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Abstract
Lung tumors are a frequent type of cancer in humans and a leading cause of death, and the late diagnostic contributes to 
high mortality rates. New therapeutic strategies are needed, and the heptapeptide angiotensin-(1-7) [ang-(1-7)] demonstrated 
the ability to control cancer growth rates and migration in vitro and in vivo. However, the possible use of the heptapeptide 
in clinical trials demands deeper analyses to elucidate molecular mechanisms of its effect in the target cells. In this study, 
we investigated relevant elements that control pro-inflammatory environment and cellular migration, focusing in the post-
transcription mechanism using lung tumor cell line. In our cellular model, the microRNA-513a-3p was identified as a novel 
element targeting ITG-β8, thereby controlling the protein level and its molecular function in the controlling of migration 
and pro-inflammatory environment. These findings provide useful information for future studies, using miR-513a-3p as an 
innovative molecular tool to control lung tumor cell migration, which will support more effective clinical treatment of the 
patients with the widely used chemotherapeutic agents, increasing survival rates.

Keywords  Cellular migration processes · Pro-inflammatory environment · Small non-coding RNAs · Tumorigeneses · 
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Introduction

Over the last few years, lung tumors have emerged as the 
most frequent type of cancer in humans and a leading cause 
of death [1]. Basically, there are two main types of lung 
cancer: the small lung cancer (SLC) and the non-small cell 
lung cancer (NSCLC), which represents almost 90% of the 

cases [2]. Considering the late diagnosis of such diseases, 
high incident of metastases is frequently found in patients, 
which contributes to low survival rates [3, 4]. However, 
despite all the improvement in therapeutics to treat can-
cer in the last decades, a deep understanding of cellular 
mechanisms that support migration and metastasis is still 
missing. The elucidation of molecular markers that control 
such cellular processes will contribute to the improvement 
of the lung cancer treatment and patients’ life expectancy. 
More recently, the heptapeptide angiotensin-(1-7) [ang-(1-
7)] has demonstrated a direct ability to control the growth 
rates of lung cancer cells in vitro and in vivo [5–8]. The 
peptide is a product of the renin–angiotensin system (RAS) 
and was initially described by its effect in the control of 
the cardiovascular system [9, 10]. This vasoactive peptide 
plays relevant functions in cellular signaling through the 
activation of its G-protein-coupled receptor, Mas [11], and 
a better understanding of the mechanisms and the central 
elements modulated by the ang-(1-7) in the controlling of 
tumor migration is a promising strategy for an innovative 
therapeutic development.
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In tumor cells, there are intricate signaling pathways and 
the inflammatory process is present. Under a pro-inflam-
matory environment, the arachidonic acid (AA) pathway 
is activated and induces the expression of cyclooxyge-
nase-2 (COX-2) or prostaglandin-endoperoxide synthase 2 
(PTGS2), which plays a major function in the control of this 
cellular pathway [12]. The mechanisms by which COX-2 
controls the inflammatory process have been studied for 
decades, and in tumors, the pro-inflammatory environment 
modulates the progression of the disease. In lung cancer, 
COX-2 overexpression was observed, and, more recently, 
the cellular activity of COX-2 has been pointed as a rel-
evant element that helps control cellular migration [13, 
14]. Moreover, in cancers, significant reduction in tumor 
growth and angiogenesis was observed when the patients 
were treated with COX-2 inhibitors (coxib) [15]; however, 
because of the considerable increased rates of cardiovascular 
accidents, their use are restricted [16, 17]. On the other hand, 
the ang-(1-7) is a potential candidate to safe control COX-2 
protein levels [15, 18, 19] considering the antithrombotic 
and anti-inflammatory properties of the peptide that directly 
benefit the cardiovascular system [20–22]. In system biol-
ogy, the AA pathway can also be modulated by the pI3K/
AKT pathway, which is directly influenced by the effect of 
the ang-(1-7) [23–25]. The pI3K/AKT pathway modulates 
cellular apoptosis, inflammation, migration, and glycolysis 
metabolism, among others, reinforcing the observation of 
interconnected cellular pathways between inflammatory and 
migratory processes. In addition, an increasing number of 
investigations demonstrated that microRNAs (miRNAs) are 
directly involved in the control of the fine regulation of gene 
expression in tumor cells. More recently, studies have been 
pointing the modulatory function of miRNAs in the control-
ling of COX-2 enzyme [26–29] and cellular migration [7, 8].

