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a b s t r a c t

Evaluation of the composition of atherosclerotic plaques in images is an important task to determine their

pathophysiology. Visual analysis is still as the most basic and often approach to determine the morphology

of the atherosclerotic plaques. In addition, computer-aided methods have also been developed for identifi-

cation of features such as echogenicity, texture and surface in such plaques. In this article, a review of the

most important methodologies that have been developed to identify the main components of atherosclerotic

plaques in images is presented. Hence, computational algorithms that take into consideration the analysis of

the plaques echogenicity, image processing techniques, clustering algorithms and supervised classification

used for segmentation, i.e. identification, of the atherosclerotic plaque components in ultrasound, computer-

ized tomography and magnetic resonance images are introduced. The main contribution of this paper is to

provide a categorization of the most important studies related to the segmentation of atherosclerotic plaques

and its components in images acquired by the most used imaging modalities. In addition, the effectiveness

and drawbacks of each methodology as well as future researches concerning the segmentation and classifi-

cation of the atherosclerotic lesions are also discussed.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

Cardiovascular diseases represent the main causes of an increas-

ng number of deaths around the world since they impair the heart

nd vascular system functions. Hence, the early diagnosis of these

athologies is important to minimize clinical cases such as thrombo-

is, heart attacks, transient ischemic attacks and even the occurrence

f strokes. In a broader research study, Mendis, Puska, and Norrving

2011) revealed alarming numbers regarding cardiovascular disease

revention and control: according to the World Health Organization,

n 2011 the cardiovascular diseases represented 31% of the death of

eople around the world; in 2008, the cardiovascular diseases caused

he death of more than 17 millions of people around the world with

ess than 60-year old. Smoking, lack of physical exercises, inadequate

ood and excessive consume of alcoholic drinks are the major causes

f this disease (Mendis et al., 2011).
∗ Corresponding author. Tel.: +351 225081487; fax: +351 225081445.

E-mail addresses: danilojodas@gmail.com (D.S. Jodas), aledir@sjrp.unesp.br

(A.S. Pereira), tavares@fe.up.pt (J.M.R.S. Tavares).

URL: http://www.fe.up.pt/˜tavares (J.M.R.S. Tavares)

(

t

p

c

i

&

ttp://dx.doi.org/10.1016/j.eswa.2015.10.016

957-4174/© 2015 Elsevier Ltd. All rights reserved.
One of the main cardiovascular diseases is the atherosclerosis,

hich occurs as a result of the formation of lipid plaques in the artery

all. The atherosclerosis reduces or occludes the blood flow through

he artery, which can cause amaurosis fugax, transient ischemic at-

ack and strokes (Furie, Smimakis, Koroshetz, & Kistler, 2004; Schadé,

006; Wiebers, Feigin, & Brown, 2006).

Technological advances in computerized systems for imaging di-

gnosis have allowed less invasive ways of analysis and detection

f cardiovascular pathologies. Computerized Tomography (CT), Mag-

etic Resonance Imaging (MRI) and ultrasound are examples of less

nvasive procedures that have been widely used for evaluating the

resence and characteristics of atherosclerotic plaques (Serfaty et al.,

001; de Weert et al., 2006; Widder et al., 1990). Although CT pro-

ides better image quality for visualization of the diseases and less

nvasive procedures compared to the traditional catheter diagnosis,

t can be harmful to the health of patients due to the x-rays emission

Brenner & Hall, 2007; Sodickson et al., 2009). Unlike computerized

omography, ultrasound imaging is a safer procedure since it not ex-

oses the patients to the ionizing radiation. However, the poor image

ontrast and the speckle noises are the main drawbacks of ultrasound

maging when compared to CT and MRI modalities (Li & Liu, 2007; Yin

Liu, 2009; Zhao & Jolesz, 2014).

http://dx.doi.org/10.1016/j.eswa.2015.10.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.10.016&domain=pdf
mailto:danilojodas@gmail.com
mailto:aledir@sjrp.unesp.br
mailto:tavares@fe.up.pt
http://www.fe.up.pt/~tavares
http://dx.doi.org/10.1016/j.eswa.2015.10.016


2 D.S. Jodas et al. / Expert Systems With Applications 46 (2016) 1–14

e

a

t

f

u

q

p

a

a

p

o

S

m

t

2

a

a

i

s

p

m

w

2

p

t

s

p

r

a

c

o

a

r

t

m

r

i

i

2

t

i

i

p

t

g

t

o

p

i

t

o

c

u

a

s

s

t

a

Expedite the carotid endarterectomy is important after onset of

symptoms in order to avoid recurrent strokes. In addition, a recur-

rent stroke can arise within the first two weeks after onset of symp-

toms and beyond this time a surgical procedure can be inefficient

(Salem et al., 2012). Degree of stenosis has been covered as an in-

dicator for evaluating the risks associated with neurological events.

In general, patients with degree of stenosis greater or equal than 70%

are selected for carotid endarterectomy in order to prevent the risk of

stroke (NASCET, 1991; Warlow, 1991). Although it is a broadly mea-

sure related in various studies for selecting patients for carotid en-

darterectomy, the majority of the patients with significant degree of

stenosis remained stroke-free even after years (Lal et al., 2006). In

addition, patients with moderate degree of stenosis can also develop

symptoms over time (Sztajzel, 2005). Therefore, the analysis of the

plaques composition provides the ability of evaluating the progres-

sion of atherosclerotic plaques.

Characteristics of echogenicity, texture and surface of atheroscle-

rotic plaques are also addressed in various studies (Geroulakos et al.,

1993; Lal et al., 2006; Lovett, Gallagher, Hands, Walton, & Rothwell,

2004; Steffen, Gray-Weale, Byrne, & Lusby, 1989; Widder et al., 1990)

as indicators of neurological symptoms. Echolucent lesions, heteroge-

nous plaques and ulcerations are described in many studies as the

main characteristics associated with high risk for neurological symp-

toms (Biasi et al., 1998). One of the most used measures to quan-

titavely evaluate the plaques echogenicity is the Grayscale Median

(GSM). In various studies (Biasi et al., 1998; El-Barghouty, Geroulakos,

Nicolaides, Androulakis, & Bahal, 1995; Elatrozy, Nicolaides, Tegos,

& Griffin, 1998; Grogan et al., 2005; Pedro et al., 2000; Salem et al.,

2014) the GSM was found to be low in plaques with high risk of neu-

rological symptoms.

Previous studies (Salem et al., 2014; Seeger, Barratt, Lawson, &

Klingman, 1995; Takaya et al., 2006) have addressed the importance

of the atherosclerotic plaque burden in evaluating the risks of neu-

rological events. Such components allow the assessment of risks of

plaque rupture and embolization, as well as the evaluation of future

risks for transient ischemic attacks, amaurosis fugax and strokes.

Although visual analysis is a well established method for quantifying

the plaque burden, the intra and intervariability between experts

may impair the diagnosis. Therefore, development of computational

algorithms plays an important role to expedite the assessment

of atherosclerotic plaques and avoid the intervariability between

experts.

As to expert systems, the identification of atherosclerotic plaques

and its main components plays an important role in the evaluation of

the disease progression. The classification of such plaques in symp-

tomatic or asymptomatic, for example, is crucial to avoid future cere-

bral events. In addition, features extracted from the atherosclerotic

plaque components allow the development of expert systems to pro-

vide medical doctors with an auxiliary tool to automatically classify

the occurrence of such events or even the atherosclerotic lesion type.

The identification of the lesion type according to the American Heart

Association (AHA) classification standard (Herbert, Chandler, & Dins-

more, 1995) is also a valuable contribution for evaluating the progres-

sion of the disease. The composition of the plaque is the basis for clas-

sifying the lesion type according to the AHA classification standard. It

provides the assessment of the atherosclerotic plaque progression in

order to determine the mechanisms that cause its rupture. Hence, the

segmentation task represents an essential key in the development of

medical decision-making systems that could provide a complemen-

tary diagnosis for the atherosclerotic plaques.

A considered number of studies addressing the segmentation of

atherosclerotic plaques and its components, as well as the assess-

ment of the occurrence of future cerebral events based on the plaque

characteristics, have been proposed. However, the categorization of

the main studies is important not only to present an overview of

such methodologies, but also to provide the researchers with the
mployed techniques, the imaging modalities and the effectiveness

nd drawbacks of each one, as well as future researches to overcome

he limitations and improve the accuracy of the current results.

This article presents a review of existing methodologies applied

or characterization and quantification of atherosclerotic plaques in

ltrasound, CT and MR images. An overview of visual assessment and

uantitative analysis applied for characterization of atherosclerotic

laques is presented in Section 2. In addition, a definition about the

therosclerotic plaque components is also presented. Computational

lgorithms based on image processing techniques, clustering and su-

ervised classification applied for identification and quantification

f atherosclerotic plaque components are presented in Section 3.

ection 4 is dedicated to discuss advantages and limitations of each

ethodology. Finally, conclusions and future works are presented in

he last section.

. Atherosclerotic plaque characterization

In order to identify the most important characteristics of

therosclerotic plaques associated with neurological events, as well

s to quantify the amount of histological components, studies using

mages acquired from well-known imaging modalities have been pre-

ented. Furthermore, the study of the atherosclerotic plaques mor-

hology provides specialists an understanding of its behavior at the

oment of treatment and allows to determine whether the plaque

ill resist the deployment of stents or not (Diethrich, Irshad, & Reid,

006). Biasi et al. (1998) reported that dangerous plaques are more

redisposed to shed embolic material into the bloodstream when

hey are manipulated with stent devices. Thus, the identification of

afe or dangerous plaques is important to avoid risks prior an angio-

lasty procedure.

