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This paper presents a study on the dynamic analysis of rotors mounted on composite shafts. The dynamic
analysis of these rotors differs from conventional analysis due to the existence of internal damping in the
shaft. The shafts are made of composite materials, which exhibit viscoelastic behavior. The equations of
motion for these rotors represent the influence of internal damping on the dynamic behavior of the rotor
system. Composite materials can be manufactured using different layups. This study reviews the method-
ology that can be used to predict the equivalent mechanical properties of composite shafts. Several finite
element simulations are presented to show the influence of the composite shaft layup on the dynamic
behavior of the rotor. The simulation results are used to present the influence of the layup on
Campbell diagrams, critical speeds, instability thresholds and frequency response functions.
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1. Introduction

Recent decades have seen the increasing use of composite
materials in engineering applications. Among these materials, car-
bon fiber composites have been used in the naval, military, aero-
space and automotive industries [1,2]. This increase is due to
their excellent mechanical properties, such as high strength-to-
weight ratios, very high ratios of the modulus of elasticity to
weight, high fatigue strength [3], light weight, good corrosion
resistance and very low coefficients of thermal expansion. Some
of these properties are highly relevant to the development of rotat-
ing machinery, especially for rotor shafts under fatigue and high
torque [3]. Several studies have used composite materials to
improve the efficiency of rotating machinery [4,5]. Some current
applications include drive shafts in helicopters, ships and cars
[6-8].

The design of rotor axes or other structures, such as helicopters
blades and wind turbine rotors, need to be carefully design because
to high levels of oscillatory loads [9]. The designer can optimize the
structure by adjusting the mechanical properties of the composite
material through the choice of an appropriate layup. These proper-
ties affect the dynamic behavior of the rotor by changing the nat-
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ural frequency and, consequently, the critical speed and instability
threshold [10].

Carbon fiber composites are classified as viscoelastic materials,
which have high internal damping compared to metallic materials.
The existence of this damping, turns the prediction of natural fre-
quencies difficult instead of using static stiffness [11]. In a rotor
system, the presence of damping from an external source, such
as certain types of bearings, is beneficial because damping pro-
motes stability [12]. The opposite situation occurs when the damp-
ing occurs in the rotor shaft. Although shaft damping may reduce
the vibration amplitude at subcritical speeds, instability often
occurs in the rotor at supercritical speeds. Because many rotating
machines operate at supercritical speeds, it is necessary to charac-
terize the dynamics of composite shafts to make such applications
possible. Different methods have demonstrated that it is possible
to choose lamination sequences that increase the critical speed of
a shaft, often extending the range of stable operating conditions
[13,14].

As in [7,15], this paper uses classical laminate theory (CLT) to
predict the internal damping and Young’s modulus of composite
shafts. A dynamic analysis is performed of rotors with internal
damping; this analysis differs from the traditional approach for
rotors because the viscoelastic material properties are a function
of many parameters, such as the frequency of excitation and tem-
perature [16]. The hygrothermal environment around the shaft
also can influence the behavior and the properties in composite


http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2017.01.078&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2017.01.078
mailto:eng.willy.mendonca@gmail.com
http://dx.doi.org/10.1016/j.compstruct.2017.01.078
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct

W.R. De P. Mendonga et al./Composite Structures 167 (2017) 50-62 51

shafts, many studies are been carried out in this [17,18]. A series of
numerical simulations is then performed to evaluate the influence
of the laminate layup on the mechanical properties of the compos-
ite shaft; additional simulations demonstrate the influence of these
properties on the dynamic behavior of the rotor. Finally, results are
shown from rotor dynamic simulations of shafts made with differ-
ent materials, including steel, aluminum, titanium and carbon fiber
composite. These simulations can be related to a modal analysis of
composites structures, like other authors presents [19,20].

The aim of this study is to improve the understanding of the
dynamics of rotors with composite shafts through simulations
based on existing methodologies, thus demonstrating the limits
of technology and enabling the development of strategies to
improve the selection of composite layups using optimization
algorithms.

2. Predicting the mechanical properties of composite shafts

With increasing use of composite materials, there has been a
growing interest in manufacturing process. There are many tech-
niques, such as: hand lay-up, filament winding, pultrusion and
resin transfer molding (RTM) [21]. Normally, these layers are
wound on a cylindrical mandrel. Based on the Young’s modulus
of each ply, together with the direction and position of the plies
in the stacking sequence, it is possible to predict the mechanical
properties of a shaft.