MicroRNAs are small non-coding RNAs (21–25 nts) that 
regulate gene expression by binding to the 3′-untranslated 
region (UTR) of target mRNAs, which decreases the protein 
synthesis. It is known that these small molecules act in a 
synchronized way and the precise description of the molecu-
lar networks controlled by miRNAs will contribute to the 
biotechnological and pharmaceutical innovations. Thus, in 
the present study we decided to investigate the modulatory 
effect of the heptapeptide in the pro-inflammatory cellular 
mechanisms, focusing on the regulatory function of miRNAs 
to characterize central elements that control cellular migra-
tion. Therefore, the analyses revealed an innovative function 
of the miR513a-3p in controlling levels of the integrin-β8 
protein, which is connected to the maintenance of cellular 
adhesion, disrupted during the metastatic processes.

Materials and methods

Cell culture and treatments

A549 lung carcinoma cells (American Type Culture Col-
lection, ATCC®: CCL-185™) were grown and maintained 
in Dulbecco’s Modified Eagle Medium/Nutrient Mixture 
F-12 (DMEM/F12) supplemented with 4 mM of l-glutamine 
and 10% of fetal bovine serum (FBS) in a 5% CO2 atmos-
phere at 37 °C. All reagents were purchased from Thermo 
Fisher Scientific, USA. For experiments, cells were seeded 
in 75 cm2 plates at the density of 3.2 × 103 cells/cm2, and the 
heptapeptide ang-(1-7) (Merck, Millipore, USA) was added 
or not to the cultures at a final concentration of 10− 7 M [7]. 
The culture media were renewed every 24 h until the cul-
tures reached ~ 90% confluency. For A549 -pEP-miR cellular 
clones, puromycin (Sigma-Aldrich) was added to the media 
at the final concentration of 1 µg/ml.

COX‑2 enzyme activity and PGE2 immunoassays

COX-2 activity was measured according to the instructions 
of the manufacturer of the COX Activity Assay (Cayman 
Chemical, USA). In doing so, 1.2 × 108 cells from each 
independent group were resuspended in 50 μl of cold buffer 
(0.1 m Tris–HCl, pH 7.8, containing 1 mM ethylenediamine 
tetraacetic acid, EDTA) and next centrifugated at 4 °C for 
15 min. The supernatants were used to measure COX-2 
activity which was assessed using the selective COX-1 inhib-
itor SC-560. For the prostanoid prostaglandin E2 (PGE2) 
measurement, cell culture supernatants were collected and 
used in immunoassays. Fifty (50) µl of the cellular super-
natants were used in each assay and PGE2 was measured 
using specific ELISA kit from Cayman Chemical, USA, as 
directed by the manufacturers. The assays were analyzed 
with a microplate reader (Packard Instrument Company Inc., 
USA), and the experiments were performed in triplicate.

Plasmid constructs and cell line establishment

The cDNA sequences of corresponding regions of precur-
sors miRNAs-513a-3p and -4465 were amplified by conven-
tional polymerase chain reaction (PCR) using appropriate 
primers set (miR-513a-3p: 5′-TCG​AGG​ATC​CAG​GCA​CAA​
AAA​GTT​CCT​TGA​AG and 5′-TCG​AGC​TAG​CGG​GAT​
GCC​ACA​TTC​AGC​CAT​TC; miR-4465: 5′-TCG​AGG​ATC​
CCT​ACA​AAG​GAT​GTT​ACA​GTT​G and 5′-TCG​AGC​TAG​
CCA​AGT​TAT​ATG​CTA​TTG​AAA​C). The amplified frag-
ments were cloned between Nhe I and Bam HI cloning sites 
of miRNASelect™ pEP-mir Expression Vector (Cell Bio-
labs Inc.) and the plasmids were used to A549 transfection 
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using Lipofectamine 2000 transfection reagent (Thermo 
Fisher Scientific, USA) following the instructions of the 
supplier. The miRNASelect™ pEP-mir Null Control Vector 
was used as plasmid control in the assays. Cellular clones 
were selected using 1 µg/ml of puromycin.

