 , with
the parameters of the time-modulating Raman such that
J0(χ) = 0.4.

When considering other values for the nonlinear pa-
rameters, as a general remark we noticed that stable soli-
ton solutions are obtained for attractive two-body inter-
actions. Another remark, when considering the averaged
approach, is that for β 6= 1, we can also have conditions
with zero in the off-diagonal terms of the non-linear two-
body matrix, which brings the Eq. (18) to the same for-
mat as Eq. (2). This happens for β = (1 + γ)/2, with

α0 = 0, α1 = β, and α± = β ± (1 − β)J0(χ). The
more general cases, as for α0 6= 0, or 2β 6= (1 + γ), new
terms appear, corresponding to the effective four-wave
mixing (∼ U2V ∗, V 2U∗ ). These terms can lead to new
possibilities, such as a way to control the atom number
oscillations between two components (internal Josephson
effect[35, 36]).

1. The solitonic solutions

The solitonic solutions for the averaged GP equations
can be found by applying the multi-scale method [11] to
the two regions defined by the linear spectrum, which
are given by Eq(3). By using this multi-scale method,
for values of the chemical potential near the bottom of
the dispersive curve, with µ = −Ω0 − ε2w0 (ε � 1), ω0

is the free parameter, in region I (see Fig. 1), we obtain

u(I)
s = ε

√
2w0

α+ + α1 + α0
sech

(
ε

√
2w0

∆eff
x

)
, (21)

v(I)
s = −u(I)

s , ∆eff = 1−
κ2
eff

Ω0
. (22)

In the region II, where κ2
eff > Ω0 and two minima exist in

the momentum space, we can take the chemical potential
as µ = wmin − ε2w0 (see Fig. 1), with

wmin =
1

2
κ2

0 − κ2
eff , κ0 ≡ ±

√
κ2
eff − Ω2

0/κ
2
eff (23)

and look for solutions of the form (u, v) =
ε(A,B) exp(±iκ0x). For the result, we obtain a bright
soliton solution with the form given by(

u
(II)
s

v
(II)
s

)
=

(
Ω0

−κeff (κeff ± κ0)

)
εf(x)e±iκ0x−iµt)√
|κeff ± κ0|

(24)

where

f(x) =

√
2w0κeff√

α+(κ4
eff + κ2

effκ
2
0) + (α1 + α0)Ω2

0

×,

× sech

ε
√

2w0κ2
eff

κ2
0

x

 . (25)

Analogically, the striped soliton solution can be found
as linear superpositions of solutions represented by
Eq.(24). As already known, these solutions are used to
describe the longitudinal and transversal spin polariza-
tions of the solitons [11], with

〈σz〉 =
1

N

∫ ∞
−∞

dx(|u|2 − |v|2),

〈σx〉 =
1

N

∫ ∞
−∞

dx(u∗v + uv∗), (26)

N ≡
∫ ∞
−∞

dx(|u|2 + |v|2).
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In the region I, where Ω0 < κ2
eff , the solitons are fully

polarized along the x−axis. The same approach is valid
for stripe solitons in the region II. However, the polar-
ization along z is not zero for solitons with momentum
k = ±κ0. From Eqs. (21)-(25), we obtain

〈σz〉(II) = −
√

1− Ω2
0/κ

4
eff , 〈σx〉

(II) = − Ω0

κ2
eff

. (27)

Thus, by varying the ratio χ, and so κeff , we can observe
quantum phase transition in the pseudo-spin polariza-
tion 〈σz〉(II) of the soliton. These results for the soliton
polarization are analogous to the ones obtained for the
repulsive BEC in the framework of the Dicke model in
[15].

With the understanding that the results obtained in
this section are valid in a more general context for con-
stant values of the Raman frequency, with Fig. 17 we
are showing the dependence of the energy and chemi-
cal potential on the number of atoms N for the case
that Ω0 = 0, β = γ = 1, kL = 8, when consider-
ing χ = 2Ω1/ω = 3.7152 (with both Ω1 and ω very
large), which give us J0(χ) = −0.4. Note that, in
this simple case we have for the dispersion relation (3)
w±(k) = k(k/2 ± kL), with the signal of the give SOC
moving from the original kL = 8 to a negative one,
κeff = −3.2. Threfore, after considering the time av-
eraging, in this particular case with Ω0 = 0, we obtain
w±(k) = k(k/2± κeff ), such that both w+ and w− have
the same shape as w− shown in Fig. 1, but with minima
given at k = −κ0 (for w+); and k = κ0 (for w−). As
we are in region II, even after the averaging, the soli-
ton solutions are not regular ones, being expected to
have shapes with some oscillations. In Fig. 18, we are
illustrating the kind of solutions we obtain, by present-
ing the real and imaginary parts of the wave-function
components when considering the particular case with
N = 6.86, E = −48.6 and µ = −11.

