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Abstract Deep learning-based approaches have been
paramount in recent years, mainly due to their outstanding
results in several application domains, ranging from face
and object recognition to handwritten digit identification.
Convolutional neural networks (CNNs) have attracted a con-
siderable attention since theymodel the intrinsic and complex
brain workingmechanisms. However, onemain shortcoming
of suchmodels concerns their overfitting problem,which pre-
vents the network from predicting unseen data effectively.
In this paper, we address this problem by means of prop-
erly selecting a regularization parameter known as dropout in
the context of CNNs using meta-heuristic-driven techniques.
As far as we know, this is the first attempt to tackle this
issue using this methodology. Additionally, we also take into
account a default dropout parameter and a dropout-less CNN
for comparison purposes. The results revealed that optimiz-
ing dropout-based CNNs is worthwhile, mainly due to the
easiness in finding suitable dropout probability values, with-
out needing to set new parameters empirically.
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1 Introduction

One of the main computer vision problems concerns how to
produce a good representation of the realworld, thus allowing
machine learning systems to understand these descriptions
for further detecting and classifying objects (Bishop 1995).
However, the problem still persists when faced with sit-
uations where there exist variations of luminosity in the
environment, as well as different perspectives in the image
acquisition process and problems related to rotation, transla-
tion and scale. Therefore, the great question to be answered
by researchers in this area concerns how human beings and
animals basically learn by looking around (LeCun et al.
2010).

Standard machine learning approaches devise to settle
the aforementioned situation by extracting feature vectors,
feeding a classifier based on a training set, and thereafter
classifying the remaining images. Thus, even though the fea-
ture learning problem has received a substantial attention in
the last decades, a spotlight has been lit concerning the study
of deep learning techniques (LeCun et al. 1998; Arel et al.
2010; Socher et al. 2011; Farabet et al. 2013; Kavukcuoglu
et al. 2010). As these methods are based on the hierarchi-
cal feature learning, we can establish an analogy with the
human visual processing, i.e., with the information being
compressed throughout the vision (eyes) and learning (visual
cortex) procedure.

Notwithstanding that there exist several deep learning
techniques in the literature, one of the most broadly used
approaches concerns the convolutional neural networks
(CNNs) (LeCun et al. 1998). These neural networks are
formed by different stages and architectures, which are
responsible for learning different information at each level
(e.g., images and signals). The stages comprehend, basically,
filtering operations known as convolution using different
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masks (kernels), followed by nonlinear operations known as
pooling for posterior image subsampling. Each set of these
three operations is then executed once again in a new layer,
but now with the subsampled image generated as an output
of the previous layer, being used as an input to this new layer.
Each of these layers creates a new feature vector, which is
concatenated at the last layer to compose a high-dimensional
feature vector to represent the input image.

Convolutional neural networks have been widely applied
in several applications, such as handwritten digit (Simard
et al. 2003) andobject recognition (LeCunet al. 2004), aswell
as natural language processing (Collobert andWeston 2008).
One can observe thatmost applications are image processing-
and computational vision-based, since some CNNs are natu-
rally invariant to translation, rotation, and scaling. However,
training deep neural networks with a huge number of param-
eters can lead to some difficult issues such as overfitting and
parameter tuning. The main idea behind the first issue is that
during training, units can adapt to the weights drawn from
the limited training data, being not that effective when col-
lated with the testing data. Basically, in other words, when
we deal with complex information, the units will accommo-
date themselves during the training step, and “memorize” the
data instead of learning, thus resulting in a model that poorly
predicts any new or unseen data.

Several attempts have been made to solve the overfitting
problem, such as stopping the training as soon as its perfor-
mance on the validation set starts to drop, or even introducing
some types of regularization methods, such as soft-weight
sharing (Nowlan and Hinton 1992). On the other hand, a bet-
ter alternative to address a regularization method would be
averaging the predictions of all possible parameter config-
urations, weighting all the possibilities and checking which
one would perform better. Nevertheless, this would require a
huge computational effort, thus being only practical for small
or simple models (Xiong et al. 2011).

Recently, Srivastava et al. (2014) proposed a technique to
overcome these issues, acknowledged as dropout. The pivotal
concept about the term “dropout” refers to dropping out units
from neural network layers, in other words, by provisionally
removing them out of the network, alongwith all their outgo-
ing and incoming connections. Similarly, Wan et al. (2013)
proposed the DropConnect, where the authors dropped out
connections instead of neurons, which means one can retain
a neuron “partially,” since original dropout removes all con-
nections at once. Finally, Iosifidis et al. (2015) presented
DropELM, in which dropout and DropConnect are combined
in the context of Extreme Learning Machines.

