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ARTICLE INTFO ABSTRACT
Article history: Background and Objective: Even today, pointing out an exam that can diagnose a patient with
Received 2 March 2016 Parkinson’s disease (PD) accurately enough is not an easy task. Although a number of tech-
Received in revised form niques have been used in search for a more precise method, detecting such illness and
9 June 2016 measuring its level of severity early enough to postpone its side effects are not straight-
Accepted 11 August 2016 forward. In this work, after reviewing a considerable number of works, we conclude that
only a few techniques address the problem of PD recognition by means of micrography using
Keywords: computer vision techniques. Therefore, we consider the problem of aiding automatic PD di-
Parkinson’s disease agnosis by means of spirals and meanders filled out in forms, which are then compared
Pattern recognition with the template for feature extraction.
Micrography Methods: In our work, both the template and the drawings are identified and separated au-

tomatically using image processing techniques, thus needing no user intervention. Since
we have no registered images, the idea is to obtain a suitable representation of both tem-
plate and drawings using the very same approach for all images in a fast and accurate
approach.
Results: The results have shown that we can obtain very reasonable recognition rates (around
=~67%), with the most accurate class being the one represented by the patients, which out-
numbered the control individuals in the proposed dataset.
Conclusions: The proposed approach seemed to be suitable for aiding in automatic PD di-
agnosis by means of computer vision and machine learning techniques. Also, meander images
play an important role, leading to higher accuracies than spiral images. We also observed
that the main problem in detecting PD is the patients in the early stages, who can draw
near-perfect objects, which are very similar to the ones made by control patients.

© 2016 Elsevier Ireland Ltd. All rights reserved.

* Corresponding author. Department of Computing, Sdo Paulo State University, Brazil. Fax: +55-14-3103-6079.
E-mail address: papa@fc.unesp.br (J.P. Papa).
http://dx.doi.org/10.1016/j.cmpb.2016.08.005
0169-2607/© 2016 Elsevier Ireland Ltd. All rights reserved.


mailto:papa@fc.unesp.br
http://www.intl.elsevierhealth.com/journals/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2016.08.005&domain=pdf

80 COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 136 (2016) 79-88

1. Introduction

Parkinson’s disease (PD) is a degenerative, chronic, and pro-
gressive illness that may cause tremors, slowness of movement,
muscle stiffness, and changes in speech and writing skills due
to the neurological disorder [1]. PD was first described by the
English physician James Parkinson [2], with its symptoms being
well-known in the scientific community. However, to diag-
nose Parkinson’s disease with a reliable recognition rate in its
early stages is still unheard of. Moreover, it is not straightfor-
ward to establish the PD level soon after its diagnosis.

Parkinson’s disease occurs when nerve cells that produce
dopamine are destroyed, a process that is performed slowly,
thus characterizing the progression of this disease. With the
absence of such a substance, the nerve cells can no longer send
messages properly, causing many other symptoms such as de-
pression, sleep disturbances, memory impairment and
autonomic nervous system disorders. In some cases, Parkin-
son’s disease may be trigged by hereditary causes [1].

In the last decades, some works attempted at designing so-
lutions to aid PD diagnosis. Expert systems based on machine
learning techniques have been employed to this purpose,
showing promising results [3]. Generally, these works are signal
analysis-oriented, which means one can use the patient’s voice
to assess the level of the illness [4,5], since the voice capabil-
ity is gradually compromised by PD. Little et al. [4], for instance,
presented a dataset composed of biomedical voice measure-
ments from 31 male and female subjects, of which 23 patients
were diagnosed with PD and 8 were healthy subjects. The
authors introduced a new measure of dysphonia called Pitch
Period Entropy, which seems to be more robust in identifying
changes in the speech, since approximately 90% of PD pa-
tients exhibit some form of vocal impairment [6,7].