Analysis either using visual classification or computational algo-

ithms have been presented for identification and quantification of

therosclerotic plaques. Computational methods such as image pro-

essing techniques and clustering algorithms have been presented in

rder to automatically outline the atherosclerotic plaque boundaries

nd classify their main components. In addition, computational algo-

ithms may avoid the intra/inter-variability and the expensive work

o manually outline atherosclerotic plaques in images. A review of the

ost important studies addressing the assessment of the atheroscle-

otic plaques morphology and histological components identification

s presented in this article according to the classification illustrated

n Fig. 1.

.1. Analysis of atherosclerotic plaques morphology

Visual analysis of the atherosclerotic plaques echogenicity in ul-

rasound images has been addressed in several studies for evaluat-

ng the presence or absence of neurological symptoms. Echogenic-

ty represents the distribution of the grayscale values within a

laque. Echogenicity is represented by echolucent/anechogenic pat-

ern (dark regions) or echogenic/hyperechogenic pattern (bright re-

ions) (Sztajzel, 2005). In this type of study, an observer performs

he visual classification of the plaques based on their echolucent

r echogenic pattern. A study performed by Steffen et al. (1989)

resented the evaluation of carotid plaques in ultrasound images

n order to determine the echogenicity patterns associated with

he presence or absence of symptoms. In the study, four types

f echogenic and echolucent patterns were used to classify the

arotid plaques in symptomatic or asymptomatic groups: type 1 –

niformly echolucent; type 2 – predominantly echolucent with small

reas of echogenic pattern; type 3 – predominantly echogenic with

mall echolucent regions; and type 4 – uniformly echogenic. The re-

ults shown that types 1 and 2 were more predominant in symp-

omatic plaques (67%) and types 3 and 4 were predominant in

symptomatic ones (87%). Thus, it shows that symptomatic plaques
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Fig. 1. Classification of the methods reviewed in this article.
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re more echolucent than asymptomatic ones. Similar results were

chieved by Geroulakos et al. (1993), where the same types were used

or classifying the carotid plaques. However, a fifth type was included

n order to classify plaques with higher amount of calcification and

coustic shadows. In the study, types 1 and 2 were predominant in

ymptomatic plaques (81%), whereas types 3 and 4 were found in

symptomatic ones (59%). No results concerning the fifth type were

resented either for symptomatic or asymptomatic plaques.

Characterization of symptomatic and asymptomatic plaques has

een addressed in studies such as the one presented by Lal et al.

2006). Furthermore, morphological characteristics are also evalu-

ted in order to correlate them with the plaque components (Lovett

t al., 2004; Widder et al., 1990). In a study proposed by Lal et al.

2006), the identification of intraplaque hemohrrage, large lipid cores

nd their proximity to the lumen was performed in ultrasound im-

ges of carotid plaques in order to correlate them with symptomatic

nd asymptomatic groups. The authors found that hemorrhage and

ipid components were higher in symptomatic plaques, whereas

alcium percentage was higher in asymptomatic ones. In addition,

ipid core presented higher area and lower distance to the lumen in

ymptomatic plaques when compared to asymptomatic ones.

Widder et al. (1990) performed an evaluation of the morpho-

ogical features of carotid plaques in ultrasound images in order to

orrelate them with the presence of ulcerations and intraplaque

emorrhage. Ultrasound images of the carotid artery have been

sed to evaluate the border, density and echo structure of plaques.

ccording to the results, regular borders, an echogenic pattern and

eterogenous plaques are indicators for discarding the probability of

lcerations and intraplaque hemorrhage.

Lovett et al. (2004) performed a comparison between the surfaces

f carotid plaques provided by angiography imaging with histological

eatures. The analysis shown that the increase of the carotid plaque

nd lipid core components, as well as the decrease of fibrous tissue,

re higher in irregular and ulcerated plaques. In addition, irregular

nd ulcerated plaques were considered 44% and 50% as definitely
nstable, respectively, whereas smooth plaques was considered 53%

s definitely stable.

.2. Grayscale median of atherosclerotic plaques: a quantitative

nalysis

Although visual classification showed good results for characteri-

ation of atherosclerotic plaques morphology, the subjective analysis

mong experts may impair the diagnosis. To overcome this problem,

omputer-aided methods have been proposed for the efficient quan-

itative analysis of atherosclerotic plaques.

In order to evaluate the relationship between echogenicity pat-

ern and atherosclerotic plaques with evidence of cerebral infarction,

measure called GSM was introduced by El-Barghouty et al. (1995).

he GSM value is used to determine the global plaque echogenicity.

plaque with a GSM value below a certain threshold is considered

cholucent and of high risk for neurological symptoms.

In a study conducted by El-Barghouty et al. (1995), the GSM values

f 184 carotid plaques in duplex ultrasound images were calculated

y using Adobe Photoshop
TM

software. The results shown that of the

4 plaques with GSM > 32, only 11% were associated with brain in-

arction, whereas of the 84 plaques with GSM ≤ 32, 55% were asso-

iated with brain infarction. In addition, of the 53 plaques associated

ith brain infarction, 13% has GSM > 32 and 87% has GSM ≤ 32. Of

he 95 plaques not associated with brain infarction, 60% has GSM >

2 and 40% has GSM ≤ 32. In short, the study concludes that echolu-

ent pattern could be considered as high-risk for unstable plaques,

hereas echogenic characteristic is associated with stable plaques.

Several studies evaluating the plaques echogenicity with the GSM

nalysis have been conducted using different threshold values. In ad-

ition, other characteristics have been included in order to improve

he accuracy of the evaluation. Elatrozy et al. (1998) presented the

valuation of carotid plaques in ultrasound images in order to obtain

he most important features associated with ipsilateral hemispheric

ymptoms. The analysis has been performed in order to measure the

SM and the Percent of Echolucent Pixels (PEP) of carotid plaques, as

ell as to measure the homogeinity, entropy and contrast. To deter-

ine how homogenous is a plaque, the homogeinity has been used.

ntropy indicates the dissimilarity of the gray level values into the

arotid plaques so that heterogenous plaques have higher entropies.

ontrast is a measure that determines the variability of grayscale dif-

erences so that large values indicate high variation in the grayscale

f the pixels. The results shown that the GSM and the PEP were not

tatiscally significant for asymptomatic plaques, but significant dif-

erences were found for symptomatic plaques. According to the re-

ults, more symptomatic plaques were found with GSM < 40 (84%)

nd PEP > 50 (80%) and multiple regression analysis demonstrated

hat these feature are the most important predictors for the presence

r absence of ipsilateral hemispheric symptoms. In addition, the en-

ropy was the measure that presented statistical significance in dif-

erentiating symptomatic from asymptomatic plaques. According to

his measure, symptomatic plaques tend to be less heterogenous due

o the lower entropy (lower than 2.9).

The relationship between echogenicity and atherosclerotic

laques with evidence of cerebral infarction was addressed in the

tudy of Biasi et al. (1998). In this study, the GSM was calculated as the

lobal echogenicity measure of the plaques in order to find an asso-

iation with symptoms, evidence of cerebral infarction and degree of

tenosis. The results shown that symptomatic plaques have more ev-

dence of cerebral infarction (32%) when compared to asymptomatic

nes (16%). In addition, plaques with more evidence of cerebral in-

arction are more echolucent than those with no evidence (40% vs 9%,

espectively). Symptomatic plaques have lower GSM values (38 ± 13)

hen compared to asymptomatic ones (56 ± 14). No statistical sig-

ificance was found for GSM and degree of stenosis.
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Fig. 2. An example of atherosclerotic plaque progression over time (adapted from

Koenig & Khuseyinova (2007)).
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In the study of Pedro et al. (2000) the GSM, percentage of pix-

els below the value 40 (echolucent pixels), presence of echogenic

cap, plaque disruption, echogenic cap thickness, the percentage of

echolucent juxtaluminal region and the percentage of echolucent re-

gion were considered in the analysis of carotid plaques in ultrasound

images. The results shown that symptomatic plaques associated with

Brain Infarction (BI) have low GSM and more echolucent pixels when

compared to asymptomatic plaques not associated with BI. For the

homogenous characteristic, symptomatic plaques associated with BI

shown lower GSM, higher percentage of echolucent pixels and higher

surface disruption, whereas the presence of echogenic cap was higher

in asymptomatic plaques not associated with BI. For the heteroge-

nous group, symptomatic plaques associated with BI shown lower

GSM value and higher echolucent juxtaluminal region. It is important

to note that the GSM value was lower in all cases.

Grogan et al. (2005) presented a study which aimed to find

the most relevant features associated with symptomatic plaques.

GSM was obtained from B-mode ultrasound images (ex-vivo carotid

plaques) and preoperative color doppler ultrasound. Calcified and

necrotic area, as well as the distance of the necrotic core to the

lumen, was calculated from histopathological analysis. The authors

found more echolucency, less calcified components and lower GSM

value in symptomatic plaques. In addition, the percentage of necrotic

area was higher in symptomatic plaques and its distance to the lu-

men is lower compared to asymptomatic ones. The mean GSM cal-

culated from B-mode ultrasound images shown a value of 41 for

symptomatic plaques and 60 for asymptomatic ones. These results

are statiscally close to those presented by color doppler, in which the

mean GSM with 33.8 is echolucent, whereas the mean GSM with 53.6

is echogenic.