Nevertheless, one may find just a few recent works that
face the problem of overfitting in CNNs using dropout reg-
ularization. For instance, Wu and Gu (2015) introduced a
max-pooling dropout method, while Dahl et al. (2013) com-
bined the use of rectified linear unit (ReLU) with dropout.

Although all these techniques have obtained state-of-the-art
results in a number of applications, their main drawback con-
cerns fine-tuning the probability of dropping out a neuron,
which is usually accomplished by hand.

Considering the drawback of fine-tuning parameters,
some recent works attempted to tackle this issue by means
of meta-heuristic techniques. For example, Papa et al.
(2015a, b, 2016) employed several meta-heuristics to cali-
brate Bernoulli Restricted Boltzmann Machines, Discrim-
inative Restricted Boltzmann Machines and Deep Belief
Networks parameters, respectively. Moreover, Rosa et al.
have used meta-heuristics for optimizing CNNs (2015) and
Deep Belief Networks parameters (2016).

In this paper, the problem of selecting a proper dropout
probability in CNNs is modeled as a meta-heuristic-driven
optimization task, in which agents encode the values of the
probabilities in a search problem guided by the loss function
over the validation set. As far as we are concerned, this is the
first work that attempted to address the problem of properly
selecting the dropout ratio in such a way. In order to validate
the proposed approach, we employed Particle Swarm Opti-
mization (PSO) (Kennedy and Eberhart 2001), since it is a
well-known and consistent meta-heuristic optimization tech-
nique, as well as Bat Algorithm (BA) (Yang 2010b), Cuckoo
Search (CS) (Yang and Deb 2010) and Firefly Algorithm
(FA) (Yang 2010a), which are bio-inspired techniques that
turned out to be a recent hotbed due to their good effective-
ness in several applications.

Therefore, the main contributions of this paper are
twofold: (i) to introducemeta-heuristic techniques in the con-
text of dropout regularization in CNNs and (ii) to fill the
lack of research regarding dropping out units in CNNs. The
remainder of this paper is organized as follows. Sections 2
and 3 present some theoretical background with respect to
CNNs and dropout techniques, respectively. Section 4 dis-
cusses the methodology employed in this work, and Sect. 5
presents the experiments. Finally, Sect. 6 states conclusions
and future works.

2 Convolutional neural networks

Convolutional neural networks can be seen as a represen-
tation of a bigger class of models based on the Hubel’s and
Wiesel’s architecture,whichwas presented in a seminal study
in 1962 concerning the primary cortex of cats. This research
has identified, basically, two kinds of cells: (i) simple cells,
which possess an analogous duty to the filter bank step, and
(ii) the complex cells, which perform a similar job to theCNN
sampling step.

The first model that simulated a computer-based convolu-
tional neural network was the well-known “Neocognitron”
(Fukushima andMiyake 1982), which implemented an unsu-
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Fig. 1 A typical convolutional neural network architecture

pervised training algorithm during the filter bank step,
followedby a supervised training algorithmapplied in the last
layer. Later on, LeCun et al. (1989) simplified this architec-
ture by proposing the use of the backpropagation algorithm
to train the network in a supervised way. Thus, several appli-
cations that used CNN emerged in the subsequent decades.

Basically, a CNN can be understood as an N -layered data
processing sequence. Thereby, given an input image,1 a CNN
essentially extracts a high-level representation of it, called
multispectral image, whose pixel attributes are concatenated
in a feature vector for later application of pattern recognition
techniques. Figure 1 introduces the naïive architecture of a
convolutional neural network.

1 The same procedure can be extended to signal processing-based
applications.

As aforementioned, each CNN layer is often composed
of three operations, being the first one a convolution with
a filter bank, followed by a sampling phase and then by a
normalization step. As one can observe in Fig. 1, there is still
a possibility of a normalization operation in the beginning of
the whole process. The next sections describe in more details
each of these steps.

2.1 Filter bank

Let Î = (DI , I) be a multispectral image such that DI ∈ n×
n is the image domain, and I = {I1(p), I2(p), . . . , Im(p)}
corresponds to a pixel p = (xp, yp) ∈ DI , and m stands
for the number of bands. When Î is a grayscale image, for
instance, we have that m = 1 and Î = (DI , I ).