CLT provides expressions for the calculation of the equivalent
modulus of elasticity of a laminate [15]. This process is described
in detail by Daniel and Ishai [5]. Fig. 1(a) shows a laminate tube
and the global coordinate system adopted. Fig. 1(b) shows the lam-
inate for which the properties are estimated. The total thickness of
the laminate (t) is obtained from the difference between the exter-
nal radius (Re) and the inner radius (Ri) of the tube. Fig. 1(c) illus-
trates the local and global fiber coordinate systems. The coordinate
transformation is performed as a function of the angle 6 between
these systems.

From the CLT are known relations to obtain the equivalent mod-
ulus of elasticity for thin-walled laminates as demonstrated by
Daniel and Ishai [22]. For a unidirectional lamina under plane
stress state the relation stress=strain to an especially orthotropic
lamina is:

{o} =15"{e} = [Q){e} (1)
where
1
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the subscript 1 and 2 take reference to coordinate system of fiber as
illustrate in Fig. 1.

The transformation to the laminate coordinate system is
obtained by:

[Q=m'Qm’ 3)
where
m?>  n? 2mn
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and m = cos6,n = sin 6. (4)

The resulting efforts in the plane are related to the deformation
of the median plane by expression:

N A B]|&°
= (©)
M B DJ|k
where N and M are stress and moment resultants per unit length, &
and k are strains and curvature, at the mid-plane.
The matrices A, B and D are extensional stiffiness, coupling

stiffiness and bending stiffiness respectively, which are calculate
as:

Aj = ZQS(h;h/ﬁl) ©
k=1
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with i,j =X, y, s and Qf-]‘. is reduced stiffiness matrix for each ply.
In this work the equivalent modulus of laminate was obtained

as:
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where q;; is the compliance matrix obtained from inverse of matrix
[ABD].

Several studies describe the methodology for calculating the
equivalent modulus of laminated tubes using CLT [23,24]. Besides
of CLT, other procedures like dimensional reduction method based
on polynomials and Rayleigh-Ritz method is presented by other
author to obtain the cross-sectional properties [25,26].

In this work, the evaluation of the specific damping capacity
(SDC) is based on the formulation developed by Ni and Adams

B) c)

Fig. 1. Coordinate systems.
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[27], which uses CLT to obtain the equivalent damping of the lam-
inate. The total damping in Eq. (10) is the sum of the directional
components derived using Eqs. (11)-(13).

:wx+¢y+l//xy (10)

‘plaminate

3
—h)m;

(11)

2
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lpxy Z Ql,:xdxx + Ql,:y Xy + stdss)(zmknkdxx mknkdss)

x (hi - hi,])mknk (13)

Consider a multilayered composite shaft made of “P” orthotro-
pic layers. If the layup is symmetric the shaft has a typical
beam behavior and can be modeled by using classical beam theory
associated the homogenized stiffness parameters. If the layup is
non-symmetric, mechanical coupling effects such as bending-
stretching, twisting-stretching and shear-stretching will be
present [10,28]. In this article the effects due to couplings were
neglected.

3. Dynamic analysis of a rotor with internal damping

Viscoelastic materials, such as the rotors used in this study,
experience high internal damping compared to metallic materials.
This behavior is due to the composite constituents: carbon fiber
exhibits elastic behavior and epoxy resin possesses viscous behav-
ior [16]. Understanding the influence of the internal damping [11]
of the shafts on the dynamic behavior of the rotor is essential for
proper design and application to provide the mechanical benefits
already described. Therefore, it is necessary to use a detailed math-
ematical model that considers the effect of internal damping in the
shaft on the rotor’s dynamic behavior. The [29] presents ways for
determine the damping parameters, using measurements tech-
niques applied in laminated composite materials.

Dynamic rotor analysis differs from the traditional analysis due
to the damping of the rotating components, which is due to two
internal dynamic mechanisms. The first mechanism is energy dis-
sipation, which occurs in each cycle of the shaft as the shaft is sub-
jected to alternating stresses. Due to internal damping, the elastic
modulus of the material can be represented mathematically in
complex form [30]. This behavior is represented by the damping
matrix [Cr] in Eq. (14). The second mechanism is the transfer of
energy from the spinning system to vibration. This behavior is rep-
resented by the circulatory matrix [H] in Eq. (14). This mechanism
is proportional to the rotational speed of the rotor.