2. Full numerical versus averaged results

To conclude this section, we are comparing the
time evolution results obtained with the effective time-
averaging approach (where the SOC parameter is κeff ),
with the ones obtained in real time, with the SOC pa-
rameter kL and explicit Raman frequency modulated by
Ω1 cos(ωt).

With Figs. 19, 20 and 21, we are exemplifying our re-
sults for the comparison of averaged results with real-
time dependent numerical simulations. All the results
for the time-averaged formalism that are shown in these
examples are verified to be numerically very stable in the
time evolution.

The results given in Fig. 19 are for the region I, with
Ω0 =120 (> k2

L), by considering the SOC parameter
kL = 8. For the time-dependent Raman frequency we
assume Ω1 and ω such that χ ∼ 2.4, implying that

0 5 10 15 20 25

N

-500

-400

-300

-200

-100

0

E
, 
5
 µ

µ

E

FIG. 17: The energy E (solid line) and chemical potential
µ (dashed line) are shown as functions of the atom number
N , by considering the parameter β = γ = 1, kL =8, Ω0 = 0
and χ = 2Ω1/ω =3.7152 [J0(χ) = −0.4, κeff = −3.2], with
ε2w0 = 0.4. All quantities are in dimensionless units.

-2 -1 0 1 2
x

-1

0

1

2
(U

,V
)

Re(U)=-Re(V)

Im(U)=Im(V)

FIG. 18: The real (solid-blue line) and imaginary (dashed-
red) parts of the wave-function components are shown for
E = −48.6, N = 6.86, µ = −11, with the other parameters
as in Fig. 17. All quantities in dimensionless units.

J0(χ) = 0. Therefore, in this case, the averaged SOC
parameter is κeff = 0. As shown in the four panels,
the averaged results present good agreement with the
real-time simulations when Ω1 is about 10 times or more
larger than Ω0.

For the region II, we are illustrating with Figs. 20 and
21, for two quite different combinations of Raman fre-
quency and SOC parameters.

In Fig. 20, we present our results obtained for kL = 8
and Ω0 =12, with Ω1 and ω such that χ ∼ 1.52. As
J0(χ) = 1/2 and κeff = 4, we are in region II (Ω0 <
κ2
eff ). The results are shown in three panels, for different

values of Ω1 = 50χ = 76 (lower panel), = 100χ = 152
(middle panel) and = 200χ = 304 (upper panel). The
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FIG. 19: Real-time evolution of the soliton profile, for Ω0 =
120, kL = 8, with β = γ = 1, considering several values of
Ω1 (shown inside the panels) and ω, such that J0(χ) = 0
(χ = 2.4). At t = 0, the results in each of the panels coincide
with the ones obtained with the averaged formalism (where
κeff = 0). At larger times (represented by t = 4), we show
that the agreement between real-time and averaged results
is improved as one increases Ω1. The other parameters are
β = γ = 1. All quantities are in dimensionless units.

parameters used in this case correspond to one of the
examples presented in Fig. 9 for Josephson oscillations,
where we have constant Ω0 = 12, with kL = 4. We
should note that the striped solitons shown in Fig. 20
have the main maximum at the center, with only one
pair of maxima visible in each side, due to the choice
of parameters which are close to the border between the
regions for striped and regular solitons.

In Fig. 21, we are considering a case where the ef-
fective SOC becomes negative, and we are more deeply
inside the region II. By departing from a large value of
kL = 20, with the combinations of Ω1 and ω, such that by
fixing χ = 3.7152 and J0(χ) = −0.4, we have κeff = −8.
The results are shown in three panels. For comparison,
in all the three panels we also present the averaged re-
sults, which is equal to the unperturbed case with t = 0.
From our study of this case, we should also observe that
for smaller values of Ω1 the real-time solutions become
unstable, collapsing in a short time interval. The real-
time solutions shown in the lower panel, for Ω1 = 175χ,
are already indicating this instability. When considering
Ω1 = 150χ, the solution was already collapsed even at
t = 2.