Let φ = (A,W ) be a filter with weights W (q) associated
with every pixel q ∈ A(p), where A(p) denotes a mask of
size LA × LA, centered at p, and q ∈ A(p) if, and only
if, max{∣∣xq − xp

∣
∣ ,

∣
∣yq − yp

∣
∣} ≤ (LA − 1)/2. In case of

multispectral filters, their weights can be depicted as vectors
Wi (q) = {wi,1(q), wi,2(q), . . . , wi,m(q)} for each filter i ,
and a multispectral filter bank can be then defined as φ =
{φ1, φ2, . . . , φn}, where φi = (A, Wi ), i = {1, 2, . . . , n}.

Thus, the convolution between an input image Î and afilter
φi generates the band i of the filtered image Ĵ = (DJ , J),
where DJ ∈ DI and J = {J1(p), J2(p), . . . , Jn(p)}, ∀p ∈
DJ :

Ji (p) =
∑

∀q∈A(p)

I(q) ⊗ Wi (q), (1)

where ⊗ denotes the convolution operator. The weights of
φi are usually generated from an uniform distribution, i.e.,
U (0, 1), and afterward normalized with mean zero and uni-
tary norm.

2.2 Sampling

This operation is extremely important for a CNN, which
provides translational invariance to the extracted features.
Let B(p) be the sampling area of size LB × LB centered
at p. Additionally, let DK = DJ/s be a regular sampling
operation every s pixels. Therefore, the resulting sampling
operation in the image K̂ = (DK , K) is defined as follows:

Ki (p) = α

√
∑

∀q∈B(p)

Ji (q)α, (2)

where p ∈ DK denotes every pixel of the new image,
i = {1, 2, . . . , n2}, and α stands for the stride parameter,
controlling the downsampling factor of the operation.
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2.3 Normalization

The last operation of a CNN is its normalization, which is a
widely employed mechanism in order to enhance its perfor-
mance (Cox and Pinto 2011). This operation is based on the
apparatus found on cortical neurons (Geisler and Albrecht
1992), being also defined under a squared-area C(p) of size
LC × LC centered at pixel p, such as:

Oi (p) = Ki (p)
∑n

j=1
∑

∀q∈C(p) K j (q)Ki (q)
. (3)

Thus, the above operation is accomplished for each pixel
p ∈ DO ⊂ Dk of the resulting image Ô = (DO , O).

3 Dropout regularization

Considering the aforementioned CNN model, a dropout-
based CNN can be formulated as a new CNN layer. In this
new formulation, r stands for the activation or dropout of the
M neurons in a specific layer, where each variable r j con-
tains the value 1 (one) with probability 1− p, independent of
other variables ri , i �= j . If r j equals to 1 (one), the unit h j is
withheld, otherwise it is dropped from the network together
with its connections.

Notice that probability p is independent of other units and
r is sampled directly fromaBernoulli distribution (Srivastava
et al. 2014), being resampled for every mini-batch during the
learning process. Equation (4) describes this distribution:

r j ∼ Bernoulli(p),∀ j = {1, 2, . . . , M}. (4)

Therefore, during the training phase, let y(L) denote the
vector of outputs at a layer L . The new vector of outputs ỹ(L)

considering dropout is formulated by Eq. (5):

ỹ(L) = r y(L). (5)

Finally, in the testing step, the weight matrix W needs to
be scaled with ratio p in order to average all the 2M possible
dropped-out networks. This is the greatest contribution of
the dropout regularization, as it only needs to test a single
network. Equation (6) is responsible to illustrate this process.

W (L)
test = pW(L), (6)

where W(L) stands for the weight matrix at layer L .

4 Methodology

In this section, we present the methodology used to properly
select the dropout ratio using convolutional neural networks,
as well as the employed datasets.

4.1 Modeling dropout-based CNN parameter
optimization

We propose to model the problem of selecting suitable
dropout parameters considering CNN in the task of image
classification. The learning step of a CNN has four parame-
ters: the learning rate η, penalty parameter (momentum) α,
weight decay λ, and the dropout ratio p. As we are inter-
ested in fine-tuning the dropout parameter only, we fixed the
3-tuple (η, α, λ) and we played with p in order to minimize
the loss function of the classified images over a validation set.
After that, the selected parameter is thus applied to classify
the unseen images of the test set.

4.2 Datasets

In regard to the parameter optimization experiment, we
employed four datasets, as described below:

– MNISTdataset:2 it is composed of images of handwritten
digits. The original version contains a training set with
60,000 images from digits “0”–“9,” as well as a test set
with 10,000 images.