3.1. Equations of motion

According to Genta [31], the general equation of motion pre-
sented in Eq. (14) in the complex form is valid when the displace-
ments and unbalance are small, allowing the equation of motion to
be linearized and maintaining consistency with conventional
structural dynamics. In this equation of motion, the rotor is consid-
ered axially symmetric to the axis of rotation, which rotates at a
constant speed Qr.

[MIX(t) + [Co + NG = IG(Qn)]X(1) + [K = iNH(Qe)Ix(t) = f(£)  (14)

The Eq. (14) represents a class of rotors whose axis produces
internal damping, where {x(t)} is a vector of generalized coordi-
nates; [M] is the symmetric mass matrix; [C,] is the symmetric
damping matrix for the non-rotating structures, such as bearings;
[C;] is the damping matrix for the elements of the rotating axis;
[G(Qr)] is the skew-symmetric gyroscopic matrix related to the
rotational speed of the rotor; [K] is the symmetric stiffness matrix;
[H (Qe)] is the anti-symmetric circulatory matrix, which is depen-
dent on the excitation frequency; {f(t)} is a time-dependent vector
that contains all of the forces acting on the system; and m is the
loss factor associated with the internal damping of the shaft [29].
These matrices are widely used in the literature, except for [C;]
and [H(Qe)], which are related to the matrix [K]: [C,] is identical
to [K], and [H()] is anti-symmetric to [K].

Eq. (14) can be written in the state space form as shown in Eq.
(15).

AKq(O)} + BRa(®)} = (O} (15)

where matrices A and B are

] = {[Cn+f1Cr+G(Qr)] [M]} B - {[K+11H(Qe)] 0]

(M] (0] (0] —[M]
(16)
and the state vector q(t) and force vector F(t) are
_ [0} _[x()
oy = {0 | @0 ={} (a7)

3.2. Free vibration analysis

To carry out a free vibration analysis of the system, it is neces-
sary to determine the eigenvalues and their associated eigenvec-
tors [32-34]. Through the eigenvalues, it is possible to evaluate
the natural frequencies, the damping parameters and the rotor sta-
bility and to generate the Campbell diagram, which shows the crit-
ical speeds of the rotor. The vibration modes and orbits are
obtained from the eigenvectors. Due to the existence of anti-
symmetric matrices in Eq. (16), unlike in conventional eigenvalue
analysis, the adjoint problem must also be solved. The solution
shown in Eq. (18) is assumed:

qt) =@ - (18)
For free vibration, {F (t)} =0 and

0= (20} 0= (%)

Eq. (15) can be rewritten as
[S[A] + [B)]® = {0}, with 1=—-s=—jQ (20)
The existence of the anti-symmetric matrices [G(Q;)] and [H

(Q¢)] results in two eigenvectors, called the right and left eigenvec-
tors, as shown in Eq. (21).

[B] - ®; = ;- [A]- ®; and [B]" - ¥; = 4[A]" - ¥ (21)
where ; is the eigenvalue
Ai il . . .
O = { {9k } is the righteigen vector (22)
{8}
Ai il . .
v, = { {;‘p}}’ } is the lefteigen vector (23)

The modal matrices are obtained by organizing the eigenvectors
into columns. Note that there are two systems for the rotation
modal matrices, one right [®@] and the other left [\V].
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[D] = [Dy; Dy;..... ; Dy] (24)

(V] =[W1; W25 .. s W] (25)

The eigenvectors may be orthonormalized using the relation-
ships in Eq. (26). For orthonormalization, the diagonal matrix [a]
= [P]TA][®] is used.

®;/+/a; and i/ v/a; (26)

Using this transformation, it is possible to verify the properties
expressed in Eqgs. (27) and (28).

[T A)[®] = [N 27)

[¥]'[B[@] = [A] (28)

where [I] is the identity matrix and [A] is a diagonal matrix of the
eigenvalues.