Salem et al. (2014) evaluated patients with low risks for unstable

plaques by comparing the ultrasound images and histological analy-

sis. In addition to the GSM value, juxtaluminal black area and plaque

area were also considered in the study. A correlation between the

characteristics acquired from the ultrasound images and the histo-

logical classification (stable/unstable) of the plaques was performed

in order to select the most significant association. The results shown

that a GSM < 25, a plaque area > 95 mm2 and a juxtaluminal black

area > 6 mm2 are the features associated with unstable plaques.

2.3. Atherosclerotic plaque components

An atherosclerotic plaque is formed by components such as

lipid core, fibrous tissue, smooth muscle cells, intraplaque hemor-

rhage and calcifications. The American Heart Association (AHA) le-

sion type classification is a histological examination that divides

the atherosclerotic plaques in categories based on the components

within the plaques (Herbert et al., 1995). Thus, a matching of imaging

features and the histological examinations provided by this standard

aid the physicians in accurately determining the atherosclerotic le-

sion type. The AHA classification of atherosclerotic plaques based on

their components is shown in Table 1.
Table 1

AHA lesion type classification (Herbert et al., 1995).

Type Description

Type I Initial lesion

Type II Fatty streak with multiple foam cells layers

Type III Intermediate lesion (preatheroma)

Type IV Atheroma

Type Va Fibroatheroma

Type Vb Calcified (lesion type VII)

Type Vc Fibrotic lesion (lesion type VIII)

Type VI Lesion with surface defect, and/or hematoma-hemorrhage,

and/or thrombotic deposit

c

i

p

p

A

w

w

v

t

i

a

H

t

A foam cell is a macrophage cell that engulfs fatty components.

he accumulation of this type of cells in regions with a large amount

f fatty components represents the first stage to the development of

therosclerosis (Herbert et al., 1995). Types I, II and III are considered

ntermediate lesions, whereas the other types belong to the advanced

esions group. In addition, narrowing of the lumen or obstruction of

he blood flow does not occur in these lesion types (Herbert et al.,

995). Lesion types I and II can occur in the childhood, but adults are

lso likely to these lesions, type III appears after the puberty, whereas

ype IV appears in the third decade. Subjects after third decade are

ikely to lesion types V and VI (Herbert et al., 1995). In Fig. 2 is shown

n ilustration of the progression of an atherosclerotic disease.

Since the components identified in atherosclerotic plaques are ad-

ressed in the AHA lesion type classification, the method can be used

n the classification of atherosclerotic lesion types. In fact, several

esearches addressing the classification of atherosclerotic plaques

ased on the AHA classification can be found in studies such as those

f Cai (2002), Kampschulte et al. (2004) and Saam et al. (2006).

The composition of atherosclerotic plaques has been addressed as

n important factor for evaluating the risks of plaque rupture, as well

s risks for embolization and neurological events. Histological analy-

is of the carotid specimens has proved a higher amount of lipid and

holesterol components in symptomatic plaques when compared to

symptomatic ones (Seeger et al., 1995). Unstable plaques associated

ith majority of strokes contain features such as hemorrhage, large

ipid cores, thrombus and plaque inflammation (Salem et al., 2014).

akaya et al. (2006) showed that the presence of thin or ruptured fi-

rous cap, intraplaque hemorrhage, lipid-rich necrotic core, as well

s a larger mean area of intraplaque hemorrhage, larger maximum

ercentage of lipid-rich necrotic core and maximum wall thickness,

ere the factors associated with the risk of neurological events.

Identification of atherosclerotic plaque components can be per-

ormed in images provided by ultrasound, CT and MRI examinations.

he identification of plaque components in ultrasound images is dif-

cult due to their low resolution and artifacts such as noises and

coustic shadows caused by high calcification. Furthermore, the anal-

sis of morphological characteristic of atherosclerotic plaques as-

ociated with the presence of components still presents a lack of

onsensus. As an example, in the study of Bluth et al. (1986) the

ncidence of intraplaque hemorrhage was higher in heterogeneous

laques (81%), whereas 96% of the homogeneous plaques did not

resent intraplaque hemorrhages. In contrast, the study of Schulte-

ltedorneburg et al. (2000) showed that hemorrhage was associated

ith echolucent and homogeneous plaques.

Intravascular Ultrasound (IVUS) is an invasive imaging procedure

hich allows the evaluation of arterial morphology from within the

essel lumen. Although it is a broadly procedure used for evaluating

he arterial diseases, the poor quality of the IVUS images difficult the

dentification of the plaque components, particularly by automatic

lgorithms (Diethrich et al., 2006). Intravascular Ultrasound Virtual

istology (IVUS-VH) provides color-mapped images that represent

he plaque constitution. The plaque components are identified
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uring the IVUS procedure based on the returned frequency of the

ransducer. That frequency varies depending on the tissue type.

hese variations allow the real time identification of the compo-

ents. Several studies (Diethrich et al., 2006; Granada et al., 2007;

air, 2002) dealing with IVUS-VH examination provide the charac-

erization of the following plaque components: fibrous, fibrofatty,

ecrotic lipid core and calcifications. Although the IVUS-VH provides

n accurate real-time evaluation of the plaques constitution, the pro-

edure is invasive for the patient. Furthermore, IVUS-VH is limited

fter a stenting procedure because the metal stent is classified as

alcification (Diethrich et al., 2006).

Lal et al. (2002) discussed the importance in analyzing the internal

tructure of carotid plaques in order to characterize their components

nd select patients at high risk for strokes and atheroembolization.

he possibility of identifying carotid plaque components in B-mode

ltrasound images is addressed in the study. The methodology called

ixel Distribution Analysis (PDA) was based on the mean grayscale

alue of subcutaneous fat, muscle, fibrous tissue and calcified struc-

ure calculated from control images in order to find these compo-

ents in carotid plaques. The following mean grayscale values were

ound for each component: hemorrhage was 2 (0 up to 4), lipid was

2 (8 up to 26), muscular tissue was 53 (41 up to 76), fibrous tissue

as 172 (112 up to 196) and calcium was 221 (211 up to 255). Based

n the PDA, the authors found higher levels of blood and lipid com-

onents in symptomatic patients (11.22% ± 3.16 and 29.38% ± 5.96,

espectively), whereas in asymptomatic patients the calcium and fi-

romuscular were the components with higher concentration (11.13%

1.29 and 42.77% ± 5.93, respectively). The analysis takes into con-

ideration the components with statistical significance. According to

he Spearman correlation coefficient, the correlation between PDA

nd histological analysis for blood, lipid, calcium and fibromuscular

omponents was 0.61, 0.77, 0.85 and 0.53, respectively.

Identification of plaque components on magnetic resonance im-

ges has been addressed in some studies. Toussaint, LaMuraglia,

outhern, Fuster, and Kantor (1996) presented the ability of T2W

mages in identifying in vivo and in vitro carotid atherosclerotic

laque components based on the T2 signal. Identification of lipid-rich

ecrotic cores and intraplaque hemorrhages in MR images performed

y Yuan et al. (2001) shown high accuracy when correlated with

istological assessment. The study presented by Saam et al. (2005)

imed the evaluation of the ability of MRI exams in quantifying the

ain components of carotid atherosclerotic plaques. Time-of-Flight

TOF), T1-, T2- and Proton Density Weighted (PDW) images were used

o classify the lipid-rich necrotic core, calcification, loose matrix and

brous tissue in carotid plaques. The components were identified by

wo radiologists based on the signal intensity (SI) of each MR image.

able 2 indicates the SI values of the plaque components in each MR

mage.

The results shown a sensitivity of 92%, 76%, 82% and 64% for lipid-

ich necrotic core, calcification, hemorrhage and loose matrix, respec-

ively. Kappa values were 0.73, 0.75, 0.71 and 0.53, respectively. The

orrelation was higher for lipid-rich necrotic core and calcification
able 2

issue classification criteria proposed by Saam et al. (2005).

TOF T1W PDW T2W

LR/NC with

No or little hemorrhage o o/+ o/+ −/o

Fresh hemorrhage + + −/o −/o

Recent hemorrhage + + + +

Calcification − − − −
Loose matrix o −/o + +

Dense (fibrous) tissue − o o o

he classification into the subgroups is based on the following SIs relative to the adja-

ent muscle: +, hyperintense; o, isointense; −, hypointense.

3
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t

p

p

p

d

d

i

b

f

0.75 and 0.74, respectively) when compared to hemorrhage, loose

atrix and fibrous tissue (0.66, 0.70 and 0.55, respectively). The in-

ra and inter-reader reproducibility were also higher for lipid-rich

ecrotic core and calcification.

According to Chu et al. (2004) the identification of hemorrhage

omponent stages provides the ability of analyzing the progression

f the atherosclerotic plaques. Thus, in their study the ability of T1W,

2W, PDW and TOF images in detecting the hemorrhage components

tages in atherosclerotic carotid plaques was addressed. The clas-

ification of hemorrhages into fresh, recent and old was based on

he signal intensity from each MR weighted image and the results

ere correlated with histological analysis. The sensitivity and speci-

city found for the hemorrhage areas were 90% and 74%, respectively;

hile the hemorrhage stages classification shown moderate kappa

alue which did not reached 0.80. The kappa value for one expert

as 0.66, whereas for the other expert was 0.44. The worst result

resented by the second expert can be explained by the difference in

he calcium and old hemorrhage determination. These components

resented low signal intensity, although the calcification has well-

efined borders.