– Semeion handwritten digits dataset:3 set of 1593 images
from handwritten digits “0”–“9” written in two ways: the
first time in a normal way (accurately) and the second
time in a fast way (no accuracy). In the end, they were
stretched with resolution of 16×16 in a grayscale of 256
values, and then, each pixel was binarized.

– USPS dataset:4 numeric data obtained from the scan-
ning of handwritten digits from envelopes by the US
Postal Service. It is composed of 7291 training images
and a test set with 2007 images. All the original digits
were deslanted and size-normalized, resulting in 16×16
grayscale images.

– CIFAR-10 dataset:5 it is a subset image database from
the “80 million tiny images” dataset, collected by Alex
Krizhevsky,VinodNair, andGeoffreyHinton.Composed
of 60,000 32× 32 color images in 10 classes, with 6000
images per class. It is also divided into five training
batches and one test batch, each one containing 10,000

2 http://yann.lecun.com/exdb/mnist/.
3 https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit.
4 http://statweb.stanford.edu/tibs/ElemStatLearn/datasets/zip.info.txt.
5 http://www.cs.toronto.edu/kriz/cifar.html.
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Fig. 2 Some training examples from: a MNIST, b Semeion, c USPS
and d CIFAR-10 datasets

images. Therefore, we have 50,000 images for training
purposes and 10,000 for testing duties.

Figure 2 displays some training examples from the above
datasets.

4.3 CNN architectures

In regard to the source code, we used our own optimiza-
tion library LibOPT6 and the well-known Caffe library7 (Jia
et al. 2014), which is developed under General-Purpose com-
puting on Graphics Processor Units (GPGPU) platform, thus
providingmore efficient implementations concerning CNNs.
Also, in order to integrate LibOPT with Caffe, we developed
a new library called LibOPT4Caffe.8 Additionally, we con-
sidered two different CNN architectures to provide a deeper
experimental analysis: one for CIFAR-10 dataset and another
forMNIST, Semeion andUSPS datasets. These architectures
are the original ones proposed by Caffe examples, just with
an extra dropout layer. Also, regarding Semeion and USPS
datasets, we have used a kernel size of 3 instead of 5 for con-
volution layers due to the lower resolution of these datasets.
Figure 3 illustrates the architectures used in this work. Note

6 https://github.com/jppbsi/LibOPT.
7 http://caffe.berkeleyvision.org.
8 https://github.com/gugarosa/LibOPT4Caffe.

Fig. 3 CNN architectures for: a MNIST, Semeion and USPS, and b
CIFAR-10 datasets. The picture was generated with the following tool:
http://yanglei.me/gen_proto/

that “conv” stands for the convolution layer, “pool” for pool-
ing, “relu” for rectified linear unit, “drop” for dropout and
“ip” for inner product, which stands for a multiplication in
the vector space.
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4.4 Experimental setup

In this work, we compared four distinct meta-heuristic opti-
mization techniques against the default dropout ratio given by
Caffe, and the standard Caffe architecture without dropout.
The main idea to compare meta-heuristics against the default
dropout ratio is to check whether it is better to perform or
not an optimization prior to the experiments. In order to pro-
vide a statistical analysis by means of Wilcoxon signed-rank
test (Wilcoxon 1945), we conducted a cross-validation with
20 runs.Asweworkingwith a one-dimensional search space,
there is no need to employ a vastly number of agents nor iter-
ations. Thus, we employed 7 agents over 10 iterations for
convergence considering all techniques. Table 1 presents the
native parameter configuration for each optimization tech-
nique. Notice these values have been empirically set.

All datasets were split into training, validation, and testing
sets. Table 2 describes the amount of images, as well as the
number of the batch size (parenthesis) employed for each set.

Finally, we have set each CNN parameter according to
Table 3. Note that all these parameters are the default ones
provided by Caffe library. The only exception holds for
Semeion dataset due to its small amount of images, being
trained in a slower pacewith a learning rate ten times smaller,
i.e., 0.001.