3.3. Campbell diagram

The Campbell diagram may be generated in two ways, depend-
ing on the type of excitation applied to the rotor. These two meth-
ods were explored by Espindola and Floody [35]. Eq. (14) shows
that the rotor equation of motion is dependent on its spin speed
(Qr) and excitation frequency (Qe). In the first case, where
Qe # Qr, an auxiliary Campbell diagram (Fn x Qe) is created for
each rotor spin speed. The natural frequencies are determined from
a straight line obtained from the equality Fn = Qe. These natural
frequencies are used to generate the final Campbell diagram
(Fn x Qr). Fig. 2 shows the construction of the final Campbell dia-
gram; two auxiliary diagrams are presented for rotations of 200
and 600 rev/min.

In the second case, where Qe = Qr, a simplified Campbell dia-
gram is constructed according to Espindola and Bavastri [36]. In
this case, the excitation is due to an imbalance, so the excitation
frequency is equal to the rotor spin speed. Eq. (14) becomes depen-
dent on a single frequency, so that the Campbell diagram is
obtained in a single step, similar to the creation of the auxiliary
Campbell diagram.

3.4. Unbalance excitation and the frequency response function

The unbalance is used to demonstrate the methodology for the
frequency response function (FRF). In this case, Qe = Q,. The q(t)
coordinates in the state vector of Eq. (15) are determined from a
linear combination of the right eigenvector- ® modal coordinates
multiplied by p;(t), as shown in Eq. (29).

N
qa(t) =Y ;- pit) = [@] - p(t) (29)
i=1

Substituting this relation into Eq. (15) and pre-multiplying by
the transpose of the left eigenvector, the following equation is
obtained.

[P]" - [A]- [®] - p(t) + [P - [B- [®] - p(t) = [¥]" - f(¢) (30)
Combining the orthonormalization properties from Eqs. (27)

and (28) with Eq. (15) gives

- p(6) + [A] - p(6) = () 31

where n(t)=[¥]"f(t) is the modal excitation vector. Eq. (31)
describes a group of independent modal equations that can be rep-
resented as in Eq. (32) for a specific mode:

pi(t) + 4ip;(t) = mi(t) (32)

Using the Fourier transform, Eq. (32) is transformed to the fre-
quency domain, taking the form shown in Eq. (33).

o + [A) - P(Q) = [¥]'F(Q) (33)
Rearranging the expression gives
_ Q)
P(Q) = ol + (A (34)

After conversion to the state space using the relation in Eq. (29),
the expression takes the form

_[o)¥)" - F(©Q)

N R

(35)
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Fig. 2. Final and auxiliary Campbell diagrams.
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This can be represented in compact form as
QQ) = [(Q)] - F(Q) (36)

The matrix [o(Q)] is the receptance matrix, also known as the
characteristic matrix of the system. This matrix has complex coef-
ficients, which are frequency dependent. Each term of the recep-
tance matrix represents a relationship between a measurement
point, designated by the index s, and an excitation point, repre-
sented by the index k.

(@) = 3 Vst (37
= ]Q‘l')»i

Fig. 3 shows the case in which the excitation frequency is not
due to unbalance. In this case, a frequency response is calculated
for each rotor spin speed.

3.5. Finite element model

All results presented in this paper were obtained using the finite
element method. Three basic elements were modeled, as illus-
trated in Fig. 4. The shafts were modeled with a constant section
using two-node Rayleigh beam elements with four degrees of free-
dom: {uy, wy, 01, 1, Uz, Wo, 02, 1>}, been u and w the axial displace-

Receptance (e.u.)

e 1000

Frequency (rad/s)

1200

ments in the x and z directions, 0 and \J the slopes about the x and
z axis. The displacement field is described as:

Ux(X,Y,2) = u(y) (38)

Uy(X,y,2) = —20x(y) + Xy, (¥) 39)

Ux(X,Y,2) = W(y) (40)
Thus the deformation field may be written as follows:
0 o

Eyy V4 2y +X y (41)

ow
Yy = —0y +z@ (42)
ou
Vyx =¥z 25 (43)

This formulation takes into account the effect of the rotary iner-
tia, translational inertia, gyroscopic moments and rotational stiff-
ness and the stationary and rotational damping forces [37,38].
Other way to simulate these models, is to describe the shaft with
Timoshenko beam elements, this element provide a complete
behavior and effects due to rotary inertia and shear effect, many
works use this element [39-41].

Rotor spin
_____ speed (rev/min)

1400
1600 1800

Fig. 3. The frequency response function for several rotor spin speeds.
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Fig. 4. Finite element model.

