
J Nanopart Res (2018) 20: 158
https://doi.org/10.1007/s11051-018-4254-y

RESEARCH PAPER

Conductance through glycine in a graphene nanogap

Puspitapallab Chaudhuri ·H. O. Frota ·
Cicero Mota ·Angsula Ghosh

Received: 2 October 2017 / Accepted: 17 May 2018 / Published online: 8 June 2018
© Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract We report theoretical analysis of charge
transport process through a single glycine molecule
utilizing graphene nanogaps. Density functional the-
ory and non-equilibrium Green’s function method are
employed to investigate the transport properties of
glycine inside the gap. The projected density of states,
transmittance, and the current–voltage characteristics
are determined with changes in the molecular orien-
tation inside the nanogap of c.a 0.8 nm. The current
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values demonstrate a high sensitivity on the orienta-
tion of the molecule. The conductance of the molecule
is also dependent on the voltage.
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Introduction

Currently, the conventional silicon (Si)-based technol-
ogy for electronic devices is facing enormous chal-
lenges due to the ever-increasing demand for minia-
turization of the active components. The astound-
ing progress in nanotechnology, in last few decades,
is accelerating the process of downscaling and cost
reduction of electronic devices paving the way for the
entry of new concepts like 2D electronics (graphene)
(Fiori et al. 2014; Cao et al. 2013; Wu et al. 2013),
organic electronics (conducting polymers) (Rogers
et al. 2010; Facchetti 2011), spintronics (Wolf et al.
2001; Tetienne et al. 2014), and molecular electronics
(Aviram and Ratner 1974; Tour 2000; Sun et al. 2014).
In order to scale down the devices below 20 nm, inves-
tigations on the possibility of single molecule con-
ductance are becoming important more than ever. No
doubt, single-molecule electronics (molecular elec-
tronics) that involves the action of electrodes with a
single molecule in between them represents the ulti-
mate limit of miniaturization of electronic devices
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(Sun et al. 2014; Kima et al. 2014). However, large-
scale fabrication of fully functional single molecule
electronic circuit is still far from reality, although
some significant development has been achieved with
respect to the construction of meta–molecule–metal
junctions that includes the use of nanowires (Cob-
den 2001; Wang et al. 2014; Dasgupta et al. 2014),
nanotubes (Sorgenfrei et al. 2011; Liu et al. 2010),
nanogaps (Du et al. 2009; Yaghmaie et al. 2010),
nanopores (Howorka and Siwy 2009; Arjmandi-Tash
et al. 2016; Lagerqvist et al. 2006), mechanical
break junctions (Xu et al. 2003; Zhao et al. 2014),
mechanical cantilevers (Burg et al. 2007), electromi-
gration (Park et al. 1999), electron beam lithography
(Nicewarner-Pena et al. 2001; Qin et al. 2005), molec-
ular rulers (Hatzor and Weiss 2001; Dadosh et al.
2005), scanning tunneling microscopy (STM) , atomic
force microscopy (AFM) (Xu et al. 2003; Sader et al.
2005), and others. Studying the single molecule elec-
tronic circuits is extremely important in understanding
the transport behavior at a single-molecule level in
order to prepare entirely molecular integrated circuits
(Cui et al. 2015).

Graphene, with its novel electronic, thermal,
mechanical, and chemical properties, has always been
very promising with broad range of applications in
Material Science and Engineering. It has widely been
accepted as a propitious next-generation conducting
material that can replace traditional electrode materi-
als such as indium tin oxide in electrical and optical
devices (Jo et al. 2010, 2012; Hong et al. 2013; Mol
et al. 2015). Electrical characteristics of graphene-
based devices have also drawn a lot of attention
(Horri et al. 2017a, b, c) Presently, graphene is widely
used in nanopore–nanogap devices. Recent advances
have already been made in the fabrication of solid-
state nanopores (Wu et al. 2009; Taniguchi et al.
2009) and their applications in whole-genome analy-
sis (Lagerqvist et al. 2006; Storm et al. 2005; Zwolak
and Di Ventra 2005; Iqbal et al. 2007; Dekker 2007).
The solid-state nanopores have emerged as promis-
ing sensors due to their better stability and also due
to its use both as membrane material as well as
electrodes. It is an even more able device for DNA
sequencing because of its extraordinary small thick-
ness of graphene (0.3 nm) which is comparable to the
DNA base pair stacking distance of 0.35 nm (Sathe
et al. 2011). Graphene nanogaps have recently been
successfully used to measure the tunneling current

and detect translocation events in order to perform
DNA sequencing (Postma 2010). The tunneling cur-
rent is highly sensitive to the separation between the
two electrodes and the size, shape, and orientation
of the conducting molecules residing in the nanogap
(Fanget et al. 2014). Furthermore, the conformational
changes that the molecular structure may undergo can
also affect transport behavior significantly (Galperin
et al. 2007; Troisi and Ratner 2006; Gaudioso et al.
2000). Moreover, the conductance of the monolayer
graphene nanopore was found to be higher than mul-
tilayer graphene nanopore. The structuring of the
nanoribbon depends on the edge profile. Several stud-
ies demonstrate a semi-conducting behavior of the
armchair ribbon compared to the metallic behavior of
the zigzag-edged ribbon (Heerema and Dekker 2016).