Because thin fibrous cap are likely the most cause of cerebral is-

hemic diseases in patients with carotid plaques, its evaluation is im-

ortant to detect possible embolus and hemorrhages. In the study of

uan (2002) the identification of fibrous cap tissues and its classifi-

ation into intact and thick, intact and thin and ruptured was per-

ormed by evaluating the signal intensity and lumen surface in TOF,

1W, T2W and PDW images. The author found that intact and thick

brous cap has continuous dark band adjacent to the lumen on TOF

mages and smooth lumen surface on PDW, T1W and T2W images;

ntact and thin fibrous cap not presented visible dark band adjacent

o the lumen on TOF images, whereas smooth lumen surface is also

resented in this fibrous cap type in all other images; finally, the rup-

ured fibrous cap not present visible dark band adjacent to the lumen

n TOF images. Unlike the intact and thin fibrous cap, it was found

hat ruptured fibrous cap present irregular boundaries on PDW, T1W

nd T2W images.

In a study presented by Watanabe et al. (2014) the evaluation

f the ability of Time-of-Flight Magnetic Resonance Angiography

TOF-MRA) images in detecting fibrous cap rupture of atherosclerotic

arotid plaques was performed. Fibrous cap status was determined by

sing the SI of the TOF-MRA. A hypointense band signal with various

hickness indicates the presence of fibrous cap, whereas the absence

f this signal represents a ruptured fibrous cap. The TOF-MRA images

ere examined by two radiologists who evaluate the fibrous cap sta-

us and reached a consensus about their opinion. In order to evaluate

he results, histological specimens obtained from carotid endarterec-

omy were evaluated by pathologists who identified the fibrous cap

upture and the major components of the plaques. The analysis of his-

ological and MR images shown high sensitivity and moderate speci-

city (90% and 69%, respectively). In addition, the concordance level

rovided by k-value was moderate (0.59).

. Atherosclerotic plaque characterization with computational

lgorithms

The aforementioned studies have been proposed to demonstrate

he viability of using imaging diagnosis to identify the atherosclerotic

laque components. However, the manual outline of atherosclerotic

laques is a very time consuming task. The development of com-

utational algorithms have been addressed in various studies in or-

er to automatically detect the plaque components and expedite the

iagnosis of possible risks for neurological events. In addition, the

nter-variability among diagnosis performed by several experts may

e avoid by using computational algorithms.

This section presents a review of computational algorithms used

or the identification of atherosclerotic plaque components in images
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acquired from the most common imaging examinations. The compu-

tational algorithms reviewed in this section are grouped into image

processing techniques, clustering algorithms and supervised classifi-

cation. A summary of each study containing the author names, the

publication year, the used imaging modality and the applied algo-

rithm is presented in the final of each subsection.

3.1. Image processing

The segmentation is recognized as one of the major tasks in image

processing. Usually, segmentation is an essential process to identify

structures within an image that can be made in a manual, semiau-

tomatic or automatic way. It constitutes the first step to solve many

complex tasks of image processing and analysis, particularly in med-

ical applications. In addition, features extracted, i.e. segmented, from

image processing techniques contain important information for the

identification and evaluation of risk of diseases either by statistical

analysis or by intelligent algorithms. The segmentation of atheroscle-

rotic plaques has been addressed in several studies such as those

presented by Loizou, Petroudi, Pantziaris, Nicolaides, and Pattichis

(2014); Loizou et al. (2012).

In two studies presented by Molinari et al. (2010); 2007) a

method for extraction and characterization of carotid plaques was

presented in order to classify them as stable or unstable. In these

works, a contrast agent was used to enhance the tissues of the

plaques since each component absorbs the contrast agent differ-

ently. In the first study, the intima-media thickness and plaques

profiles were extracted by using the Completely User-Independent

Extraction (CULEX2) algorithm, which was proposed by the same

authors (Delsanto et al., 2007). Afterward, the identification of each

component of the plaques was performed based on the PDA values

(Lal et al., 2002). The results proved that the injection of a contrast

agent can improve the areas with echolucent characteristic so that

accurate segmentation can be reached. Before the contrast injection,

the authors reached a segmentation error of 5% for stable plaques

and 35% for unstable plaques. However, after the contrast injection

the segmentation error for stable plaques was 2%, whereas for those

unstable was 8%. In addition, the carotid plaques segmentation

error between the manual and automatic segmentation was 1.2%.

Regarding the identification of the carotid plaques, the authors found

that the presence of 42% or more of fibrous components represents a

stable plaque, whereas an unstable plaque is composed by 25-30% of

hemorrhage and lipid core components.

The same approach applied to the first study to extract the carotid

plaque and its components was used in the second study of Molinari

et al. (2010). However, the composition of the soft unstable plaques

presented by both histological analysis and automatic methods was:

• Hemorrhage: 12% for the histological analysis and 8% for the au-

tomatic method;
• Lipids: 35% for the histological analysis and 36% for the automatic

method;
• Fibrous and muscular: 53% for the histological analysis and 50%

for the automatic method;
• Calcium: no presence for both strategies.

Kerwin et al. (2001) provided a method for the segmentation of

atherosclerotic lesions in MR images using grouping of similar pixels

and active contours, as well as the classification of the tissue types.

In addition, the 3D reconstruction of the artery is performed in order

to provide the visualization of the stenosis and the tissues volume.

The algorithms used in the study were compiled in a package called

Quantitative Vascular Analysis System (QVAS). The 5 steps performed

by the proposed framework are:

• Grouping pixels with similar intensities into clusters;
• Place nodes along the boundaries of the regions and connect them

with paths in order to determine the initial boundaries. Manual

corrections can be necessary;
• Refine the initial contours by using active contours;
• Tissue classification based on the comparison of the mean bright-

ness values from regions of the images and from a compiled li-

brary with standard regional mean values of each component;
• Generation of the 3D model.

The method is feed forward, i.e., the results from the previous

mage are used in the next image in order to reduce the processing

ime. In addition, this procedure allows the measurement of the le-

ions volume. The lumen and wall boundaries are used and refined

n the next image. Then, the regions from the previous images are

sed to seek the regions with similar intensities in the next image. In

ddition, the classification of the tissues in lipid core, fibrous cap or

alcification is performed based on the mean brightness value, which

hange among patients. Regional brightness values and the associ-

ted tissue types were defined in a library. Mean brightness value is

alculated from the segmented regions and the labeling is performed

ased on the mean value defined in the library that is closer to that

alculated for the regions. In order to minimize the errors caused by

he variation of the mean value between patients, the mean values

re adapted according to the current tissue.

In a study of Liu et al. (2006) a method called Morphology-

nhanced Probabilistic Plaque Segmentation (MEPPS) for segmen-

ation of carotid plaques based on probability density functions and

ctive contours method was presented. The carotid plaques acquired

rom T1W, T2W, PDW, TOF and Contrast-Enhanced (CE) imaging

ere segmented into four tissues: necrotic core, calcification, loose

atrix and fibrous tissue. Correction of intensities, normalization,

eneration of a probability map of each pixel belonging to each tissue

ype and the application of an active contour in order to delineate

he boundaries based on the probabilities maps were the steps

erformed by the proposed method. The probability map was gen-

rated based on the intensity of each contrast weighted image and

n two morphological features: distance of the pixel to lumen and

all thickness. Afterward, the active contour method was applied

n order to maximize the probabilities and refine the boundaries,

s well as avoid noisy artifacts. The image dataset was divided into

raining set and validation set, being the first one used to generate

robabilities maps that represent the probability of each pixel to

elong to a tissue type. The results shown a correlation coefficient of

.78, 0.83, 0.41 and 0.82 for necrotic core, calcification, loose matrix

nd fibrous tissue, respectively. The sensitivity and specificity were

igher for MEPPS when compared to manual segmentation, except

or calcification. The sensitivity for necrotic core, calcification, loose

atrix and fibrous was 0.75, 0.65, 0.51 and 0.88 and the specificity

as 0.92, 0.98, 0.97 and 0.84, respectively.

In another study performed by Kerwin et al. (2007) the MEPPS

lgorithm was used to segment the atherosclerotic plaque compo-

ents. The method begins with the identification of the lumen and

uter wall boundaries by using the B-spline snake algorithm (Brigger,

oeg, & Unser, 2000). Then, the identification of plaque components,

articularly the necrotic core and calcification components, was

erformed by the MEPPS framework. The normalized wall thickness

area of the wall divided by the total vessel area) and the maximal

all thickness, as well as the average of the necrotic core and

alcification from all slices, were calculated for comparison against

he manual segmentation. The results shown a high correlation

etween the manual and automated methods: Normalized wall

hickness: 0.90; Maximum wall thickness: 0.84; Necrotic core: 0.86;

alcification: 0.96. The intraclass correlation coefficient showed good

eproducibility of the automatic and manual measurements: Nor-

alized wall thickness: 0.97 and 0.90; Maximum wall thickness: 0.95

nd 0.89; Necrotic core: 0.87 and 0.95; and calcification: 0.94 and
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Table 3

Proposed methodologies for segmentation of atherosclerotic plaque components

based on image processing techniques.