4. Numerical simulations

All simulated results were obtained using the reference model
illustrated in Fig. 5. Table 1 shows the mechanical properties of
the two carbon fiber composites used in the simulations.

4.1. Influence of the layup on the mechanical properties of composite
shafts

In the layup of composite shafts, the sequence, quantity
and orientation of the plies influence the mechanical properties

of the laminate and, therefore, the dynamic behavior of the rotor.
In this section, simulation results demonstrate these influences
[42].

The first simulation evaluated the influence that the position of
a pair of plies in the layup sequence has on the overall mechanical
properties. Four simulations were performed in which the position
of a pair of plies oriented at +75° was varied within the layup
sequence. The results are shown in Table 2.

The results demonstrate that the elastic modulus is indepen-
dent of the position of the plies in the layup sequence. However,
the SDC is not independent of the ply configuration.

L1= 0.400 m
L2= 0.400 m
L3= 0.400 m
Ri= 0.040 m
Re= 0.048 m
Kxx= 1.0E7 N/m
Kzz= 1.0e8 N/m
Cxx= 0.000 N/m/s
Czz= 0.000 N/m/s
Ri=| 0.048[ m
Re=| 0.200) m

h=] 0.050] m

Ri=| 0.048( m
Re=| 0.150, m
=| 0.050] m
Fig. 5. The reference rotor model for the simulations.
Table 1
The materials properties used in the simulations.
Material E; [GPa] E; [GPa] G12 [GPa] Viz Vy [%] V2 [%] V12 [%]
HMS carbon-epoxy (DX-210) 172.7 7.2 3.76 0.3 0.45 4.22 7.05
Fibredux 913C 112.5 8.4 4.8 0.3 0.74 7.3 6.6
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Table 2
The mechanical properties of shafts with layer pairs in different positions.

MATERIAL: HMS carbon-epoxy (DX-210)

Layup Ex Ey Gxy Wk Uy Wy Ve
[GPa] [GPa] [GPa] [%] [%] [%] [%]
[75, -75,0,0,0,0,0,0] 131.58 43.29 6.28 0.443 0.058 0.014 0515
[0,0, 75, —75, 0, 0, 0, O] 131.58 4329 6.28 0.444 0.051 0.012 0.508
[0,0,0,0,75, —75, 0, 0] 131.58 4329 6.28 0.444 0.045 0.011 0.501
[0,0,0,0,0,0,75, —75] 131.58 4329 6.28 0.445 0.040 0.010 0.495

Several simulations were performed to predict the mechanical
properties of off-axis and angle-ply laminate configurations. The
simulations were performed for two materials. The results are
grouped in Tables 3 and 4. In the last four configurations presented
in these tables, the results demonstrate the same behavior shown
in Table 2.

For the off-axis and angle-ply stacking sequences, it was possi-
ble to determine the variation in the mechanical properties as a
function of the orientation of the plies. Fig. 6 shows the results
for the elastic modulus, and Fig. 7 shows the results for the SDC.
The differences between the off-axis and angle-ply results can be
observed in Fig. 6; the off-axis configuration has greater variation

Table 3
Predicted mechanical properties.

in the elastic modulus and less variation in the shear modulus.
Fig. 7 shows that the maximum damping occurs at different angles
in the two materials. This is due to the distinct damping properties
of the materials. In Table 2, it can be seen that in the first material,
the \r;, damping component is greater than the other components.

4.2. Layup influence on the rotor dynamic behavior

Several parameters are used to dynamically characterize a rotor,
the most important of which are the critical speed and the instabil-
ity threshold [43]. In this section, simulations are described that
demonstrate the influence of the layup on the rotor dynamic

MATERIAL: HMS carbon-epoxy (DX-210)