Table 1 Meta-heuristic parameter configuration

Technique Parameters

BA fmin = 0, fmax = 2, A = 0.5, rand = 0.5

CS β = 1.5, p = 0.25, α = 0.8

FA γ = 1.0, β0 = 1.0, α = 0.2

PSO c1 = 1.7, c2 = 1.7, w = 0.7

Table 2 Dataset configuration

Dataset # Training set # Validation set # Testing set

CIFAR-10 20,000 (100) 30,000 (100) 10,000 (100)

MNIST 20,000 (64) 40,000 (100) 10,000 (100)

Semeion 200 (2) 400 (400) 993 (993)

USPS 2406 (32) 4885 (977) 2007 (2007)

Table 3 CNN parameter configuration

Dataset η α λ p # Iterations

CIFAR-10 0.001 0.9 0.004 [0, 1] 4000

MNIST 0.01 0.9 0.0005 [0, 1] 10,000

Semeion 0.001 0.9 0.0005 [0, 1] 10,000

USPS 0.01 0.9 0.0005 [0, 1] 10,000

5 Experimental results

This section aims at presenting the experimental results con-
cerning CNN dropout parameter fine-tuning. We compared
four optimization methods against the default dropout-less
and the default dropout ratio provided by Caffe. The most
accurate results, according to Wilcoxon signed-rank test, are
in bold.

Tables 4, 5, 6, and 7 present the average accuracies
and average hyper-parameters found over MNIST, Semeion,
USPS and CIFAR-10 datasets, respectively. As one can
observe, the accuracy rates between different datasets are
inconsistent, mainly due to their distinct natures, i.e., amount
of images and features, odd acquisition processes, among
others.

Table 4 Average accuracies and average hyper-parameters over the test
set considering MNIST dataset

Accuracy (%) Hyper-parameters

η α λ p

Caffe 99.07 0.01 0.9 0.0005 0

Dropout Caffe 99.18 0.01 0.9 0.0005 0.5

BA 99.13 0.01 0.9 0.0005 0.4988

CS 99.14 0.01 0.9 0.0005 0.4883

FA 99.16 0.01 0.9 0.0005 0.4630

PSO 99.17 0.01 0.9 0.0005 0.4559

Table 5 Average accuracies and average hyper-parameters over the test
set considering Semeion dataset

Accuracy (%) Hyper-parameters

η α λ p

Caffe 97.62 0.001 0.9 0.0005 0

Dropout Caffe 98.14 0.001 0.9 0.0005 0.5

BA 98.30 0.001 0.9 0.0005 0.7532

CS 98.19 0.001 0.9 0.0005 0.7546

FA 98.23 0.001 0.9 0.0005 0.7786

PSO 97.66 0.001 0.9 0.0005 0.8263

Table 6 Average accuracies and average hyper-parameters over the test
set considering USPS dataset

Accuracy (%) Hyper-parameters

η α λ p

Caffe 95.80 0.01 0.9 0.0005 0

Dropout Caffe 96.21 0.01 0.9 0.0005 0.5

BA 96.43 0.01 0.9 0.0005 0.7688

CS 96.28 0.01 0.9 0.0005 0.6870

FA 96.38 0.01 0.9 0.0005 0.7319

PSO 96.37 0.01 0.9 0.0005 0.8031
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Table 7 Average accuracies and average hyper-parameters over the test
set considering CIFAR-10 dataset

Accuracy (%) Hyper-parameters

η α λ p

Caffe 71.47 0.001 0.9 0.004 0

Dropout Caffe 72.08 0.001 0.9 0.004 0.5

BA 71.43 0.001 0.9 0.004 0.6430

CS 71.16 0.001 0.9 0.004 0.6270

FA 71.52 0.001 0.9 0.004 0.6629

PSO 71.55 0.001 0.9 0.004 0.6655

Regarding MNIST dataset, it is possible to state that a
dropout network was once again better than the standard one.
All the meta-heuristic techniques, except BA, were able to
find the best results among the standard dropout ratio pro-
vided by Caffe, even using a smaller probability for dropping
off the units. If we take a closer look at Fig. 4, it is possible
to observe that after 4000 epochs, the no-dropout network
stalls at around 0.01% of error, while the dropout networks
still introduce some kind of noise, preventing the network

Fig. 4 Classification error over MNIST testing set

from overfitting and improving its classification rate. Note
that “Best dropout” concerns the p value found in Table 8.

Considering Semeion dataset, once again dropout was
capable of obtaining the best results. Now, all meta-heuristic
techniques were also able to obtain the best results, together
with our baseline, i.e., dropout by Caffe being BA the one
which achieved the highest accuracy over the test set. How-
ever, the statistical evaluation pointed out all dropout-based
approaches can be considered similar to each other, although
the lowest results were obtained by the baseline provided
by Caffe. An interesting point concerns the values found for
the probability parameter p by themeta-heuristic techniques,
whichwere similar to each other, though being different from
the one obtained by the baseline.