By considering our results, exemplified by Figs. 19,
20 and 21, as a general remark for the case of fast-time
oscillations in the Raman frequency, our conclusion is
that good agreements between the averaged results with
the full-numerical simulations can be verified only for Ω1

about 10 times larger than Ω0 (where the frequency ω is
of the order of Ω1), which is an approximate minimal con-

0

0.4

0.8

|ψ
(x

,t
)|

2

t=0
t=2
t=8

0

0.4

0.8 t=0
t=2
t=8

−2 −1 0 1 2
x

0

0.4

0.8 t=0
t=2
t=8

Ω0=12, kL=8

Ω0=12, kL=8

Ω0=12, kL=8

Ω1=50χ 

Ω1=100χ

Ω1=200χ

FIG. 20: (color on-line) Evolution of the soliton profile, for
Ω0 = 12, kL = 8, with β = γ = 1, in three panels for different
values of Ω1, with χ = 2Ω1/ω = 1.52 (such that J0(χ) = 1/2),
implying that κeff = 4. In this case, we have κ0 = 2.65. All
quantities in dimensionless units.

dition for the time-modulations in the Raman frequency
in order to keep stable the soliton solutions during time
evolution.

In the next section, we summarize this work with our
main conclusions.

V. CONCLUSIONS

In the present work, we have studied the existence and
dynamics of solitons in Bose-Einstein condensates (BEC)
with spin-orbit coupling (SOC) and attractive two-body
interactions, by considering two coupled atomic pseudo-
spin components with general time-dependent Raman
frequency, which can be constant, slowly or rapidly mod-
ulated in time. For that, after defining the two possi-
ble regions where two different kind of soliton solutions
exist, regular or striped bright solitons, we first consider
the Raman frequency varying slowly and linearly in time,
such that we can study the transition between the two
kinds of soliton solutions; from regular to striped ones
and vice-versa. The regions are established by the re-
lation between the SOC parameter kL and the constant
part of the Raman frequency, Ω0, such that we have reg-
ular solitons in region I, when Ω0 > k2

L; and striped
solitons in region II, for Ω0 < k2

L. Next, we study the
internal Josephson oscillations between the atom num-
bers in soliton components, which are controlled by con-
stant or periodically time-oscillating Raman parameter.
Different parameter configurations are studied for SOC
in BEC, with parametric resonances indicating a mech-
anism to control the soliton parameters, as well as the
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FIG. 21: (color on-line) The evolution of striped soliton pro-
files are shown in three panels, for Ω0 = 20 and kL = 20,
considering a few values of Ω1 and ω in the real time propa-
gation. For t = 0, the results are the same ones obtained by
the averaged formalism, where κeff = −8. In all the frames,
the ratio between the parameters Ω1 and ω is fixed, given by
χ = 2Ω1/ω = 3.7152, implying in J0(χ) = −0.4. In this case,
we have κ0 = 7.60. (All quantities in dimensionless units)

evolution of the solitons center of mass. As shown, we
are also presenting a variational analysis, valid partic-
ularly in the case that we obtain regular bright soliton
solutions. The full-numerical simulations have confirmed
the corresponding predictions.

In the limit of high frequencies, the system is described
by a time-averaged Gross-Pitaevskii formalism with
renormalized nonlinear and SOC parameters and addi-
tional modified phase-dependent nonlinearities. There-
fore, by comparing full-numerical simulations with av-
eraged results, we have studied the lower limits for the
frequency of the Raman oscillations, in order to obtain

stable soliton solutions. The results are shown in a few
examples, for both regions I and II. One should note that,
due to the normalization of the nonlinear interactions,
new terms can emerge in the nonlinear coupling of the
averaged system for BEC with tunable SOC, when com-
paring with the original non-averaged formalism. Corre-
sponding to the phase depending nonlinear coupling, we
have a new term ∼ α0 appearing in the off-diagonal ma-
trix terms of the nonlinear coupling. This term can play
important role for non-stationary processes in BEC with
SOC, as well as in the Josephson oscillations between
components of solitons with nonzero phase differences.
This matter requires further separate investigation.

The expected relevance of the present study can be by
predicting some effects, as well as in the corresponding
parameter control, in a possible BEC experiment, such as
in 7Li with attractive interatomic interactions, where the
SOC can be engineered as an effective two-level atoms
by an uniform magnetic field B with two Raman laser
beams. In this example, we have the linear transverse
trap frequency, ω⊥/(2π) =1 kHz, the number of atoms
N = 103 and the wavelength of the Raman lasers given
by λ = 804nm. Therefore, the Raman frequency can
vary in the interval (0.1− 10)EL, where EL = h̄2k2

L/2m
is the recoil energy and kL = 2π/λ. For Ω0 = 0.1EL/h̄
we obtain Ω0 = 2π × 30 kHz. Then the frequency of
modulations are: for the resonant case the dimensionless
ω = 60 corresponds to ω = 2Ω0 = 60 kHz, for the high
frequency limit ω = 300 to ω = 10Ω0 = 300 kHz.
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