In the work conducted by Zhao et al. [8], five patients and
seven healthy individuals were used to recognize Parkinson’s
disease by means of voice analysis. In order to fulfill this
purpose, voices of the patients were recorded using an Isomax
EarSet E60PS5L microphone; the recording sessions lasted around
25 minutes each, and the authors used a total of 50 pre-
recorded prompts consisting of emotional sentences spoken
by a professional actress. Tsanas et al. [9] evaluated different
algorithms based on dysphonia measures aiming at PD rec-
ognition. A total of 132 acoustic features were initially used for
further feature selection, and the authors concluded that the
dysphonia information and the existing features end up helping
PD recognition. Harel et al. [10] claimed that PD symptoms are
detectable up to five years prior to clinical diagnosis, and symp-
toms presented in speech include reduced loudness, increased
vocal tremor, and breathiness. In their work, the authors used
a dataset of the National Center for Voice and Speech, which
comprises 263 phonations from 43 subjects (17 females and
26 males, of which 10 were healthy controls and 33 were di-
agnosed with PD).

Since one of the first manifestation of Parkinson’s Disease
is the deterioration of handwriting, the micrography (a writing
exam) is another approach widely used for the diagnosis of Par-
kinson’s disease [11]. This technique is considered an objective
measure, since a PD patient possibly features the reduction of
calligraphy size, as well as the hand tremors. Nowadays, this

procedure is often conducted by filling out some specific forms.
Rosenblum et al. [12] suggested that writing exams can be used
to distinguish PD patients from healthy individuals. The authors
employed the following methodology to support their assump-
tion: 20 PD patients and 20 control individuals were asked to
write their names and addresses in a piece of paper attached
to a digital table. Further, for each stroke, the mean pressure
and velocity were measured in order to compute spatial and
temporal information. The authors presented very good rec-
ognition rates, with 97.5% of the participants classified correctly
(100% of the control individuals, and 95% of PD patients). Later
on, Drotar et al. [13] claimed that movement during handwrit-
ing of a text consists not only from the on-surface movements
of the hand, but also from the in-air trajectories performed
when the hand moves in the air from one stroke to the next.
The authors demonstrated the assessment of in-air hand move-
ments during sentence handwriting has a higher impact than
the pure evaluation of on surface movements, leading to clas-
sification accuracies of 84% and 78%, respectively.

Machine learning-based techniques have also been applied
to help automatic PD recognition. Spadotto et al. [14], for in-
stance, introduced the Optimum-Path Forest (OPF) [15,16]
classifier to the aforementioned context. Later on, Spadotto et al.
[17] proposed an evolutionary-based approach to select the most
discriminative set of features in order to improve PD recogni-
tion rates. Gharehchopogh and Mohammadi [18] used Artificial
Neural Networks with Multi-Layer Perceptron to diagnose the
effects caused by Parkinson’s disease. Pan et al. [19] analyzed
the performance of Support Vector Machines with Radial Basis
Function in order to compare the onset of tremor in patients
with Parkinson’s disease. Hariharan et al. [20] developed a new
feature weighting method using Model-based clustering (Gauss-
ian mixture model) in order to enrich the discriminative ability
of the dysphonia-based features, thus achieving 100% of clas-
sification accuracy. Recently, Peker et al. [21] used sound-
based features and complex-valued neural networks to aid PD
diagnosis as well.

However, although many works deal with voice- and speech-
driven information, there is a large number of writing exams
out there that can give us valuable information about the de-
velopment of Parkinson’s Disease, since it is cheaper and easier
to acquire such sort of exam. Moreover, most hospitals and
clinics have writing exams by hand only, which means they
need to be digitized prior to information extraction. Usually,
the patients are asked to draw spirals and meanders, which
are then compared against the templates. Very recently, Pereira
et al. [22] proposed to extract features from writing exams using
image processing techniques, achieving around 79% of recog-
nition rates, which is considered very reasonable. The authors
also designed and made available a dataset called “HandPD”
with all images and features extracted." However, they em-
ployed “spirals” drawings only.

In this paper, we extended the work of Pereira et al. [22] by
presenting the following contributions: (i) a deeper analysis and
explanation about the feature extraction process, as well as a
tremor-based feature is also analyzed; (ii) we considered both
spirals and meanders for the classification process; and (iii) we

* http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/.
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also extended “HandPD” dataset with images and features from
meanders. Since we are committed with science, we also made
available to the readers this new dataset, and we believe it can
serve as a basis for future research regarding Parkinson'’s
Disease diagnosis. The proposed approach is innovative in the
sense that we can extract both the template and the draw-
ings of each patient automatically, thus having no user
intervention.