Density functional studies in a graphene nanopore/
nanogap setup have been carried out to distinguish
between the DNA nucleotides. The tunneling transport
properties of the four nucleotides inside a graphene
nanogap have been important to observe the fluctua-
tion of the tunneling current with the change in the
nucleotide as well as the orientation of the nucleotides
(Prasongkit et al. 2011, 2013). In several graphene
nanopore studies, the dangling bonds at the graphene
edges were typically saturated with hydrogen (Pra-
songkit et al. 2011; Nelson et al. 2010; He et al.
2001; Avdoshenko et al. 2013) or nitrogen (Saha et al.
2012). Functional groups attached to graphene are also
utilized for transport calculations (Prasongkit et al.
2013).

Organic materials and biomolecules are showing
promising electrical properties and are finding their
ways to various applications that range from biomed-
ical equipment and sensors to home theaters and TV
systems (Shinwari et al. 2010). The lower current
and power operations along with its price benefits
make these molecules ideal for usage. Moreover, the
conductive properties of the biomolecules are also
being exploited for designing therapeutic equipments
for, e.g., the DNA hybridization sensors (Shinwari
et al. 2007; Landheer et al. 2005, 2007; Deen et
al. 2006). Recent interest in understanding the trans-
port of charge through single molecules such as DNA
and protein and other molecules like benzene-1,4-
dithiolate, redox active transition metal complexes
have been due to their relevance not only in physiolog-
ical reactions but also in molecular electronic applica-
tions (Lagerqvist et al. 2006; Zwolak and Di Ventra
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2005; He et al. 2007; Chang et al. 2010; Wang et al.
2007; Zhang et al. 2007; Haiss et al. 2007; Albrecht
et al. 2005, 2006; Ivanov et al. 2011; Ventra et al.
2000; Reed et al. 1997; Schneider et al. 2010). The
electrical conductance of DNA and proteins remains
a subject of intense research. The electrical conduc-
tivities of the proteins should play a big role in their
function as structural/transport units of enzymes. In
fact, they may be important for use in electrodes, elec-
tronic devices, and sensors. The single-molecule DNA
and protein sensors can be implemented for a faster
investigation of the effects of inhibitory drugs through
a study of the conductance current (Lagerqvist et al.
2006, 2007a, b; Zwolak and Di Ventra 2005, 2008;
Zikic et al. 2006; Krems et al. 2009). Recently, the
transport properties and the projected density of states
of glycine molecule doped on carbon nanotube sand-
wiched between two carbon nanotube electrodes have
been studied (Zhou et al. 2013). Glycine, with the
molecular formula NH2CH2COOH, as demonstrated
in Fig. 1, is one of the most important biomolecules.
It is the simplest and the smallest of all natural amino
acids. Amino acids, as we all know, are the basic
building blocks of proteins, which are formed through
successive amide linkage (peptide bond) of several
amino acids. Since glycine does not possess a side
chain, it can easily adopt different conformations, giv-
ing high degree of local flexibility to the polypeptide.
It occurs abundantly in certain fibrous proteins due to
its flexibility and because of its small size it allows
adjacent polypeptide chains to pack together closely
(Yan et al. 1995). Although it contains just 10 atoms,
glycine has all the essential characteristics of larger
amino acids and peptide systems. Hence, it serves well
as a model biomolecular system and has long been a
subject of intense research, both experimentally and
theoretically, to study the structural characteristics as

well as the intra- and intermolecular interactions in
biomolecular systems under different environmental
situations.