Cellular transfections for small interfering RNA 
(siRNA)

For small interfering RNA (siRNA) analyses, 5 × 104 A549 
cells were plated on a 24-well plate incubated overnight 
under regular growth conditions. Next, 20  nM ITG-β8 
siRNA or its Non-targeting Pool (On-Target Plus siRNA—
Smart Pools—Dharmacon/GE Health Care, USA) were 
transfected into cells using Lipofectamine 2000 transfec-
tion reagent (Thermo Fisher Scientific, USA) as previ-
ously described. At 48 h, cells were collected for further 
investigation.

RNA isolation and quantitative PCR

Total RNA from ang-(1-7)-treated and untreated A549 cul-
tures or from A549-pEP-miR clones were isolated according 
to Da Silva et al. [30]. For that 1.0 × 106 cells were col-
lected and the RNA was extracted using TRIZOL® Rea-
gent (Thermo Fisher Scientific, USA). Two hundred nano-
grams from each RNA sample were reverse-transcribed 
(RT) into first-strand cDNA using High-Capacity cDNA 
Reverse Transcription (Thermo Fisher Scientific, USA) 
following the suppliers’ instructions. Next, the expression 
levels of the investigated genes was measured by real-time 
quantitative PCR with the SYBR® Green PCR Master Mix 
(Applied Biosystems®—ThermoFisher Scientific, USA) on 
an Applied Biosystems® 7500 Real-Time PCR (Applied 
Biosystems®, Thermo Fisher Scientific, USA). The reactions 
were run in triplicate, and mRNA expression was normal-
ized to the reference gene β-actin. The specific primers set 
used at 0.75 µM in these analyses were as follows: β-actin, 
5′-CGG​GAC​CTG​ACT​GAC​TAC​ and 5′-CTC​CTT​AAT​GTC​
ACG​CAC​; AKT, 5′-GCT​TAC​TGA​GAA​CCG​TGT​CC and 
5′-GGT​CGT​GGG​TCT​GGA​ATG​; COX-2, 5′-CAG​CAC​
TTC​ACG​CAT​CAG​ and 5′-CTA​GCC​AGA​GTT​TCA​CCG​
; FOXO1, 5′-GCC​TGA​CCC​AAG​TGA​AGA​C and 5′-GCC​
CAT​TCT​GCC​ATA​GCC​; CLDN1, 5′-CTC​CCT​GAC​AAT​
GTA​TCC​ and 5′-ATG​AAG​AGA​GCA​GAA​GCC​ ; EPCAM, 
5′-GGT​TGT​GGT​GAT​AGC​AGT​TG and 5′-GCC​TTC​TCA​
TAC​TTT​GCC​; Integrin –β8, 5′-AGA​TTG​CTG​CTG​GTG​
ATG​ and 5′-ACA​GTT​TCC​GTC​ATT​GGG​. The results were 
quantified as Ct values and presented as relative gene expres-
sion (the ratio of target/control). The 2−ΔΔCt method was 
used to calculate the relative quantification.