Author Year

Imaging

modality Segmentation method

Molinari et al. (2007) 2007 Ultrasound PDA

Molinari et al. (2010) 2010 Ultrasound PDA

Kerwin et al. (2001) 2001 MRI Active contour and clustering

Liu et al. (2006) 2006 MRI Active contour

Kerwin et al. (2007) 2007 MRI Active contour

de Weert et al. (2006) 2006 CTA Ranges of Hounsfield Unit

values

de Graaf et al. (2013) 2013 CTA Ranges of Hounsfield Unit

values

Vukadinovic et al. (2012) 2012 CTA Level set and GentleBoost

Wintermark et al. (2008) 2008 CTA Ranges of Hounsfield Unit

values
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.98, respectively. Reproducibility was higher for normalized wall

hickness, maximum wall thickness and calcification in automatic

ethod, but lower for necrotic core.

Studies performed on Computerized Tomography Angiography

CTA) images have also been proposed for characterization of

therosclerotic plaques. The identification of plaques components us-

ng Hounsfield Unit (HU) Attenuation values was described in various

tudies (de Graaf et al., 2013; Vukadinovic et al., 2011; 2009; de Weert

t al., 2006; Wintermark et al., 2008). HU represents the X-Ray atten-

ation unit used in CT scan examinations (Goldman, 2007). It char-

cterizes the relative density of a substance, i.e. the amount of X-Ray

adiation absorbed by each element in the tissue (Bushberg, 2002).

value between -1000 (air, black) and +3000 (dense bone, white) is

ssigned to each image element (Bushberg, 2002).

A study conducted by de Weert et al. (2006) presented the

ounsfield Unit ranges of fibrous, calcium and lipid-core components

n carotid plaques in order to determine the ability of CTA images

n identifying such components. The tracing of two regions of inter-

st (ROI) in Multidetector Computer Tomography (MDCT) images was

erformed by two operators. First, the vessel wall boundary was out-

ined and the HU ranges of each component were determined. Sec-

nd, the lumen boundary was outlined and its HU range was deter-

ined, as well as the HU of the fibrous tissue near to the lumen. The

esults shown larger total plaque and calcified areas in MDCT images,

hereas fibrous and lipid core areas were smaller when compared to

he histological images. According to the authors, the plaque area was

arger in MDCT images due to the shrinkage caused by the prepara-

ion step of the histological specimens. The lipid-core areas presented

he worst results due to the blooming of calcifications area that over-

hadows area of soft tissue. Thus, it may affect the accuracy and seg-

entation of lipid-core areas. However, lipid-cores with mildly calci-

ed area shown better results compared to those obtained with hard

alcium. It was due to lower blooming effect of the calcium areas. Lin-

ar regression showed the following correlations between the pro-

osed method and the analysis of histological specimens: 0.73, 0.74,

.76 and 0.24 for total plaque area, calcified area, fibrous area and

ipid-core area with hard calcium, respectively. Also, the lipid-core

rea was measured with different levels of calcification. The best cor-

elation was provided by 0–10% level of calcification (R = 0.77).

An automatic method for quantification of atherosclerotic plaques

n CTA images of coronary arteries was proposed in de Graaf et al.

2013). Four components were identified: fibrous, fibro-fatty, necrotic

ore and dense calcium. The extraction of each component was

erformed by using two approaches: fixed threshold and dynamic

hreshold. The first approach used fixed HU ranges for extraction of

ach component, whereas the second one define the cut-off values

ased on the luminal intensity. The dynamic threshold is based on

he fact that the lower luminal intensity, the lower will be the HU

alue of the plaque. Thus, the HU of the tissue are defined based on

he luminal attenuation. A study performed by Dalager et al. (2011)

onfirmed the correlation between the attenuation of plaque HU val-

es and the decreasing of the luminal density. Registration of the CTA

mages with corresponding IVUS images was also performed in or-

er to correlate the results. The results shown that vessel, lumen and

laque volume calculated from CTA images shown high correlation

ith IVUS results. Regarding the identification of plaque components,

good correlation between CTA and IVUS images was also found as

or fixed threshold as for dynamic threshold. However, the correlation

oefficient for necrotic core was lower when compared to the other

omponents.

An automatic method for segmentation of the lumen and

rtery wall boundaries in CTA images was presented in the study

f Vukadinovic et al. (2012). Furthermore, the identification of

therosclerotic plaque components based on HU values was also per-

ormed by the proposed method. A set of 40 dataset was used to per-

orm a correlation between the automatic and manual tracing, as well
s a interobserver analysis. Another set of 90 dataset was used for

valuating the accuracy of the automatic method. The method starts

ith the segmentation of the lumen boundary using a level set ap-

roach. Afterward, the calcium components and the pixels belonging

o the vessel region were detected using a GentleBoost framework.

hen, calcium and pixels classified in the vessel wall were used to

t an ellipsoid in the vessel wall. From the 40 dataset, the correla-

ion between the manual tracing performed by two observers and

he automatic methods showed the worst results for the lipid com-

onent: 0.68 (observer 1) and 0.79 (observer 2) in lipid volume; 0.52

observer 1) and 0.57 (observer 2) in lipid percentage. However, the

alcium and fibrous components showed moderate and high correla-

ion: 0.97 for both observer in calcium volume, 0.94 for both observer

n calcium percentage, 0.94 (observer 1) and 0.87 (observer 2) in fi-

rous volume, and 0.79 (observer 1) and 0.73 (observer 2) in fibrous

ercentage. In addition, the fibrous and lipid percentages obtained

rom 90 databases also presented the worst correlation coefficients:

.77 and 0.55, respectively. This was possibly caused by overlaping

etween the HU ranges of lipid and fibrous tissues.

Wintermark et al. (2008) proposed the identification of carotid

laque components in CTA images based on HU values. Connective

issue, lipid-rich necrotic core, hemorrhage and calcifications were

egmented in each 2 × 2 mm2 region created from a grid delin-

ation in the histological images in combination with micro CT im-

ges. Also, the mean Hounsfield attenuation calculated from each cor-

esponding 2 × 2 mm2 region in the CTA images were used in a lin-

ar mixed model in order to obtain the mean Hounsfield attenuation

or each plaque component. The results shown an overall agreement

f 72.6% between CTA and histological analysis. The CTA classifica-

ion of the calcium component is in perfect concordance with the

istological analysis. However, the small lipid-core did not present

ood concordance and it can be assigned to the overlapping of the

ounsfield threshold of the lipid-core and connective tissues. When

he large lipid-core is evaluated (equal to or higher than 5 pixels) the

esults showed good agreement (k = 0.796). Hemorrhage also pre-

ented good agreement when large amount (equal to or higher than

pixels) were considered (k = 0.712). The identification of the ul-

eration also showed good results (k = 0.855). The thickness of the

brous cap showed good correlation between CTA and histological

lassification (R2 = 0.77).

The proposed studies for identification of atherosclerotic plaque

omponents based on image processing techniques are summarized

n Table 3.

.2. Clustering algorithms

Clustering represents the partitioning of a dataset in subsets that

ave similar characteristics. Hence, the similar pixels of an image are

artitioned in regions with similar characteristics by using measures
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such as mean, intensity and standard deviation calculated from the

image pixels. Clustering algorithms have also been proposed for

segmentation of atherosclerotic plaque components (Adame et al.,

2004a; 2004b; Itskovich et al., 2004; Karmonik, Basto, & Morrisett,

2006; Karmonik et al., 2009; Xu, Hwang, & Yuan, 2001). Since each

component is composed by similar intensities, clustering algorithms

can be applied to separate the regions of atherosclerotic plaques

according to determined criteria.

Adame et al. (2004b) presented a study which the aim was the

automatic detection of the boundaries of the lumen and vessel wall

based on ellipse fitting and fuzzy clustering. Ellipse fitting was used

to detect the outer vessel wall boundary, while fuzzy clustering

was applied to identify the lumen boundary and the carotid plaque

boundary. Lumen area, outer wall area and fibrous cap thickness

were also measured. The definition of an ellipse centered in the

lumen center point defined by the user is made to refine the lumen

boundary. In addition, fuzzy clustering was used to first segment

the lumen region and then the plaque region (represented by the

lipid core). In order to perform the experiments, the authors used

50 images acquired from PDW (23) and T1W (27) examinations. The

luminal area (mm2), outer wall area (mm2) and fibrous cap thickness

were taken into account in the manual tracing and in the automatic

method. The fibrous cap thickness was determined by measuring

the mean minimal distance of the lumen and lipid core points. The

thickness of the fibrous cap had an acceptable correlation (0.72),

whereas the correlations of the lumen and outer wall boundaries

were high (0.92 and 0.91, respectively).

In a similar study, Adame et al. (2004a) performed the segmenta-

tion of the outer vessel wall, lumen and lipid component in carotid ar-

teries based on fuzzy clustering and ellipse fitting. The first step con-

sists in detecting the outer wall by fitting an ellipse to its boundaries.

The regions inside the outer wall was classified into three classes

by the fuzzy C-means algorithm: lumen, plaque and wall tissue. The

clustering was based on the intensity of T1W or PDW images or even

on the combination of the two types of images. The last step com-

prises the segmentation of the lipid component by using the same

clustering algorithm but, this time, two classes were established: wall

tissue and lipid component. The automatic method was compared

to manual outlines performed by experts and good correlation was

found for the three components: 0.94 for lumen, 0.92 for outer wall

and 0.76 for fibrous cap thickness.