In the present work, we use the first principles DFT
method to study the transport properties of a single
molecule of glycine inside a single-layer graphene
nanogap with a zigzag edge. In spite of the fact that
perfect armchair or zigzag edges cannot be realized
thermodynamically (Girit et al. 2009; Ritter and Lyd-
ing 2009), the elucidation of the transport properties
associated to a zigzag edge is important not only for
graphene-edge applications but also for fundamen-
tal physics, chemistry, and nanoscience (Goto et al.
2013). The so-called edge state in zigzag edges due to
the pz electrons confined on the outer carbon atoms
distinguishes the above from the corresponding arm-
chair versions (Nakada et al. 1996; Son et al. 2006;
Acik and Chabal 2011). The graphene electrodes with
zigzag edges have been chemically passivated by
hydrogen. A short description of the computational
procedure is presented in “Computational details”.
In “Results and discussion”, the electronic properties
are discussed in detail. Finally, a short summary and
conclusion are given in “Conclusion”.

Computational details

We study the tunneling properties along with the pro-
jected density of states (PDos) of the glycine molecule
when located between the graphene electrodes with
zigzag edges chemically passivated by hydrogen. The
equilibrium geometry of the glycine molecule along
with its electrostatic potential surface has been demon-
strated in Fig. 1. The red color indicates the negative
region whereas the blue indicates the positive one. The
O4 and N1 atoms are the most electronegative ones

Fig. 1 a Isolated glycine
molecule where the
constituent atoms have been
identified by atomic
symbols and the b
electrostatic potential
surface of isolated glycine
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as can be seen from the figure. The system consists
of three regions: the glycine molecule in the center
of the two electrodes and the left and right graphene
electrodes. This graphene–glycine–graphene system
has been constructed, first by optimizing the isolated
glycine molecule and the graphene electrodes sepa-
rately and then placing the glycine molecule inside
the nanogap of graphene as shown in Fig. 2. An
electrode–electrode initial spacing of 7.9 Å along the
z-axis is considered (measured from H to H). The
glycine molecule is accommodated within this gap of
graphene such that the extreme atoms of the glycine
molecule are ∼ 2 Å away from the nearest hydrogen
atom of the graphene electrodes along the z-direction.
The width of the graphene sheet is 9.6 Å along the z-
axis and 16 Å along the x-axis in order to ensure that
the perturbation effects from the glycine molecule are
sufficiently screened. Periodic boundary conditions
along the electrode edges effectively create repeated
images of the glycine molecule separated by 13 Å, suf-
ficiently large to avoid any sort of interaction between
them. The combined system of graphene and glycine
has been optimized allowing the atoms in the central
region to relax. The glycine molecule is positioned to
lie in the plane of the graphene electrodes as shown
in Fig. 2. The position of the glycine molecule in
the above figure is considered to be the initial ori-
entation with θ = 0◦. The coordinate axes of the
above system have also been shown in the figure.
We also consider the effect of rotation on the den-
sity of states, transmittance, and current. The molecule
is rotated in steps of 30◦ around the y-axis from 0◦
to 180◦ and is translated so that the gap between
left electrode glycine and right electrode glycine is
always ∼2 Å. All optimizations are performed using
the density-functional method as implemented in the
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Fig. 3 Current–voltage curves for the glycine molecule at
different orientations according to the legend in the figure

Quantum-Espresso package (Giannozzi et al. 2009).
The BFGS quasi-Newton algorithm has been adopted
for the constraint-free geometry optimization with the
convergence thresholds set at 10−3 eV/Å for force and
10−4 eV for energy. The real-space integration is per-
formed using a 40 Ry cutoff, and due to the large cell
size, all the optimizations have been done only at the
� point. The Brillouin zone of the supercell is sampled
by 6 × 1 × 6 Monkhorst-Pack k-point grid. The con-
struction and visualization of the molecular structures
are performed using the XCrySDen (Kokalj 2003) and
Gaussview 4.1 (Dennington et al. 2006) packages.
After the geometry optimization, the total and pro-
jected densities of states were obtained utilizing the
Quantum-Espresso package.

The transport properties for each glycine orienta-
tion are calculated following the Landauer formula

Fig. 2 Illustration of the
graphene nano-electrodes
for measuring the
conductance of single
glycine molecule. The
above orientation of the
glycine molecule is at
θ = 0◦
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Fig. 4 Current dependencies of the glycine molecule on orien-
tation for a bias voltage (Vbias = 0.5eV )

as implemented in the WanT package for quantum
transport (Calzolari et al. 2004; Ferretti et al. 2010).
The technique combines the DFT and non-equilibrium
Green’s function method. The transmittance is calcu-
lated as a function of energy for the angles between
0◦ and 180◦ in steps of 30◦. The current was calcu-
lated integrating the transmittance under an applied
bias voltage. The chemical potentials related to the left
and the right leads are given by −0.5 V and 0.5 V
respectively.