For miRNA analyses, the 3′-UTR sequence of FOXO1 
and COX-2 was extensively analyzed using online 

bioinformatics tools such as miRBase [31], miRDB [32], 
and Blast search to identify common miRNAs that could 
control the post-transcriptional level of those molecules. For 
the assay, total RNA purified from cell cultures were used 
in reverse transcription reactions using Mini Script Reverse 
Transcription reagent (Qiagen®, Germany). The expres-
sion levels of hsa-miR-513a-3p and hsa-miR-4465 were 
performed using real-time quantitative PCR with miScript 
SYBR Green PCR Kit (Qiagen®, Germany) according to the 
manufacturer’s instructions. The same Applied Biosystems® 
7500 Real-Time PCR (Applied Biosystems®, Thermo Fisher 
Scientific, USA) equipment was used to apply the 2−ΔΔCt 
analyses to relative quantification method; U6 was adopted 
as an internal control. The results were quantified as Ct val-
ues and used to calculate relative gene expression.

Wound healing, agarose spot invasion, and Boyden 
chamber assays

Wound healing assays were performed according to the pro-
tocol described in Silva et al. [8]. For that, A549 group of 
cells and their clones were grown under specific condition in 
6-well plates until confluence. Next, a straight-lined wound 
was made with a sterile 200-µl pipet tip, which created a 
cell-free wound area by scrapping off the cells. Cells were 
washed with PBS and fresh culture medium was replaced. 
Immediately, after the wound (0-h time-point) and after 
24 h, cells were photographed under phase-contrast micros-
copy to measure the migration of the cells into the wound. 
The assays were performed in triplicate, and mean values of 
consecutive tracings were used to compute the percentage of 
closure from the original wound.

Agarose spot assay for cellular invasion was performed 
as described in Wiggins and Rappoport [33]. Agarose-spots 
were prepared with DMEN-F12 and 0.5% agarose low melt-
ing containing or not 10% FBS (complete culture media) 
were plated into 6-well plates. Next, 3 × 104 cells were plated 
in the presence of complete culture media, containing or 
not the ang-(1-7). Cells that invaded the agarose spot, after 
24 and 48 h of incubation, were photographed and counted 
using a phase-contrast microscopy (BX51 OLYMPUS). Ten 
randomly selected fields were analyzed.

Boyden chamber or transwell chamber invasion assays 
were performed in 24-well Corning BioCoat™ Matrigel® 
Invasion Chamber plates containing a 8.0-micron-pore size 
polyester (PET) membrane. For each assay, 2.0 × 104 cells 
were suspended in a medium containing 0.4% of serum and 
seeded into the upper wells. The lower chamber were filled 
with 850 µl of complete medium and further incubated under 
regular culture condition (5% CO2 atmosphere at 37 °C) for 
24 h. Next, cells that migrated to the lower chamber were 
fixed and stained with 100% methanol and 1% toluidine 
blue, respectively, and next analyzed in a phase-contrast 
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microscopy. Ten randomly selected fields were analyzed per 
assay and three sets of experiments were performed.

Western blot analyses

Fifty micrograms of whole cell extracts of A549 and A549-
pEP-miR clones, prepared as described previously [30], 
were separated by electrophoresis in 10% polyacrylamide 
gels and then electrotransferred to polyvinylidene fluoride 
(PVDF) membranes. The membranes were immunoblot-
ted overnight at 4 °C with the murine anti-COX-2 (Cay-
man Chemical, USA), anti-Integrin-β8 (Santa Cruz Biotech, 
USA), anti-EPCAM, and anti-β actin (Cell Signaling. Inc, 
USA) polyclonal antibodies, followed by 2-h incubation with 
a horseradish peroxidase-conjugated goat anti-rabbit anti-
body (Santa Cruz Biotech). Immunoreactive bands were vis-
ualized with a chemiluminescent detection kit (ECL™, GE 
Healthcare, USA) and exposed to hyperfilm (GE Healthcare, 
USA). The bands were quantified with the Quantit One® 
Software (Biorad).