The remainder of this paper is organized as follows. Section
2 presents the methodology employed to design the dataset
and the approach proposed to extract visual features from the
handwriting exams. Section 3 states the experimental results
and discussion, and Section 4 states conclusions and future
works.

2. Materials and methods

In this section, we present the dataset built in this work, as
well as the proposed approach to extract visual features from
the exams.

2.1. HandPD dataset

The HandPD dataset was collected at the Faculty of Medicine
of Botucatu, Sao Paulo State University, Brazil. It is composed
of images extracted from handwriting exams of 92 individu-
als, divided in two groups: (i) the first one contains 18 exams
of healthy people, named control group, with 6 male subjects
and 12 female individuals; (ii) the second group contains 74
exams of people affected with Parkinson’s disease, named
patient group, having 59 male and 15 female subjects. There-
fore, 80.44% of the dataset is composed of patients, and 19.56%
is composed of control individuals. Although the dataset is un-
balanced, it is easier to achieve similar proportions by adding
more control individuals than patients.

The control group is composed of 16 right-handed and 2
left-handed individuals, with an average age of 44.22 + 16.53
years. In regard to the patient group, we have 69 right-handed
and 5 left-handed individuals with an averageage of 58.75 £7.51
years. Therefore, one can observe that the dataset is not age-
biased, which provides an interesting scenario for learning
purposes. In fact, most patients are considerably older than 60
years, since Parkinson’s disease usually gets worse within this
age group. On the other hand, the dataset is heterogeneous
enough to contain a 38-year-old male patient as well.

In order to compose the dataset, each subject is asked to
fill a form in order to fulfill some task, such as drawing circles,
spirals and meanders. Fig. 1a displays an exam of a 56-year-
old male patient, in which we can observe the tremor inherent
to Parkinson’s disease. Note that the patient is required to
perform 6 distinct activities (Fig. 1a—f), which consist in the rep-
etition of several operations in accordance with certain
drawings. However, the analysis of the images will be focused
on tasks c¢ and d only, which are related to drawing 4 spirals
and 4 meanders according to the template. Fig. 1b depicts an
empty form, in which one can observe the templates regard-
ing spirals and meanders.

After being filled out, the forms are digitized for the further
extraction of spirals and meanders. Such step is performed by

hand, where each drawing is cropped to its minimum bound-
ing box (or close to it). Soon after, the cropped spiral and
meander images are numbered a follows: 1, 2, 3, 4 concern-
ing the spirals from left to right, and 5, 6, 7, 8 concerning the
meanders from left to right. Therefore, the entire dataset is com-
posed of 736 images labeled in two groups: patients (296) and
control (72). Also, the dataset comprises 368 images from each
drawing, i.e., spirals and meanders. The reader can refer to the
HandPD home-page for more technical details about organi-
zation of the dataset.

2.2.  Feature extraction from visual description

In this section, we describe the methodology used to extract
the features and keypoints from spiral and meander forms. In
order to fulfill this task, we split the proposed methodology
in two stages: (i) image preprocessing and (ii) the feature ex-
traction. In the first stage (Section 2.2.1), we design an approach
to automatically separate the handwritten trace (HT) from the
exam template (ET), considering both spirals and meanders,
since the images are not registered to each other. Soon after,
in the second stage (Section 2.2.2), we used the HT and ET ex-
tracted from images to compute the visual features.

2.2.1. Handwritten trace and exam template

In order to extract both HT and ET, we merged some classical
image processing techniques such as blurring filters and math-
ematical morphology, with the process of extracting either HT
or ET contours performed separately. Since the images were
digitized, we applied a preprocessing step to reduce noise and
undesirable artifacts by means of a 5 x 5 mean filter.? Later on,
we extracted the exam template by applying a thresholding
in the smoothened image, aiming to obtain a binary mask
Mir(I). This step is performed as follows:

0 if R(I)<100 AGi(I)< 100 A Bi(I) < 100
1 otherwise,

Mir (D)= { (1)

where R{(I), G(I) and B(I) stand for the value of pixel i of the
input image I considering the channels “Red”, “Green” and
“Blue”, respectively. If Equation 1 is satisfied, the foreground
(ET) pixels will be set to 0 (“black” color), and the background
pixels will be set to 1 (“white” color), as displayed in Fig. 3. Since
the ET in the original image is supposed to be black or near-
black (the original—empty—form is colorless), it is reasonable
to assume low brightness values for such pixels when looking
for the form itself. Finally, we applied an opening operation
(erosion followed by a dilation) to guarantee a fully con-
nected ET. Fig. 2 shows the proposed pipeline for the ET
extraction.