Layup Ex E, Gxy Wi Wy Wiy Ve
[GPa] [GPa] [GPa] [%] [%] (%] [%]
Off-axis [0g] 172.70 7.20 3.76 0.450 0.000 0.000 0.450
[155] 4531 7.28 423 0.112 0.207 4.947 5.266
[305] 1635 7.83 5.63 0.054 0.885 4.719 5.658
[455] 9.82 9.82 6.75 0.039 1.745 3.525 5.309
[60g] 7.83 16.35 5.63 0.016 2.719 2.260 4.994
[755] 7.28 4531 423 0.002 3.729 0.795 4526
[90g] 7.20 172.70 3.76 0.000 4220 0.000 4220
Angle-ply [£15]2s 134.04 7.29 13.84 0.392 0.019 0.881 1.292
[£30]2s 44.97 8.20 33.99 0.253 0.264 2.644 3.161
[#45]25 1391 1391 44.06 0.112 1.055 3.525 4,693
[£60]25 8.20 4497 33.99 0.028 2.374 2.644 5.046
[£75]2s 7.29 134.04 13.84 0.002 3.674 0.881 4557
Others [45, 0, 45, 0, 90, 0, 90, 0] 92.80 51.44 11.33 0.420 0.169 0.183 0.773
[90, 45, 02]s 92.80 51.44 1133 0.421 0.166 0.170 0.757
[90, 0, 90, 45, 90, 45, 0, 90] 51.44 92.80 1133 0.382 0.454 0.309 1.145
[902, 45, 0] 51.44 92.80 1133 0.382 0.454 0.314 1.149
Table 4

Predicted mechanical properties.

MATERIAL: HMS carbon-epoxy (DX-210)

Layup Ex Ey Gyy Yy Yy Yxy Y,
[GPa] [GPa] [GPa] [%] [%] (%] [%]
Off-axis [0g] 112.50 8.40 4.80 0.740 0.000 0.000 0.740
[155] 47.71 8.59 5.28 0.284 0.288 3.811 4.382
[30s] 19.80 9.47 6.58 0.112 1.457 4.284 5.853
[455] 12.09 12.09 7.50 0.062 3.040 3.300 6.402
[60s] 9.47 19.80 6.58 0.022 4.812 2.049 6.884
[75s] 8.59 47.71 5.28 0.002 6.520 0.686 7.208
[90s] 8.40 112.50 4.80 0.000 7.300 0.000 7.300
Angle-ply [+ 5]s 92.22 8.64 10.89 0.644 0.033 0.825 1.502
[+30]2s 42.37 10.09 23.07 0.416 0.456 2.475 3.347
[245]2s 16.67 16.67 29.16 0.185 1.825 3.300 5.310
[+60],s 10.09 42.37 23.07 0.046 4.106 2.475 6.627
[£75]2s 8.64 92.22 10.89 0.003 6.355 0.825 7.183
Others [45, 0, 45, 0, 90, 0, 90, 0] 63.35 37.38 9.45 0.663 0.457 0.275 1.395
[90, 45, 02]s 63.35 37.38 9.45 0.666 0.449 0.253 1.368
[90, 0, 90, 45, 90, 45, 0, 90] 37.38 63.35 9.45 0.571 1.189 0.433 2.193
[902, 45, 0]s 37.38 63.35 9.45 0.570 1.190 0.440 2.200
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Fig. 7. SDC as a function of the fiber orientation.
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Table 5
Critical speeds and instability thresholds.
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MATERIAL: HMS carbon-epoxy (DX-210)

Layup Inst. Fw1l Inst. Fw2 Vcl Vc2
[rpm] [rpm] [rpm] [rpm]
Off-axis [0g] 13,913 >15,000 3065 7955
[15s] 3676 7649 1996 6427
[30s] 1537 5052 1232 4746
[455] 1079 3982 926 3829
[60s] 1079 3676 926 3524
[75s] 926 3371 926 3371
[90s] 926 3371 926 3371
Angle-ply [#15],s 12,538 >15,000 3218 11010
[£30]2s 3676 9635 1996 8107
[£45]2s 1385 5052 1232 4822
[£60]2s 1079 3829 926 3676
[£75]2s 926 3524 926 3524
Others [45, 0, 45, 0, 90, 0, 90, 0] 8170 13,149 2760 9482
[90, 45, 02]s 7955 13,149 2760 9482
[90, 0, 90, 45, 90, 45, 0, 90] 4288 9482 2149 7802
[902, 45, 0]s 4440 9482 2149 7802

behavior. The reference model in Fig. 5 was used for these simula-
tions. To guarantee that the effects of the rotor instability were
exclusively due to the internal damping in the shaft, no bearing
damping was included. The excitation force in these models can
be attributed only to unbalance.