Dual‑luciferase reporter assays

Corresponding cDNA sequence of the 3′-UTR of the 
Integrin-β8 mRNA (5031–5067 bp, 5′-CCU​ACA​GAU​AAA​
UGU​GAA​AUUU) or was cloned into the pGL3-Control 
vector (Promega) upstream of the firefly luciferase coding 
sequence via synthetic oligonucleotides ligation. In this 
assay, A549 cells were plated at a density of 6 × 104 cells 
per well in a 24-well plate and transiently transfected with 
100 ng of the pGL3-Control vector or 100 ng of pGL3-
Integrin-β8-3′-UTR or 100 ng of the pGL3-Integrin-β8mut-
3′-UTR. In addition, 30 nM of mirVana™miRNA hsa-miR-
513-a-3p mimic or inhibitor (ThermoFisher Scientific, 
USA) was also used in the transfection reactions processed 
with the Lipofectamine® 2000 transfection reagent (Ther-
moFisher Scientific, USA). The Renilla luciferase reporter 
plasmid (pRL-TK) was used as the internal control for the 
transfection efficiency, and at 24 h post transfection, the 
activities of luciferase were determined using the Promega 
dual-luciferase reporter assay (Promega, USA) according to 
the manufacturer’s instructions. The Renilla luciferase activ-
ity was normalized in each sample to account for differences 
in transfection efficiency. The luciferase activities were 
measured using a TD20/20 luminometer (Turner Designs).

Graphs and statistical analyses

Values from at least three independent assays were used 
for analysis, and graphs were generated using Graph 

Pad Prism® 5. Data are presented as the mean ± stand-
ard deviation and the differences between the control and 
treated groups as well as the A549-pEP-miR Null and the 
A549-pEP-miR cell clones were measured using one-way 
analysis of variance (ANOVA), followed by Dunnett’s 
test. Significance was set at *p < 0.05, **p < 0.01, and 
***p < 0.001.

Results

Ang (1‑7) modulates the pro‑inflammatory 
environment: the fine‑tuning that controls A549 cell 
migration

To explore the effect of the ang-(1-7) in lung tumor cells, 
A549 cells were used as our model of study. Figure 1a 
presents a schematic illustration of the pI3K/AKT pathway 
and its connectors.

Then, to explore elements that control cellular migra-
tion and inflammation in a close connection mechanism, 
we investigated mRNA expression levels of AKT, COX-2, 
and FOXO1 in our cellular model. The results presented in 
Fig. 1b demonstrated significant increase in FOXO1 level 
(~ 44%), reinforcing the observations that ang-(1-7) modu-
lates FOXO1 activity [19, 34]. This protein is character-
ized as a transcription factor that belongs to the forkhead 
family and the molecule controls different cellular mecha-
nisms such as cell cycle, proliferation, differentiation, and 
even cellular metastasis [25].

To determine post-transcriptional regulatory elements 
that modulate FOXO1 in the pro-inflammatory environ-
ment, bioinformatics analyses identified common puta-
tive binding sites in the 3′-UTR sequences of COX-2 and 
FOXO1 mRNAs for the miRNA 513a-3p and -4465. The 
analyses are illustrated by a Venn’s diagram (Fig. 1c). 
Next, the expression levels of the miRNA 513a-3p and 
-4465 were determined in A549 heptapeptide-treated and 
-untreated cells. The results point a significative effect of 
the ang-(1-7) in the expression levels of the investigated 
miRNAs (~ 100% increase in the miRNA expression level). 
To address how those miRNAs modulates cellular migra-
tion under tumoral pro-inflammatory cellular environment, 
permanent clones overexpressing the miRs-513a-3p or 
-4465 were established and the miRNA expression level 
found in those cells was similar to what was found in A549 
heptapeptide-treated cells (Fig. 1d). The clone contain-
ing the pEP-miR Null Control was used as experimental 
control of the assays. Moreover, COX-2 protein level and 
activity and PGE2 were measured for all the investigated 
groups. In heptapeptide and in pEP-miR-513a-3p clone, 
the investigated elements reduced similarly (Fig. 1e).
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Modulatory effect of the angiotensin‑(1‑7) 
and the miRs‑513a‑3p and ‑4465 in A549 cell 
migration