Results and discussion

The transport properties of the glycine molecule in the
single-layer hydrogen-passivated graphene nanogap
with zigzag edges are discussed in detail. The above
system is found to be the most energetically favorable
one when compared with the armchair graphene edges
and also with that of a zigzag graphene layer of
reduced width. The results on the I–V (current–
voltage) characteristics of the system, as represented
in Fig. 2, are presented in Fig. 3 for the angles between
0◦ and 180◦ in steps of 30◦. The maximum current is
observed for θ = 30◦ for the entire range of the bias
voltage whereas the minimum current is for θ = 120◦.
The magnitudes of the current at different orienta-
tions can be ordered in the following manner : I30 >

I0 > I180 > I60 > I150 > I90 > I120. The current
through the graphene nanogap in the absence of the
glycine molecule is few orders of magnitude less than
that with the glycine. Furthermore, the absence of the
glycine molecule yields a system that is energetically
less favorable. Inclusion of glycine in the graphene
nanogap shifts the Fermi energy upward by a consider-
able amount. Hence, the transport behavior is signifi-
cantly modified. Moreover, it is also much higher than
that through the nucleotides (Prasongkit et al. 2011)
within the graphene nanogap passivated by hydrogen
atoms and even with the functional groups (Prasongkit
et al. 2013). However, the current of carbon nanotube

Fig. 5 Projected densities
of states (PDos) of the a
hydrogen (H6 (purple), H7
(green), H8 (cyan), H9
(red), H10 (black)),
b oxygen (O5 (1s-red,
2p-purple), O4 (1s-
black,2p-green)), c nitrogen
(N1 (1s-black, 2p-green)),
and d carbon atoms (C2
(1s-black, 2p-green), C3
(1s-red, 2p-purple)) of the
molecule for θ = 0◦

0

1

2

0

2

4

6

-30 -20 -10 0
0

2

4

6

-30 -20 -10 0
0

2

4

P
D
o
s

(a) (b)

(c)

P
D
o
s

E(eV)

(d)

E(eV)



158 Page 6 of 11 J Nanopart Res (2018) 20: 158

Fig. 6 Projected densities
of states (PDos) of the
a hydrogen (H6 (purple),
H7 (green), H8 (cyan), H9
(red), H10 (black)),
b oxygen (O5 (1s-red,
2p-purple), O4 (1s-black,
2p-green)), c nitrogen (N1
(1s-black, 2p-green)), and
d carbon atoms (C2
(1s-black, 2p-green), C3
(1s-red, 2p-purple)) of the
glycine molecule for
θ = 30◦
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doped with glycine (Zhou et al. 2013) is higher when
compared to our results. The effect of the width of
the graphene layer and also the nanogap width are
considered. The current decreases with the increase in
nanogap width as was also observed in Postma (2010).
The current was found to be sensitive to the width of
the graphene monolayer. A slight increase in the cur-
rent was observed with the increase in the width of
the graphene leads. The edge profile of the leads were
also investigated. The armchair leads passivated with
hydrogen leads to a higher current than the zigzag one.

Figure 4 demonstrates the current vs the angle of
rotation for a value of bias voltage of Vbias = 0.5eV .
A dotted line as a guide to the eye has been plotted
in order to help in the visualization of its dependence.
A change of nearly one order of magnitude has been
observed among the different orientations. The current
varies between nearly 80 nA for θ = 15◦ and 1.3 nA
for θ = 105◦ at Vbias = 0.5eV . Hence, the conductiv-
ity depends highly on the orientation of the molecule
in the nanogap. The conductivity increases consider-
ably as we change the orientation of the molecule.

Fig. 7 Projected densities
of states (PDos) of the
a hydrogen (H6 (purple),
H7 (green), H8 (cyan), H9
(red), H10 (black)),
b oxygen (O5 (1s-red,
2p-purple), O4 (1s-black,
2p-green)), c nitrogen (N1
(1s-black, 2p-green)), and
d carbon atoms (C2
(1s-black, 2p-green), C3
(1s-red, 2p-purple)) of the
glycine molecule for
θ = 60◦
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The position and the orientation of the O4 and N1

atoms are of utmost importance for the current. The
PDos peaks of the 2p orbitals of the O4 and N1

atoms corroborate with the above fact. The high elec-
tronegativity of the O4 and N1 atoms observed in the
electrostatic potential surface of glycine also indicates
higher participation of the above atoms. Moreover,
we see that the peaks of the 2p orbitals of O4 and
N1, the transmittance value, and the total density of
states below the Fermi energy are associated with
the HOMO of the isolated glycine molecule. When
the molecule is rotated, the peak magnitude changes
and also the peak position suffers changes relative
to the Fermi energy and thus the current is affected.
Moreover, the current drops by increasing the distance
between the glycine molecule and the graphene leads.