Table 5 shows the results of the simulations performed. In the
first column on the left, the layup sequences are listed. The second
column contains the rotational speeds at which the system
becomes unstable at the first natural frequency; the third column
presents the same results for the second natural frequency. The
fourth and fifth columns show the first and second critical veloci-
ties, respectively.

Some interesting observations can be made from the results in
Table 5. In both the off-axis and angle-ply configurations, as the ply

angle increases, both the rotor instability threshold and critical
speed decrease.

Figs. 8-11 show the Campbell diagrams from the rotor simula-
tions. In the diagrams, four natural frequencies are plotted. The
critical speeds were identified from the intersections of the curves,
and the instability regions were obtained from the points of over-
lap with the natural frequency lines.

In Fig. 8, the regions of instability only occur above the first nat-
ural frequency. Figs. 8 and 9 show unstable regions for two natural
frequencies. It can be observed in Fig. 10 that the instabilities occur
immediately above the critical speeds. Comparing these results
with those presented in Table 3, it can be seen that the greatest sta-
bility is obtained from the simulated model shown in Fig. 8. This is
due to the lower damping (\; = 0.45%) associated with the high
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Fig. 8. Campbell diagram and instability regions for layup [0, 0, 0, 0, 0, 0, 0, 0].
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Fig. 9. Campbell diagram and instability regions for layup [15, 15, 15, 15, 15, 15, 15, 15].
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Fig. 10. Campbell diagram and instability regions for layup [45, 0, 45, 0, 90, 0, 90, 0].

modulus of elasticity (Ex = 172.7 GPa). Although the angle-ply layup because its elastic modulus (Ex = 13.91 GPa) is lower than that of
in Fig. 11 has less damping (\;; = 4.693%) than the off-axis layup in the angle-ply configuration (E, = 45.31 GPa). This analysis demon-
Fig. 9 (\ry = 5.266%), the off-axis configuration has better stability strates that it is possible to tune the dynamic behavior of the rotor.
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4.3. Layup influence on FRF

Fig. 12. FRF between nodes 5 and 9 at 14,000 rev/min.

calculated using Eq. (37). The titles of the figures describe the
parameters used in the analysis, such as the input and output

In this section, the simulation results show the influence of the nodes and the rotor spin speed. The figure legends show the layup
shaft layup on the FRF. The results plotted in Figs. 12 and 13 were used for each FREF.
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Fig. 14. FRF between nodes 5 and 9.

The main finding of this analysis is the possibility to control the
rotor deflection based on layup choice.

4.4. Influence of shaft material on FRF

Four rotors with different shaft materials were simulated. Using
the rotor model shown in Fig. 6, the FRFs were evaluated between

nodes 5 and 9 (see, Fig. 14). The shaft materials simulated were
titanium, aluminum, steel and carbon fiber composite. Their prop-
erties are shown in Table 6.

In addition to the variation in the natural frequency from the
use of the different materials, there was variation in the receptance
amplitude. The composite shafts had smaller amplitudes due to the
greater damping experienced.
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Table 6
Shaft materials.
Material E, G2 Yt p
[GPa] [GPa] [%] [kg/m’]
Titanium 107 39.9 - 4507
Steel 210 80.8 - 7800
Aluminum 71 26.5 2700

HMS carbon-epoxy (DX-210) [90, 45, 0]s 92.8 113  0.757 1446

5. Conclusion

Simulations were performed to demonstrate the influence of
the layup on the shaft equivalent mechanical properties and there-
fore the effects on the rotor dynamic behavior. The results show
the potential of the methodologies applied and the flexibility in
the use of composite materials, which enables the optimization
of the mechanical properties and improves the rotor dynamic
behavior.

The methodology used to predict the mechanical properties of
the composite shafts demonstrates that there are multiple design
alternatives, as well as many possible combinations, of the elastic
modulus and the SDC. This versatility demonstrates the suitability
of composite shafts for different designs.

The methodology for the dynamic analysis of rotors with damp-
ing shafts requires more analysis than conventional rotors because
rotors with damping shafts must be evaluated for each rotor spin
speed. In this paper, only the frequency dependency of the vis-
coelastic materials was evaluated; however, there are other impor-
tant variables. The most important is the temperature, which can
modify the mechanical properties.

Future studies should focus on the experimental evaluation of
rotors to verify the simulation results presented in this paper.
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