Itskovich et al. (2004) proposed an approach to segment the coro-

nary plaque components in ex-vivo MR images based on a clustering

algorithm. The Spatially Enhance Cluster Analysis (SECA) was used

to identify loose fibrous, fibrocellular, lipid-rich necrotic core, throm-

bus and dense fibrous components. Combined intensities from the

T1W, T2W and PWD images were used to initialize the clusters. In

order to refine the clusters, the SECA performed the minimization of

the chromatic variance and the discontinuity. The first aspect repre-

sents the compactness of the cluster and the second one is the rate of

the pixels that are not in the same cluster as their neighboring pix-

els. After the clustering step, the AHA classification of the plaques

was performed by experts and compared with those performed by

histopathologists in the histological specimens. Regarding the results,

the classification based on cluster-analyzed MR images shown good

overall agreement with AHA lesion type classification (k = 0.89) and

it was better when compared to the color composite (k = 0.78), T1W

(k = 0.29), T2W (k = 0.42) and PDW images (k = 0.31). In addition,

the quantification of the components was performed by calculating

its area as the percentage of the total plaque area. When compared

to color-spacing, the clustering-analyzed images shown the best cor-

relation with histological analysis. The Pearson correlation for loose

fibrous, fibrocellular, lipid-rich necrotic core, thrombus and dense fi-

brous components were 0.82, 0.89, 0.79, 0.98 and 0.83, respectively.

In the study of Karmonik et al. (2006, 2009) the identification

and quantification of carotid plaques in MR images was performed by
he k-means clustering algorithm. The first study was performed on

mages of ex-vivo carotid plaques, whereas the second one was per-

ormed on in-vivo images. The k-means algorithm considered points

omposed by the combination of the intensity values of the PDW,

1W and T2W MR images. The k-means algorithm classified each

oint into six classes: fibrous, calcium, thrombus, lipid, normal and

ackground. Comparison between histological section analysis and

he corresponding k-means classification was performed in order to

valuate the accuracy of the proposed method. A convergence thresh-

ld was used in order to determine the assignment of the points

n each cluster. This assignment continues until the sum of the dis-

ances of the cluster centers between two iterations is smaller than

he convergence threshold. The second study was similar to the first

ne, but the different approach is the inclusion of in vivo images. The

ean differences between histological analysis and the clustering al-

orithm were 5.8 ± 4.1, 1.5 ± 1.4, 4.0 ± 2.8, 8.2 ± 10 and 2.4 ± 2.2

or thrombus, calcification, fibrous, normal and lipid components, re-

pectively.

The identification of coronary plaque components based on a

patial penalized fuzzy C-means algorithm and the signal intensi-

ies of the components was proposed in the study of Sun et al.

2006). T1W, T2W, PDW and DW (Diffusion Weighted) images ac-

uired from ex-vivo coronary arteries were used to identify and clas-

ify the lipid/necrotic core, fibrocellular/fibrous cap, fibrous tissue,

hrombus and calcification components. These components were also

dentified in histological sections of the coronary arteries in order to

rovide a ground truth for evaluating the proposed method. A spatial

enalized fuzzy C-means algorithm was performed to partition the

roups corresponding the plaque components. The pixel intensity of

ach MR weighted image was used by the algorithm. Then, the com-

onents were labeled based on their signal intensity pattern. How-

ver, the thrombus component was manually outlined on DW images

ue to its heterogeneous intensity in T1W, T2W and PDW images. Re-

arding the results, the Pearson correlation coefficient was 0.98 and

.97 for histology and fresh condition and histology and preserved

ondition, respectively.

In a similar study, Sun et al. (2008) proposed a method called Prior

nformation Enhanced Clustering (PIEC) for classification and labeling

f the coronary plaque components based on a spatial fuzzy C-means

lgorithm and T2 values of the components. As in the previous study,

he same spatial fuzzy C-means algorithm was used to segment the

egions based on the pixel intensities of T1W, T2W and PDW images.

owever, only the T2 values were used to labeling the clusters as cal-

ification, adipose fat, loose matrix, necrotic tissue or fibrocellular

omponent. According to the authors, T2 values are not dependent

n the imaging parameters, but only on the temperature and mag-

etic field strength. This justifies the use of these values for labeling

he plaque components. Regarding the results, the true positive rate

or calcification, adipose fat, loose matrix, necrotic tissue and fibro-

ellular was 88.9, 70.6, 69.2, 94.7 and 75.0, respectively.

Xu et al. (2001) presented the segmentation of carotid plaque

omponents based on a modified mean-shift algorithm (Fukunaga &

ostetler, 1975). MRI diagnosis was performed in carotid specimens

n order to obtain four ex-vivo MR contrast weighted images: T1W,

2W, PDW and TOF. However, T2W images were removed from the

ata set due to the similarity with PDW images. A modified mean-

hift algorithm was proposed in order to correctly estimate the initial

enter of the clusters. In addition, a sphere with dynamic size was

onsidered to minimize the problems of fixed radius used in the orig-

nal mean-shift algorithm. Calcium, necrotic core, foam cells and fi-

rous tissues were the components under consideration and the seg-

entation results were compared to the histological analysis. The

isclassification rate values of the calcium, necrotic core, foam cell

nd fibrous tissue were 2.8, 11.1, 10.0 and 4.6, respectively. In addi-

ion, loose fibrous tissue showed the worst results (misclassification

ate of 13.5).
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Table 4

Proposed methodologies for segmentation of atherosclerotic plaque components

based on clustering algorithms.

Author Year

Imaging

modality Clustering technique

Adame et al. (2004b) 2004 MRI Fuzzy clustering

Adame et al. (2004a) 2004 MRI Fuzzy clustering

Itskovich et al. (2004) 2004 MRI SECA

Karmonik et al. (2006) 2006 MRI K-Means

Karmonik et al. (2009) 2009 MRI K-Means

Sun et al. (2006) 2006 MRI Spatial fuzzy C-Means

Sun et al. (2008) 2008 MRI Spatial fuzzy C-Means

Xu et al. (2001) 2001 MRI Modified Mean-Shift
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The proposed studies for identification of atherosclerotic plaque

omponents based on clustering algorithms are summarized in

able 4.

.3. Supervised classification of plaque components

Supervised classification is an important step for solving many

attern recognition problems. In contrast to unsupervised classifi-

ation, which the classified samples are unlabeled, the supervised

lassification allows the building of statistic models based on de-

ired outputs provided by experts for each sample. Thus, the clas-

ification model may be combined with experience of experts about

certain pattern recognition problem. Supervised classification has

een proposed in order to classify the components of atherosclerotic

laques. In addition, the classification of atherosclerotic plaques in

ymptomatic or asymptomatic was also addressed in several stud-

es (Acharya et al., 2011; 2012; Christodoulou, Pattichis, Pantziaris, &

icolaides, 2003; Kyriacou et al., 2006; 2009).

Anderson et al. (2006) presented the segmentation of atheroscle-

otic plaque components based on predictive models. T1W, T2W and

DW images were acquired from coronary artery specimens. The k-

eans clustering algorithm was applied in order to extract the clus-

er membership of each pixel. In addition, Discrete Cosine Transform

nd measures extracted from a neighborhood of pixels were also used

s input variables by the predictive models. Three predictive mod-

ls based on an artificial neural network known as Relevant Input

rocessor Network (RIPNet) were created for a pixel-by-pixel clas-

ification of fibrous tissues and lipid components. Each model re-

eives a set of values calculated from the above-mentioned meth-

ds. The results showed that the predictive models presented better

esults when compared to k-means and logistic regression. The re-

ults of the predictive models were between 25% and 30% better than

-means algorithm and approximately 8% better than the logistic

egression.

In a study of Clarke, Hammond, Mitchell, and Rutt (2003) the iden-

ification of fibrous tissue, loose connective tissue, necrotic core and

alcification was performed by a minimum distance classifier in eight

R contrast weighted images. Tracing of fibrous, loose connective

issue and necrotic core on histological images were performed by a

athologist in order to provide a ground truth for validating the clas-

ifier results. In addition, calcifications were identified on micro CT

mages. Four ROIs corresponding to each component were outlined

n each MR contrast weighted image. The mean value of each ROI was

alculated in each MR image. Then, a pixel-by-pixel classification was

erformed by calculating the Euclidean distance of the pixel to be

lassified from each mean value belonging to a tissue type so that

t is assigned to the tissue associated with the minimum distance.

he training of the classifier was performed by using four percent

f the total number of pixels. The results shown an overall accuracy

f 73.5%. The sensitivity for necrotic core, fibrous tissue, loose con-

ective tissue and calcification were 83.9%, 60.4%, 65.2% and 97.6%,
espectively. In addition, the reproducibility of the tracing performed

y the pathologist was also higher: 96.9%, 85.1%, 93.8% and 100% for

ecrotic core, fibrous tissue, loose connective tissue and calcification,

espectively.

In another study of Clarke, Beletsky, Hammond, Hegele, and Rutt

2006) the identification of carotid plaque components on MR images

as performed by using a maximum likelihood classifier. A pixel-

ased classification was performed in order to assign each one of

hem into the following five components: fibrous, loose connective

issue, necrotic core, hemorrhage and calcium. The results were com-

ared to histological analysis and micro CT images which served as

gold standard to validate the ability of the MR images in detecting

hese components. Only 2.5% of the total plaque area was selected to

rain the maximum likelihood classifier and these small areas con-

aining the plaque components were obtained from all images. For

very pixel of the image, the assignment of its corresponding class

as performed by using the maximum likelihood classifier and the

omparison of the results was performed by overlapping the MR and

istological images. The best overall accuracy was provided by the

DW, T1W and Diffusion-Weighted (DW) images and by the combi-

ation of all 8 contrast images used in the study (78% ± 15% for both

et of images).