In Figs. 5, 6, 7, and 8, PDos for all the atoms
of the glycine molecule for different configurations
are presented. The PDos of the five hydrogen atoms
are plotted for θ = 0◦, 30◦, 60◦, and 180◦ in
Figs. 5a, 6a, 7a, and 8a respectively. The contribu-
tion of two hydrogen atoms (H7 and H8) linked to
the carbon atom is represented in cyan and green,
whereas those bonded to the nitrogen atoms (H9

and H10) are plotted in red and black respectively.
The PDos of H6 demonstrated in violet have the
largest contribution. The PDos of the oxygen atoms
O4 and O5 (carbon atoms C1 and C2) are plotted in
Figs. 5b, d, 6b, d, 7b, d, and 8b, d. The PDos of the
nitrogen atom are plotted in Figs. 5c, 6c, 7c, and 8c.
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Fig. 9 Transmittance as a function of the energy (E), for θ = 0◦

In all the above five atoms (O4, O5, C2, C3, N1), the
contribution of the 2p orbital to the density of states
predominates throughout the considered energy range.
The s orbital also exhibits a significant contribution
at low energies. However, it is interesting to note the
dependence of the atomic PDos on the angle of rota-
tion. While at θ = 0◦, H8 and H9 have a higher
contribution, at θ = 30◦, H10 and H7 have larger
DOS. The contribution from H6 continues to demon-
strate very little alteration with rotation and has the
highest DOS at high energies. The highest contribu-
tions to the PDos are from the oxygen (O4) atom and
the nitrogen (N1) atom of the glycine molecule for all

Fig. 8 Projected densities
of states (PDos) of the
a hydrogen (H6 (purple),
H7 (green), H8 (cyan), H9
(red), H10 (black)),
b oxygen (O5 (1s-red,
2p-purple), O4 (1s-black,
2p-green)), c nitrogen (N1
(1s-black, 2p-green)), and
d carbon atoms (C2
(1s-black, 2p-green), C3
(1s-red, 2p-purple)) of the
glycine molecule for
θ = 180◦
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Fig. 10 Transmittance as a
function of the energy (E),
for a θ = 30◦, b θ = 60◦,
c θ = 90◦, d θ = 120◦,
e θ = 150◦, f θ = 180◦

the angles in agreement with electronic nature of the
molecule as seen in Fig. 1. The 2p contributions are
most prominent for the above atoms and the peaks can
be associated with the HOMO of the isolated glycine
molecule. The highest contribution from the carbon
atom (C3) and hydrogen atom (H6) could be associ-
ated with the LUMO of the isolated glycine. More-
over, the 2p contribution of the O4 atom is highest for
θ = 30◦ which decreases with the change in the ori-
entation of the glycine molecule and accompanies the
same behavior as observed in Fig. 4. From Figs. 5–8,
we observe that the contribution of the 2p orbital
of O4 atom obeys the following order : PDos30◦ >

PDos0◦ > PDos180◦ > PDos60◦ . The total DOS also
depends on the orientation of the glycine molecule
between the hydrogenated graphene leads. Moreover,
it is also associated with the HOMO of the isolated
glycine.

The quantum conductance as a function of energy is
shown in Fig. 9 for θ = 0◦. In Fig. 10a–f, the conduc-
tance values are given for (a) θ = 30◦, (b) θ = 180◦,
(c) θ = 90◦, (d) θ = 120◦, (e) θ = 150◦, and (f)
θ = 60◦ respectively.

Transmittance peaks below the Fermi energy are
related to the peaks of the DOS which in turn are asso-
ciated with the HOMO values of the isolated glycine.
Moreover, the distance of the O4 and N1 atoms from
the hydrogenated graphene sheet is important for the
understanding of the change of the transmittance with
orientation. The 2p orbital peak of O4 atom also

corroborates with the above fact. For example at θ =
30◦, the nearest distance of O4 from the leads is 2.26
Å compared to 4.25 Å at θ = 120◦. This result is
in accordance with the current as a function of bias
voltage shown in Fig. 3.

Conclusion

In conclusion, the calculation demonstrates a poten-
tial use of the glycine molecule, the simplest and
the smallest of all natural amino acids, in nanoscale
electronics. The sensitive dependence of the tunnel-
ing current on the orientation of the glycine molecule
inside the graphene nanogap can be useful for vari-
ous therapeutic equipments. The preferred orientation
of glycine that leads to the highest conductivity of the
system is θ = 15◦, whereas the least favorable is one
θ = 105◦. The projected density of states and the con-
ductance calculations are also at par with the above
findings.
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