To address the physiologic effect of either the heptapeptide 
or the investigated miRNAs in A549 migration, wound heal-
ing assays were performed. Figure 2a presents the results. 
In control cultures, 88.6% recovery of injured area was 
observed after 24 h of culture scratch. Similar recovery per-
centage was observed in A549-pEP-miR Null Control and 
A549-pEP-miR-4465 clones. In the heptapeptide-treated 
cultures, 58.6% recovery was observed and in the A549-
pEP-miR-513a-3p cells 43.7% recovery of the wound was 

verified. Next, to evaluate cell motility, the agarose spot 
assay was performed (Fig. 2b). Time lapses demonstrated 
the migration of the cells into the agarose spots in different 
A549 cellular groups. Pronounced increased rates of cell 
migration were observed for the A549-pEP-miR-4465; on 
the other hand, the A549-pEP-miR-513a-3p presented lower 
migration rate into the agarose spot. The same results were 
observed in transwell chamber invasion assays performed 
for all the investigated groups of cells (Fig. 2c).

Considering the results, extensive search in miRBase 
[31] and miRDB [32] algorithms were conducted to iden-
tify potential common target molecules for the investigated 
miRNAs that could possibly control cellular migration rate. 

Fig. 1   Angiotensin-(1-7) modulates the pro-inflammatory environ-
ment in tumor cells through the activation of AKT/pKB signaling 
pathway. a Schematic representation of molecular connections medi-
ated by the AKT/pKB cellular signaling. In the figure, it is also rep-
resented the modulatory effect of FOXO1 on COX-2 activity through 
the AKT activity. b AKT, COX-2, and FOXO1 mRNA expression 
levels in A549 treated or untreated with the heptapeptide. c Venn dia-
gram illustrating the potential microRNAs that co-regulate COX-2 

and FOXO1 mRNAs. d Expression patterns of miRNA-513a-3p and 
miRNA-4465 that putatively bind to the 3′-UTR sequence of the 
COX-2 and FOXO1 mRNAs in ang-(1-7)-treated and -untreated cells. 
e COX-2 relative protein level, COX-2 activity, and PEG2 measure-
ment in all investigated cellular groups. Values are mean ± SE from at 
least three independent experiments; the significance level was set at 
***p < 0.05
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Three molecules were selected to be analyzed: claudin 
1(CLDN1) is an integral membrane protein and component 
of tight junctions that is strict correlated to the cell–cell 
adhesion; epithelial cell adhesion molecule (EPCAM) is 
a calcium-independent cell adhesion molecule; and, inte-
grin subunit beta 8 (ITG-β8), which plays relevant function 
in cell–cell and cell–extracellular matrix interaction. The 
mRNA expression level presented in Fig. 3a demonstrated 
no major changes in CLDN1 expression between the cellular 
groups. On the other hand, the analyses pointed increased 
expression level of EPCAM mRNA in A549-pEP-miR-4465 
(2.7 x higher than the control group) and reduced level of 
ITG-β8 mRNA in the A549-pEP-miR-513a-3p clone, nearly 
comparable to the level found in A549 heptapeptide-treated 
cells. Based on the qPCR results, Western blot quantifica-
tion was performed for the EPCAM and ITG-β8 proteins 

(Fig. 3b), which presented similar expression patterns to the 
mRNA level.

To determine if ITG-β8 3′UTR is a true target of miR-
513a-3p, dual-luciferase assays were performed (Fig. 4a). 
The ITG-β8-3′-UTR construct decreased the luciferase 
production by ~ 16% in transfected cells compared to the 
cells transfected with the pGL3-Control vector. Moreo-
ver, the transfection of A549 with miRNA 513a-3p mim-
ics decreased the luciferase production by 48%, suggesting 
that this miRNA blocks the luciferase production mediated 
by the RNA interference (RNAi) mechanism. On the other 
hand, the miRNA 513a-3p inhibitor increased the luciferase 
production by 16.4% compared to the control group, sug-
gesting that this molecule blocks the natural miRNA binding 
to the 3′-UTR of ITG-β8, facilitating extra rounds of ITG-β8 
translation.