In regard to the HT extraction step, we employed a similar
methodology to the one used to extract the ET, but now with
some additional steps and a different thresholding method,
since both HT and the background are blue-colored due to the
digitation process. First, we applied a 5 x 5 mean filter fol-
lowed by a 5 x5 median filter to smooth the image in order

2 Notice that the size of this convolutional kernel was set up
empirically.
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Fig. 1 - Handwriting exams (a) filled out by a 56-year-old PD patient, and (b) an empty exam with the templates.

to reduce noise and small artifacts, mainly those around the
HT’s borders (once again, both filter sizes were determined em-
pirically). Further, the filtered image F is thresholded using the
following equation:

255 if |RY(F) - G'(F)| < 40 A|R'(F) - B'(F)| < 40 A
M (F) = AlG'-Bi|< 40 @)
Fi  otherwise,

blur l Threshold I erode | g dilate I
> \ — >

)
.
Output image
blur Threshold erode dilate
—
> > —

Input image Output image

Fig. 2 - Image processing steps concerning ET extraction.
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Fig. 4 - Spiral and meander images and their corresponding HT and ET extracted using the proposed methodology for a (a)

spiral and a (b) meander.

where F represents the brightness of pixel i. The intuitive idea
behind this step is to remove pixels with quasi-similar values
for the three channels (i.e., background pixels), and to main-
tain pixels with considerable differences between the channels
(foreground—HT—pixels). Fig. 3 shows the proposed pipeline
for the HT extraction®. As a matter of fact, the fixed thresh-
olds employed in this work obtained better results than some
automatic approaches. Although they may not work well with

3 Notice that the value 255 in Equation 2 stands for the triplet
(255, 255, 255), since we have an RGB image as the result of

thresholding operation.

images acquired from a different procedure to the one used
here, they seemed to be very suitable concerning the proto-
col adopted in this work.

Fig. 4 illustrates a spiral and a meander image and their cor-
responding ET and HT extracted using the proposed
methodology. One can observe the quality of both template and
trace extracted from the images.

2.2.2. Feature extraction

The feature extraction step aims at describing both HT and ET,
and then to compare them in order to evaluate the “amount
of difference” between the two images. In fact, this differ-
ence among images is computed over points sampled at the
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Fig. 6 - Sampling process: (a) a certain region with discontinuities, and (b) the proposed fair sampling process. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

very same positions considering HT and ET images. At each
point, we extracted a set of features that will represent the
whole template or handwritten trace. First, we need a concise
and compact representation of both HT and ET, which is ac-
complished here by means of the skeleton of the thresholded
images. Therefore, we extracted the skeleton of HT and ET
images based on the Zhang-Suen thinning algorithm [23], which
consists of two parallel routines: (i) to remove the south-east
boundary points and the north-west corner points, and (ii) to
remove the north-west boundary points and the south-east
corner points. Fig. 5 depicts the thinning result of the spiral
and meander templates, as well as the handwritten trace.

Even after the pre-processing step, the template and hand-
written images may contain small discontinuities (blue lines
in Fig. 6(a)). Therefore, we need to select the sample points from
the template and handwritten spiral/meander very carefully.
As such, points in regions that contain discontinuities should
be discarded. This phase is crucial, since it has a consider-
able influence in the feature extraction step, which may affect
the learning process as well.

In regard to the selection of sampled points, we trace 360
rays® from the center of the spiral/meander to the image
borders. For this task, we created two empty lists: (i) tem-
plate points and (ii) handwritten points. The ray tracing process
begin from the more extern point of the spiral or the meander.
For each ray, we capture its intersections with the template
and the handwritten trace, and if this ray intercepts only one
of the images, this point is discarded; otherwise, the pair of
points is inserted in their respective list of points (template
or handwritten). Therefore, with the aforementioned proce-
dure, we can guarantee a fair sampling by considering only
points presented in both images. Fig. 6(b) shows a thinned
meander with overlapped traces (template and handwrit-
ten), as well as the highlighted sampling points obtained by
means of the proposed fair sampling process.