In a study of Hofman et al. (2006) the segmentation of carotid

laque components was performed by using Bayes classifier, k-NN,

eural network and Bayes2 classifier. Images acquired from MRI di-

gnosis were submitted to preprocessing algorithms in order to ex-

ract the Ratio Signal Intensity (rSI) of the carotid artery pixels. Also,

he carotid artery boundaries were manually outlined by using an in-

ouse software developed in Mathematica. ROIs defined in all MR

eighted images were used in order to obtain the pixels of the ho-

ogeneous regions that represent the tissue to be classified. A to-

al of 1811 pixels were extracted from the ROIs and used to train the

lassifiers. Bayes classifier, k-NN, neural network and Bayes2 classifier

ere used to classify the pixels into the following four tissue types:

brous, calcium, hemorrhage and lipid core. Bayes, k-NN and neural

etwork classification were based on the individual rSI of the pixels,

hereas the Bayes2 was based on the spatial context of the neigh-

orhood of the pixels. The classification was performed in each MR

mage slice. The final area of each component was obtained from the

um of each area from each slice divided by the number of slices.

he results provided by Bayes, k-NN and Bayes2 classifiers presented

easonably results. The neural network presented the worst results.

alcium component presented the worst results in all classifiers. Al-

hough the results were moderated and reasonably, no classifier has

eached a correlation coefficient of 0.80.

A method for segmentation of atherosclerotic plaques in ex-vivo

R images using a linear discriminant classifier was proposed in van

ngelen et al. (2012). Thirty-two features extracted from intensities,

radient, Laplacian and Euclidean distances of the voxels to the lumen

nd vessel wall were used as input for the classifier. The study de-

cribes the use of histological images as a ground truth for fibrous and

ecrotic core, whereas micro CT images were used as ground truth for

alcification. The lumen, outer vessel wall and lipid-rich necrotic core

ere manually drawn on the digitized histological slices, while the

alcification was determined by using a Hounsfield threshold value

n the micro CT images. The remain component was classified as fi-

rous tissue. Registration of the ex-vivo MRI and micro CT with his-

ology images were performed in order to obtain a ground truth im-

ge with the three components. The results shown an improvement

f the accuracy when all 32 features were included. The sensitivity

nd specificity were 81% and 97% for calcification; 85% and 60% for fi-

rous; and 52% and 89% for necrotic core, respectively. Percentage of

laque volume of each component was measured and correlated with

he ground truth segmentation. The Spearman coefficient for calcifi-

ation, fibrous and lipid rich necrotic core was 0.86, 0.71 and 0.72,

espectively.
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Table 5

Reviewed methodologies for segmentation of atherosclerotic plaque components

based on supervised classification.

Author Year

Imaging

modality Classifier

Anderson et al. (2006) 2006 MRI RIPNet (based on ANN)

Clarke et al. (2003) 2003 MRI Minimum distance

Clarke et al. (2006) 2006 MRI Maximum likelihood

Hofman et al. (2006) 2006 MRI ANN, Bayes and K-NN

van Engelen et al. (2012) 2012 MRI Linear discriminant

van Engelen et al. (2012) 2012 MRI Linear discriminant

van ’t Klooster et al. (2012) 2012 MRI Linear discriminant
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In another study, van Engelen et al. (2012) described that histolog-

ical sections are not well aligned with corresponding images due to

the deformation caused by the histology processing. In addition, in-

ter and intra-variability, as well as the overlapping between classes,

are the most problems of the use of manual segmentation as ground

truth. Based on these problems, the authors provided the classifica-

tion of plaque components (fibrous tissue, lipid-rich necrotic core and

calcium) based on the probability of each voxel belongs to a compo-

nent. The probability was calculated by using the Gaussian blur and

the dice overlaping. The main objective of the study was deal with

inaccuracies registrations between in vivo and histological data by

measuring the probability and dice overlap of each voxel. Thus, sam-

ples near to borders or with low dice overlap have lower contribu-

tion in the classifier. The ground-truth segmentation was obtained

from the manual outline of the components in histological and mi-

cro CT images, being the last one used as ground-truth for calcium.

After registration of the in-vivo with histologic and micro CT im-

ages, each component of the ground-truth segmentation was bina-

rized and blurred with Gaussian filter in order to create soft labels

that indicate the probability of each voxel belonging to a component.

The soft labels were multiplied with the Dice overlap coefficient cal-

culated from the overlapping between the segmentation of the vessel

wall in histology and MR images. It was performed in order to deter-

mine the weight of each voxel so that samples close to the boundaries

or with low dice overlap coefficient contribute less with the classifier.

Twenty three features were extracted from each voxel and together

with the soft labels the training was performed by using a linear dis-

criminant classifier. Regarding the results, the Spearman correlation

between soft and hard labels per subject was 0.88, 0.71 and 0.75 for

calcification, fibrous and necrotic core, respectively. In addition, the

soft labels presented lower volume difference when compared with

the hard label (manual segmentation of histology and micro CT im-

ages) for fibrous and lipid-rich necrotic core components. Per slice,

the difference between the classifier results and ground truth using

hard labels were −0.3 ± 3.6% for calcification, 9.5 ± 19.5% for fibrous

tissue and −9.2 ± 19.3% for necrotic tissue. In contrast, the use of soft

labels yielded a difference of −0.6 ± 3.7% for calcification, 6.0 ± 20.8%

for fibrous tissue and −5.4 ± 20.4% for necrotic tissue.

van ’t Klooster et al. (2012) proposed the classification of carotid

plaque components using a linear discriminant classifier. A group of

60 patients were selected for diagnosis and 3D TOF, T1W, T2W and

PDW images were acquired from MRI examinations. Signal intensities

of each MR image were used to manually identify the calcification,

hemorrhages, lipid core and fibrous components. The manual seg-

mentation was used as a ground truth to evaluate the performance of

the automatic method. The automatic classification was performed

by a linear discriminant classifier, which receives features such as

normalized signal intensity, zero-, first- and second-order derivates,

distance to the inner and outer vessel wall and local vessel wall thick-

ness calculated from each pixel in each MR image. The training of

the classifier was performed by using images of 20 patients, whereas

the validation was performed in images of 40 patients. Regarding the

results, the proposed method showed good agreement for presence

or absence of each component when compared to the manual clas-

sification. An agreement of 80%, 82.5% and 97.5% was presented for

calcification, hemorrhage and lipid core, respectively. In addition, the

Pearson correlation coefficient obtained from the volumes calculated

by the manual and automatic classifications was 0.80, 0.88, 0.80 and

0.10 for hemorrhage, lipid core, fibrous and calcium, respectively. Ac-

cording to the authors, the small number of calcifications compared

to other components have in part contributed for the poor results.

Also, similar signal intensities of calcifications close to the lumen and

other components may explain the poor results.

The reviewed studies for identification of atherosclerotic plaque

components based on supervised classification are indicated in

Table 5.
 c
. Discussion

The correct quantification of atherosclerotic plaques is an impor-

ant key to perform the assessment of risks of neurological events.

tudies addressing specifically the segmentation of atherosclerotic

laque components using image processing, clustering algorithms

nd supervised classification were presented in this review.

Active contours and level sets algorithms have been used in many

roblems dealing with correct delineation of structural boundaries.

han-Vese active contours (Chan & Vese, 2001) have been covered

n many researches dealing with boundaries segmentation (Ma,

avares, Jorge, & Mascarenhas, 2010; Michailovich & Tannenbaum,

007; Santos et al., 2013; Tang et al., 2012). An advantage of using the

han–Vese segmentation method concerns the identification of the

oundaries without the need of gradient information. Studies such

s those presented by Kerwin et al. (2001) and Liu et al. (2006) used

ctive contours algorithms to improve the boundaries of the plaque

omponents.

Clustering have also been proposed for image segmentation.

ased on similar characteristics shared by the pixels of the images,

lustering algorithms such as k-means and fuzzy C-means have been

sed in order to partition the images in different regions of inter-

st (Abdel-Dayem & El-Sakka, 2007; Hooda, Verma, & Singhal, 2014;

oftah, Elmasry, El-Bendary, Hassanien, & Nakamatsu, 2012). Al-

hough k-means is a well established clustering algorithm that has

een proposed in various studies dealing with unsupervised classi-

cation, a certain data may belongs to more than one cluster with a

ertain membership degree (Bezdek, Ehrlich, & Full, 1984). In many

mage segmentation problems one intensity value can belongs to

ore than one cluster due to the overlapping of the grayscale of dif-

erent regions. Thus, based on the fuzzy concepts the intensity value

ould have a membership degree in each cluster. In fuzzy cluster-

ng each data element can belongs to more than one cluster with a

ertain membership level, whereas in hard cluster the data can be-

ongs to one cluster only. Fuzzy C-Means was proposed in the study

f Adame et al. (2004a, b) for the segmentation of the lipid core in

arotid plaques. In the study of Sun et al. (2006); 2008) spatial fuzzy

-Means was proposed as the method for segmentation of the main

omponents in coronary arteries. In addition, results provided by a

lustering algorithm can be used to refine the boundaries of the de-

ected regions as shown in the study of Kerwin et al. (2001).