Fig. 2   Effect of ang-(1-7) and the overexpression of miR-513a-3p 
and miR-4465 in A549 migration rate. a Cell migration was analyzed 
immediately after the scratch (0 h) and at 24-h time-point. The black 
lines delineated the margin of the gaps. b Bovine serum directed 
chemotaxis in different groups of A549 lung tumor cells in agarose 

spot assay. Cellular migration was verified and quantified and the 
results were plotted in a graph. c Transwell chamber invasion assays 
of A549 and A549 clones. Representative results are presented. Val-
ues are mean ± SE from at least three independent experiments; the 
significance level was set at ***p < 0.05
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Next, functional validation of the ITG-β8 was performed. 
Figure 4b demonstrates that 20 nM ITG-β8 siRNA reduced 
the ITG-β8 protein level in 88% in A549, when compared 
to the protein level found in activated and non-transfected 
cells. In addition, the effect of siITG-β8 was evaluated in 
wound healing (Fig. 4c), agarose spot assays (Fig. 4d), and 
through transwell chamber invasion assays (Fig. 4d), which 
demonstrated reduced migration rates when compared to the 
unmodified A549 cells (Fig. 2). Otherwise, cells transfected 
with the Non-targeting Pool of ITG-β8 siRNA (Scramble 
siRNA) did not change the protein level of ITG-β8 nor the 
migration rates in wound healing or agarose spot assay (data 
not shown).

Discussion

In this study, the A549 lung tumor cell line was used to 
address elements modulated by the heptapeptide ang-(1-7) 
that could contribute to the control of cellular migration 
under an anti-inflammatory environment. It is known that 
the angiotensin-(1-7) is a peptide hormone that modulates 
pI3K/AKT activity in the controlling of inflammation and 
cellular migration [24, 25]; however, the identification of 
central elements that coordinates those cellular processes 
is still unknown.

In the literature, despite the fact that no significative 
direct interaction between FOXO1 and the COX-2 protein 
was demonstrated, it was described that AKT plays a major 

function as cellular connector between those proteins [19, 
35]. Then, the mRNA levels of those molecules were veri-
fied and despite no COX-2 mRNA levels change were veri-
fied, the modulatory activity of the peptide decreased COX-2 
protein level and activity, as well as the PGE2 production 
(Fig. 1). This observation reinforced previous results found 
in other studies [6, 36]. The same observation for COX-2 
metabolites was verified in the clone miR-513a-3p. In 
addition, the decreased COX-2 protein level in our assays 
is probably connected to post-transcriptional controlling 
mechanisms, which blocks translational processes through 
the RNAi [37]. In system biology, this modulatory activ-
ity of the miR-513a-3p helps control the pro-inflammatory 
environment in tumoral cells.

Moreover, the results observed in wound healing, aga-
rose spot, and transwell chamber invasion assays for the 
pEP-miR-513a-3p cell clone reinforced the relevant cellu-
lar physiological function of this miRNA in controlling the 
migration rate of A549 cells based on what was observed 
in ang-(1-7)-treated cells (Fig. 2). Opposite results were 
observed for the activity of miR-4465 in all the investigated 
aspects.

To better explore molecular connections that support 
the modulatory function of the miR-513a-3p in A549 
migration, bioinformatics approaches were addressed to 
identify potential elements that could be modulated by 
either the miR-513a-3p or miR-4465. Three different pro-
teins that influence cellular migration were pointed. Based 
on the mRNA expression patterns observed in the assays, 

Fig. 3   Transcriptional and post-transcriptional levels of poten-
tial target molecules of the miR-513a-3p and miR-4465. a CLDN1, 
EPCAM, and ITG-β8 mRNA levels in different groups of A549. b 