* Notice that the value 360 was obtained empirically, since this
amount of sampling points has showed a good trade-off between
efficiency and accuracy.
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)

Fig. 7 - Some random points and the straight lines
representing their connections with the spiral’s and
meander’s center point. (For interpretation of the
references to color in this figure legend, the reader is
referred to the web version of this article.)

Further in the sampling process, we then extract nine
numeric features from each skeleton (i.e., HT and ET) by mea-
suring the statistical differences between them. However, prior
to the feature description, we introduce to the reader the defi-
nition of “radius” of a spiral or meander point, which is basically
the length of the straight line that connects this point to the
center of the spiral or meander, as displayed in Fig. 7. The “red”
point stands for the spiral’s or meander’s center, being some
random (“white”) points connected to the thinned spiral (skel-
eton) through the arrows with straight lines.

A brief description of each feature is given below:

¢ fi: Root Mean Square (RMS) of the difference between HT
and ET radius. The RMS is computed as follows:

1a
RMS = Ez (TIEIT —Ter )2 ) ©)
i1

where n is the number of sample points drawn from each
HT and ET skeleton, and rir and ri; denote the HT and ET
radius considering the i-th sampled point, respectively.

¢ f,: the maximum difference between HT and ET radius, i.e.:

Ay = argmax {[rir — rix[}; @)

e f3: the minimum difference between HT and ET radius,
ie.

Apin = argmin{[fir — rir
i

b )

¢ fi: the standard deviation of the differences between HT and
ET radius;

¢ fs: Mean Relative Tremor (MRT): Pereira et al. [22] proposed
this quantitative evaluation to measure the “amount of
tremor” of a given individual’s HT, being defined as the mean
difference between the radius of a given sample and its d
left-nearest neighbors. The MRT is computed as follows:

1 &
MRT = mzd‘ [rir — i, (6)

where d is the displacement of the sample points used to
compute the radius difference.” The following three fea-

i-d+1

tures are computed based on the relative tremor [t — ri?
e fe: the maximum ET;
e f;: the minimum ET;
¢ fg: the standard deviation of ET values;
¢ fo: the number of times the difference between HT and ET
radius changes from negative to positive, or vice-versa.

)

Finally, the features were normalized as follows:

fr = fi _.#i ) )

O

where f/ denotes the normalized version of feature f;, and u;
and o; stand for the average and standard deviation of feature
fiyi=1,2,..,9.

3. Experiments and results

In this section, we present the experimental results to access
the robustness of the proposed dataset and feature extrac-
tion approach.® Also, we evaluate three pattern recognition
techniques: Naive Bayes (NB), Optimum-Path Forest (OPF), and
Support Vector Machines with Radial Basis Function (SVM-
RBF). Note that the kernel parameters concerning SVM are
optimized through cross-validation. In regard to OPF, we used
LibOPF [24], and with respect to NB and SVM, we used scikit-
learn [25].

In order to evaluate the proposed approach, we performed
three different rounds of experiments. The first one (Section
3.1) uses 75% of the dataset for training purposes and the re-
maining 25% for the classification phase. However, instead of
partitioning the dataset randomly, we created four subsets in
order to guarantee that each individual will be represented in
the dataset with its 3 spirals/meanders, with the remaining
one being used for classification purposes. In this experi-
ment, the spiral- and meander-based datasets are used
individually. In the second experiment (Section 3.2), we decided
to conduct a cross-validation procedure with 20 runnings. Now,
we no longer guarantee each individual will be represented in
both training and test sets. In the third round (Section 3.3), we
conducted some experiments in order to check whether we
can benefit from the learning process over spirals and mean-
ders in one single approach, i.e. by using them together. Finally,
we present a discussion about the experiments, as well as some
insights about this research.

3.1.  Experiment 1

Since each individual contains four spirals/meanders in the
datasets, we employed a constrained hold-out approach to

° In this work, we used d ={1, 3, 5, 7, 10, 15, 20}, with d = 10 being
the one that maximized the PD recognition rate.