Glancing Fig. 5, it is possible to observe the best dropout
network was the worst one at the beginning of the epochs.
After around5000 epochs, it starts improving its performance
and overcomes the other networks. This is mainly due to the
limited amount of images from Semeion dataset, which leads
to a significant overfitting and stalls the training after a certain
number of epochs.

Fig. 5 Classification error over Semeion testing set

Table 8 Average accuracies and
best hyper-parameters over the
test set considering all datasets

Accuracy (%) Best Hyper-parameters Technique

η α λ p

CIFAR-10 71.69 0.001 0.9 0.004 0.6177 BA

MNIST 99.12 0.01 0.9 0.0005 0.5100 PSO

Semeion 98.51 0.001 0.9 0.0005 0.8037 BA

USPS 96.43 0.01 0.9 0.0005 0.8284 FA
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BA, FA, and PSO were able to obtain the best results con-
sidering USPS dataset. One can observe that their accuracy
rates were slightly better than the standard dropout-less and
dropout ratio provided by Caffe. As the USPS dataset poses
a greater challenge than Semeion one, but still lacks a huge
amount of images for deep learning, we can observe in Fig. 6
the search for the optimum dropout ratio performed nicely
since the initial epochs. The best dropout network was able
to provide a lower classification error almost all the times.

As one can observe, only the default dropout ratio (p =
0.5) played a big role on CIFAR-10 dataset, while all the
meta-heuristic techniques failed in finding the best parame-
ter for this dataset. However, it is still important to highlight
that p was found over the validation set, which is less likely
to burden the classification rates. Nevertheless, as already
expected, dropout was capable of slightly improving the
recognition rate of this architecture. Figure 7 illustrates the
classification error over the testing set during all training
epochs.

Comprehending our initial experiments, each dataset had
a best accuracy rate value for a particular dropout probability
p. As one can observe in Table 8, BA, PSO, BA, and FAwere
the meta-heuristic techniques which found the best p over
CIFAR-10, MNIST, Semeion and USPS datasets, respec-
tively. Therefore, we performed another round of experi-
ments using these values. Additionally, Table 8 presents, for
each dataset, the average accuracies using the best hyper-
parameter p. It is important to highlight that, for Semeion
dataset, BA was capable of finding a more suitable dropout
probability, leading to a significantly higher classification
rate than the one observed in Table 5.

Fig. 6 Classification error over USPS testing set

Fig. 7 Classification error over CIFAR-10 testing set

Table 9 Number of CNN
evaluations for each technique

Technique # Calls

Caffe 1

Dropout Caffe 1

BA 78

CS 78

FA 71

PSO 78

Nevertheless, themaindrawback concerningmeta-heuristic
techniques consists in its longer time to attain the final output.
As we are evaluating a distinct CNN every time we need to
update our particle’s fitness, this procedure will take a longer
time to converge and find a suitable dropout parameter. BA,
CS, and PSO are composed by m initial evaluations + (m
agents × t iterations) + final evaluation with best parameter
found, while FA does not have the m initial evaluations. As
we are working with m = 7 and t = 10, Table 9 describes
the number of calls to the CNN learning procedure to give us
an idea about the computational burden of each technique.

6 Conclusions

In this paper, we dealt with the problem of proper selecting
dropout parameters concerning CNNs by means of Particle
Swarm Optimization, Bat Algorithm, Cuckoo Search, and
Firefly Algorithm. The experiments were carried out over
four public datasets in the context of image classification.

The experimental section comprised different CNN archi-
tectures, as well as images with different resolutions and
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distinct training set sizes. The results obtained by the meta-
heuristic-based dropout CNNs were compared against a
standard dropout ratio and a dropout-less network, and
showed to be very promising, since meta-heuristic CNNs
were able to obtain the suitable dropout parameters in almost
all datasets. On the other hand, such task requires a higher
computational load than no-optimized CNNs, as each par-
ticle’s fitness update needs to be evaluated under a CNN
architecture, thus taking a longer time to find a suitable
dropout parameter and achieve its output. Since the meta-
heuristic-based techniques use a fitness function based on
the CNN’s outputs, each iteration of the optimization process
requires a full training of the CNN, which turns out to be a
costly process. It is usually expected that more iterations and
agents would provide better results, but such process comes
at the price of a higher computational burden.

In regard to future works, we intend to investigate the
proposed approach with other meta-heuristic techniques, as
well as to select feasible parameters using meta-heuristics
for Dropconnect regularization in the context of CNNs.
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