Western blot analyses of EPCAM and ITG-β8 proteins in A549 cells. 
Values are mean ± SE from at least three independent experiments; 
the significance level was set at ***p < 0.05
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the proteins EPCAM and ITG-β8 were chosen to be inves-
tigated. EPCAM, whose expression is frequently increased 
in tumors [38, 39], presented high expression level in 
A549-miR-4465 clones, which supports their increased 
rates of cellular migration [40–42] (Fig. 3). Moreover, the 
ITG-β8 demonstrated a downregulated expression pattern 
in ang-(1-7)-treated cells as well in miR-513a-3p-clones. 
The ITG-β8 was demonstrated to be connected to cellular 
proliferation and migration [43, 44] and in our assays we 
validated the effect of this protein in A549 migration rates 
by knocking down the ITG-β8, which reduced the migra-
tions rates as observed in the wound healing, agarose spot, 
and transwell chamber invasion assays (Fig. 4).

As a conclusion, in this study, we demonstrated a novel 
modulatory effect of the heptapeptide ang-(1-7) in control-
ling cellular migration processes through the functional 
activity of the miR-513a-3p. The miR-513a-3p binding 
activity to the ITGβ-8 mRNA activates RNAi, reducing the 
protein level, which plays relevant function in A549 cellu-
lar migration. Previous studies pointed a close connection 
between pro-inflammatory environment and the expression 
of ITGβ-8 [45, 46], which act as a positive feedback loop in 
cellular metastasis. In our assays, the peptide and the miR-
513a-3p also demonstrated negative modulatory effect in 
cellular migration and in the pro-inflammatory environment, 
which is relevant to the control of the cancer metastasis. In 

Fig. 4   Functional mechanisms of ITG-β8 as a direct target of miR-
513a-3p. a Schematic sequence cloned in pGL3 plasmids, and the 
relative luciferase activity in cells co-transfected with them (pGL3 
plasmids Control, ITG-β8-3′-UTR or ITG-β8mut 3′-UTR) and 
the miRNA-513a-3p or the miRNA-513a-3p inhibitor; the results 
were plotted in representative graphs. b The effect of ITG-β8 gene 
silencing was evaluated in groups of A549 by Western blot analy-
ses. β-actin was used as the loading control. c Cell migration was 

analyzed in siITG-β8-A549 cells immediately after the scratch (0 h) 
and at 24-h time-point. The black lines delineated the margin of the 
gaps. d Serum bovine-directed chemotaxis in siITG-β8-A549 cells 
in agarose spot assay. e Transwell chamber invasion assays of siITG-
β8-A549 cells. Cellular migration, chemotaxis, and invasion assays 
were verified and quantified and the results were plotted in graphs. 
Values are mean ± SE from at least three independent experiments; 
the significance level was set at ***p < 0.05
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addition, miRDB and Targetscan [47] algorithms point rel-
evant molecules as potential targets for the interaction of the 
miR-513a-3p that also connects to the controlling of the pro-
inflammatory environment (prostaglandin receptors F, EP2, 
EP3, EP4, etc, and microsomal glutathione S-transferase, 
MGST1), reinforcing the systemic relevance of the inves-
tigated miRNA in this cellular metabolic processes. Other 
elements connected to the cellular architecture and migra-
tion, such as activated leukocyte cell adhesion molecule 
(ALCAM), protocadherin-related 15 (PCDH15), PCDH8, 
PCDH 17, etc., were also pointed as potential target mol-
ecules of the mir-513a-3p. Moreover, the miR-513a-3p helps 
sensitize human lung adenocarcinoma cells to chemotherapy 
by targeting Glutathione S-transferase P1 (GSTP1) [48], a 
molecule that contributes to cisplatin resistance, reinforc-
ing the relevance of the miR-513a-3p in controlling cancer 
metastases.

Future in vivo investigations will help elucidate the fine-
tuning of the cancer metastasis controlling and the modula-
tory effect of the miR-513a-3p in system biology. Besides, 
the development of innovative therapeutic approaches that 
increase the miRNA 513a-3p level in injured tissue may 
contribute to the reduction of metastatic rates, which will 
support more effective clinical treatment of the patients 
with the widely used chemotherapeutic agents, increasing 
survival rates.
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