¢ The proposed dataset and the extracted features are available
at http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd.
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Table 1 - Experimental results considering the spiral-
based dataset.

OPF NB SVM

Table 3 — Average results considering the spiral-based

dataset and a cross-validation with 20 runnings.
OPF NB SVM

31.94% +5.32
76.35% +3.22
54.15% + 3.58

62.50% + 5.32
69.26% +7.18
65.88% + 4.57

2.78% £ 5.56
99.66% + 0.68
51.22% £ 2.91

Control group
Patient group
Global

26.39% £ 9.17
78.58% £ 5.02
52.48% + 5.32

65.56% + 11.48
62.91% + 12.65
64.23% +7.11

1.67% +4.07
98.65% + 4.34
50.16% £ 1.71

Control group
Patient group
Global

guarantee that each of them will be represented in both train-
ing and testing sets concerning both spiral- and meander-
based datasets. Tables 1 and 2 display the mean recognition
rates considering all four configurations of training and test
sets for the spiral- and meander-based datasets, respectively.
One can observe that NB obtained the best global results con-
cerning Spiral dataset, while SVM achieved the best results over
Meander dataset. Notice that the global accuracy is the one pro-
posed by Papa et al. [15], which considers unbalanced datasets,
while the recognition rates per class (i.e. Control and Patient
groups) are computed using the standard approach (the ratio
between correct classifications and the total number of samples
for that specific class). The values in bold stand for the most
accurate ones considering the standard deviation only. As afore-
mentioned, in this round of experiments we used a similar
approach to a 4-fold cross-validation, but we ensured that we
have three drawings for the same individual for training pur-
poses. Therefore, we can guarantee all individuals are
represented in both training and test sets. However, as we have
only four accuracy values to compute the mean recognition
rates and their standard deviation, we did not employ any
robust statistical evaluation in this experiment.

Curiously, a different behavior considering each classifier
and both datasets can be observed. Note that OPF obtained
better results over meander dataset when compared to the
spirals dataset, while NB holds the opposite situation. Such situ-
ation motivated us to consider a bag-of-classifiers in order to
check whether a combination among all classifiers will make
the results better or not (Section 3.3).

3.2. Experiment 2

In this section, we consider a cross-validation procedure with
20 runnings to assess the robustness of the proposed ap-
proach under a different scenario. Therefore, we can no longer
guarantee each individual will be represented in both train-
ing and test sets, but we can obtain more conclusive results
by means of the Wilcoxon signed-rank statistical test [26]. In
this work, we used a significance of 0.05. Tables 3 and 4 present
the mean recognition rates considering spiral- and meander-
based datasets, respectively. Once again, we can observe results
very similar to the ones obtained in the previous section. The

Table 2 - Experimental results considering the
meander-based dataset.

OPF NB SVM

values in bold stand for the most accurate techniques con-
sidering the aforementioned statistical evaluation.

Since the dataset is dominated by patients, all classifiers
achieved better recognition rates for that class, except for NB
considering spiral and meander datasets. In fact, with respect
to this classifier, the accuracy rates per class were similar to
each other considering the spiral dataset, but considerably dis-
tinct with respect to meanders. NB seemed to better manage
control individuals, but we can also observe the highest stan-
dard deviations for this classifier as well.

3.3. Experiment 3

In this section, we conducted an experiment to check whether
we can benefit from information learned from both draw-
ings. We used a standard majority voting for each classifier,
and in case of ties, we opted to use the classification given by
the meanders dataset, since it has been the most accurate
(Section 3.2). Table 5 presents the mean accurate rates for each
class, as well as the global accuracy. Notice that we used the
very same sets employed in the first experiment (Section 3.1),
since we can guarantee that both spiral and meander ana-
lyzed at a given time step of the classification algorithm come
from the same individual.

The results evidenced that one may not benefit from the
combined information between spirals and meanders, since
the results are now worse than the ones obtained with me-
anders only. The main problem is related to the inconsistency
among samples from the control and patient groups. That
means we can not observe that different drawings can help
each other since we have inconsistencies at the very same exam
for different patients. In the next section we discuss such state-
ments in more details.