Artificial neural networks, Bayes classifier, k-nearest neighbor and

ecision tree are examples of algorithms used in supervised classifi-

ation. Supervised classification also provides the ability of identify-

ng patterns on images based on features extracted from the pixels.

uch features are submitted to a classifier which provides an output

hat represents the class of the presented pattern. However, the clas-

ifier model must be constructed by a training set composed by ex-

mples along with the corresponding desired outputs. After training,

he built model can be used to classify new patterns not belong to the

raining set. With respect to identification of atherosclerotic plaque

omponents, supervised classification has been proposed in various



D.S. Jodas et al. / Expert Systems With Applications 46 (2016) 1–14 11

Table 6

Limitations of computational algorithms applied for identification and quantification of atherosclerotic plaques.

Author(s) (year(s)) Technique(s) Limitations

Image processing

Molinari et al. (2010);

2007)

PDA Redefinition of the gray levels of the components may be necessary

Kerwin et al. (2001) AC Manual interaction for correcting the edges; No comparisons with radiologists were presented

Liu et al. (2006) AC Need for a training step for generating the probability maps

Kerwin et al. (2007) AC The use of the MEPPS algorithm presented the same limitations of the study of Liu et al. (2006)

de Weert et al. (2006) HU Difficulty in detecting thrombus and hemorrhage

de Graaf et al. (2013) HU It depends on the correct segmentation of the lumen region for calculating the threshold values

Vukadinovic et al. (2012) LS and GB Overlaping of the HU values difficults the identification of lipids and fibrous tissues

Wintermark et al. (2008) HU Variations on the HU values within the 2x2 grid may impair the correct determination of the mean value

Clustering

Adame et al. (2004a) FC Difficults in detecting lipid core close to lumen due to its similarity

Adame et al. (2004b) FC Difficult in detecting the lipid and fibrous cap due to the similarity of these components in PDW and T1W images

Itskovich et al. (2004) SECA Calcification was not addressed in the study

Karmonik et al. (2006,

2009)

K-Means Choose a converge threshold is computational expensive; K-means algorithm is sensitive to noisy data; Furthermore,

difficults in treating similar data belonging to different clusters are also a problem for k-means algorithm

Sun et al. (2006) SFC The use of the signal intensity is not adequate since it changes with the acquisition parameters

Sun et al. (2008) SFC Difficults in identifying the loose matrix, fibrocellular and adipose fat due to the similar T2 values of these components

Xu et al. (2001) MMS The complexity of the Mean Shift algorithm increases when the feature space dimensionality also increase

Supervised classification

Anderson et al. (2006) RIPNet Need for one model for each component; Also, different set of variables is used in each model

Clarke et al. (2003) Minimum Distance Minimum distance classifier may be sensitive to variations on the data

Clarke et al. (2006) Maximum Likelihood Hemorrhage and necrotic-core are similar according to the MR signals

Hofman et al. (2006) ANN, Bayes and K-NN The low number of pixels used for calcification may explain the worst results; Slight overlapping may also have

affected the results

van Engelen et al. (2012) Linear Discriminant Large number of input values; Difficults in differentiating fibrous tissue and necrotic core components; Validation on

in-vivo image is necessary

van Engelen et al. (2012) Linear Discriminant Quite number of input values for each pixel is necessary for classification

van ’t Klooster et al. (2012) Linear Discriminant Similarity of the signal intensities of calcifications close to the lumen with other components have contributed for the

poor results; Also, more images with calcifications should be included in the training step to overcome this problem

∗AC = Active Contour; HU = Hounsfield Unit; LS = Level Set; GB = GentleBoost; FC = Fuzzy Clustering; SFC = Spatial Fuzzy C-Means; MMS = Modified Mean-Shift
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tudies (Anderson et al., 2006; Clarke et al., 2006; Clarke et al., 2003;

an Engelen et al., 2012; Hofman et al., 2006; van Engelen et al., 2012)

o classify each pixel into a tissue type.

Although the aforementioned studies have proved to be effective

n identifying atherosclerotic plaque components, some drawbacks

ust be highlighted. PDA provides constant values for the segmen-

ation of atherosclerotic plaque components in ultrasound images

Lal et al., 2002). However, redefinition of the gray levels of the

omponents could be necessary due to different gray levels among

mages acquired with different equipment. In addition, calcified

laques could harm the segmentation due to projected shadow that

an precludes regions of interest (Molinari et al., 2010). The use of HU

alues in CTA images also presents drawbacks. Similarly to the prob-

ems of PDA, the values of HU may change with different datasets.

n the study of de Weert et al. (2006) lipid-core comprised lipid,

emorrhage and thrombus components due to the difficulty of de-

ecting thrombus and hemorrhage in MDCT images. Also, lipid-core

ith midly calcified area shown better results compared to those

btained with hard calcium. According to the authors, it was due to

ower blooming effect of the calcium areas (de Weert et al., 2006).

Similarity of intensity values difficults the discrimination of

laque components. In the study of Vukadinovic et al. (2012) the over-

apping of the HU values corresponding to the lipid and fibrous tis-

ues difficults the distinction of these components. Similar difficults

an be found in the study of Adame et al. (2004b) and van Engelen

t al. (2012). Difficults in detecting lipid core close to lumen is also

overed in another study of Adame et al. (2004a).

The main drawback of supervised classification is still the need

or a training step to build a predictive model. In addition, complex

odels with a high number of input elements achieved similar re-

ults to those presented with simpler algorithms. Clustering has been

roposed for image segmentation as a simple methodology based on

ess complex mathematical models and no need for a training step.

n combination with image processing techniques, methodologies to
artition similar regions of an image and refine the boundaries of

hese regions with active contour algorithms can improve the re-

ults of existing methods of characterization of atherosclerotic plaque

omponents. Since clustering algorithms provide unsupervised clas-

ification, the identification of the categories belonging to the par-

itioned regions becomes a problem due to the lack of labels corre-

ponding to each region.

The main limitations of the works and proposals surveyed in this

rticle are summarized in Table 6.

Studies addressing the combination of spatial fuzzy C-Means al-

orithms with active contours for identifying the components on

therosclerotic plaques is expected to be considered in the fu-

ure. Spatial fuzzy C-means proved to be effective to overcome

he presence of noises in images and improve the cluster parti-

ioning (Beevi, Sathik, Senthamaraikannan, & Yasmin, 2010; Hassan,

haudhry, Khan, & Kim, 2012; Krinidis & Chatzis, 2010; Li, Chui,

hang, & Ong, 2011). Use of spatial fuzzy c-means algorithms could

lso overcome the problems with transitions of intensities values

elonging to a same component. In addition, the use of Adaptive

esonance Theory (ART) models (Beale & Jackson, 1990; Serrano-

otarredona, Linares-Barranco, & Andreou, 1998) such as Fuzzy-ART

nd Fuzzy-ARTMAP can also be considered as alternative methods to

lassify the regions corresponding to the atherosclerotic plaque com-

onents.

. Conclusion and future research

Quantification of atherosclerotic plaque components has been ad-

ressed in studies assessing the risks associated with neurological

vents. The morphology of such plaques is a well established indi-

ator to predict events such as transient ischemic attacks, amauro-

is fugax and strokes. Several methodologies has been proposed to

uantify atherosclerotic plaques in the most popular imaging diag-

osis. Automatic identification of plaque components performed by
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computational algorithms provides an expedited diagnosis of possi-

ble neurological events. Thin fibrous cap, lipid rich-necrotic core and

intraplaque hemorrhages were covered as the components associ-

ated with high risk for such event.

The automatic classification of the atherosclerotic plaques is a de-

manding challenge to the expert systems usage. An auxiliary diagno-

sis of the disease progression performed by these systems allows the

medical doctors to identify the characteristics of the diseases as soon

as possible and, consequently, to expedite the treatment planning.

As previously mentioned, the features extracted from the atheroscle-

rotic plaques represent a key point for developing machine learning

based expert systems to recognize the atherosclerotic lesion type or

determine whether it is symptomatic or asymptomatic.

Future studies addressing the improvement of the proposed

computational algorithms could provide more accuracy in identi-

fying the components and correctly delineating their boundaries.

The overlapping of the main components associated with high risk

for neurological events is still a problem in many studies dealing

with the segmentation of atherosclerotic plaques. The main cause of

this is the similar intensities of these components. Fuzzy C-Means

algorithm proved to be effective in segmenting regions with similar

intensities. In addition, spatial fuzzy C-Means allows to overcome

the presence of local noise not treated with the traditional fuzzy

C-Means. The combination of clustering with active contours could

provide the correct identification and delineation of the components

on atherosclerotic plaques.

Regarding the assessment of the atherosclerotic plaque from an

expert systems development point of view, future researches ad-

dressing the classification of the disease progression are required to

allow the development of medical decision-making systems for pro-

viding an efficient and complementary diagnosis for planning the

adequate treatment. Since the accuracy of the automated classifica-

tion depends on the information attained from the segmented struc-

tures in images, the extraction of the most relevant features from

atherosclerotic plaques and their components is one of the most im-

portant task to be considered in future studies for allowing the ac-

curate assessment of carotid diseases. Such features could allow the

accuracy improvement of the most existing methodologies applied to

the classification of the symptomatic or asymptomatic atherosclero-

sis. To the best of our knowledge, no one study presents an expert

system for the assessment of the atherosclerotic lesion type based on

the AHA classification standard. Therefore, as the main contribution

that can be attained with the application of expert systems concern-

ing the study of atherosclerotic plaques, we suggest the use of the

most efficient classifiers addressed in the literature in order to per-

form the classification of the lesion type, particularly based on the

referred standard.
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