Table 4 - Average results considering the meander-
based dataset and a cross-validation with 20 runnings.
OPF NB SVM
32.78% + 12.08

82.30% +3.72
57.54% + 6.35

80.83% * 16.37
37.57% £ 22.83
59.20% £ 4.78

36.94% + 10.71
96.49% + 2.50
66.72% + 5.33

Control group
Patient group
Global

Table 5 - Average results considering the combination

process between spirals and meanders using the
constrained 4-fold approach.

OPF NB SVM

34.72% +8.33
85.81% £ 4.20
60.27% + 4.02

20.83% *+ 41.67
79.73% + 33.34
50.28% +4.18

36.11% £ 9.62
96.62% * 2.59
66.37% + 4.01

Control group
Patient group
Global

64.96% * 16.29
60.23% +4.73
55.86% + 3.63

27.30% * 37.36
70.36% + 39.08
45.79% + 4.15

12.50% + 25.00
96.49% + 2.50
58.61% + 2.84

Control group
Patient group
Global
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Fig. 8 - Spirals from the control group (a, b) and from the patient group (c, d).

3.4. Discussion

The experiments conducted in this paper may drive us to three
main conclusions: (i) first, to ensure that we have the very same
patient in both training and testing sets does not seem to benefit
the final classification rates, since the results obtained in
Sections 3.1 and 3.2 were very similar to each other; (ii) second,
meanders can provide more reliable recognition rates; and (iii)
finally, it seems the combination of information provided by
both spirals and meanders does not benefit the final classifi-
cation rates.

The main problem related to PD automatic recognition is
the patients in the initial stage of the disease, since they often
do not present any symptoms related to tremors. Fig. 8 depicts
some examples of spirals from both control and patient groups.
If we consider Fig. 8b and 8c, for instance, the former belongs
to a control individual, and the latter belongs to a patient.
Clearly, the patient exam looks like from someone who is not
affected by the disease, i.e,, it is very similar to Fig. 8a. The high
variability of the dataset may lead the classifiers to errors as
well. However, the main idea in designing such dataset is to
capture such sort of problems, which are not straightforward
to solve. Obviously, Fig. 8d is easier to be labeled as patient than
Fig. 8c, but the opposite situation is not true. Actually, the main
problem is when Fig. 8c is represented in the training set, not
in the test set. In the former situation, this exam has a high
probability to be an outlier, thus leading the learning process
to mistakes in the classification phase. The latter situation
usually only affects that sample only, i.e. it will be probably
labeled as control. Although it may decrease the overall clas-
sification rate, the major problem is related to the fact that such
exam will be a false negative, thus postponing the treatment
of the disease.

Fig. 9 displays some meanders from both control and patient
groups. A similar situation to the one faced with spirals can

also be observed with meanders. The high variability of the
dataset makes the classifiers more prone to errors, thus turning
the problem of identifying PD in the early stages quite com-
plicated. However, the proposed approach obtained =67% of
recognition rates using meanders, which we consider a very
suitable result. As aforementioned, we have not noticed any
particular image-based dataset available in the internet, as well
as with the proposed pipeline for feature extraction adopted
in this work.

4, Conclusion

In this paper, we dealt with the problem of Parkinson’s Disease
recognition by combining machine learning and computer
vision techniques. The main contributions are related to the
design of a new dataset that contains images from both spirals
and meanders, which are cropped out from digitized hand-
written exams, and we proposed a pipeline that can deal with
the problem of learning from non-registered images. The pro-
posed approach can automatically extract both the template
and the handwritten trace from each exam for further feature
extraction and classification.

The experimental results can lead us to conclude that me-
anders are more informative than spirals, since the latter pose
a greater challenge due to the contours inherent to their shape.
Also, the combination of both approaches did not seem to
improve the results. The main problem is related to the high
variability of the dataset, which comprises patients at the very
early stages of the disease, thus being very difficult to be di-
agnosed. In regard to future works, we intend to increase the
dataset with more samples from the control group, as well as
to design new features that can better distinguish between
control individuals and patients.

—

P~ A

(a) (b)

E

(c) (d)

Fig. 9 - Meanders from the control group (a, b) and from the patient group (c, d).
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