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Abstract The present paper studies the effects of a
powered Swing-By maneuver, considering the partic-
ular and important situations where there are energy
gains for the spacecraft. The objective is to map the
energy variations obtained from this maneuver as a
function of the three parameters that identify the pure
gravity Swing-By with a fixed mass ratio (angle of
approach, periapsis distance and velocity at periap-
sis) and the three parameters that define the impulsive
maneuver (direction, magnitude and the point where
the impulse is applied). The mathematical model used
here is the version of the restricted three-body problem
that includes the Lemaitre regularization, to increase
the accuracy of the numerical integrations. It is devel-
oped and implemented by an algorithm that obtains the
energy variation of the spacecraft with respect to the
largest primary of the system in a maneuver where the
impulse is applied inside the sphere of influence of the
secondary body, during the passage of the spacecraft.
The point of application of the impulse is a free param-
eter, as well as the direction of the impulse. The results
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make a complete map of the possibilities, including
the maximum gains of energy, but also showing alter-
natives that can be used considering particularities of
the mission.
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1 Introduction

The Swing-By maneuver is a strategy to give energy
to a spacecraft by using a close approach with a celes-
tial body. It modifies the velocity, energy and angular
momentum of the spacecraft. There are several appli-
cations for this maneuver, with the most usual one the
fuel economy in space missions. The powered Swing-
By maneuver combines the pure gravity Swing-By with
an impulse applied to the spacecraft near the close
encounter. The literature [1,2] shows a comparison
between two types of powered Swing-By: (i) a maneu-
ver where the impulse is applied exactly during the
passage of the spacecraft by the periapsis of its orbit
around the celestial body; (ii) a maneuver where the
impulse is applied after the spacecraft enters the sphere
of influence [3] of the celestial body. This is done to
verify the efficiency of both maneuvers, which means
to find the best maneuver to be made.

Based in reference [1], Casalino et al. [4] showed
a more flexible maneuver, where a constraint on the
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periapsis altitude replaces the fixed value used in ref-
erence [1], so leaving space to vary the point where
the impulse is applied. The “patched-conics” model
was used, and they showed the conditions to obtain the
maximum gains and losses of energy, depending on the
goal of the maneuver. They also showed that gains and
losses of energy have some peculiarities and need to be
addressed with some differences in the approach used
to solve the problem, so the present paper considers
only the situation where a gain of energy is desired.
Following the lines presented in references [1,4],
the present research focuses on calculating the energy
variation in a maneuver where the application of the
impulse occurs in a free point inside the sphere of influ-
ence of the secondary celestial body, as done in [4].
Therefore, the present paper makes several generaliza-
tions of those previous references, as explained next.
The production of general maps for the energy gains
given by the maneuver, as a function of all the impor-
tant parameters involved, gives more information com-
pared to the previous papers, which are concentrated in
finding the maximum gains of energy. Maximum gain
of energy is of course a very important aspect, but it is
not the only point that deserves to be studied. The geo-
metric parameters, like the angle of approach and peri-
apsis distance, are related to the whole trajectory and
the goals of the mission. So, it is interesting to choose
them considering several factors, not only the maxi-
mization of the energy variation. In that way, maps of
energy variations can help mission designers to attend
the several constraints of a mission, by given sets of
solutions for any combination of arrival parameters,
including the values for the point of application and
direction of the impulse that maximizes the energy vari-
ation. Those sets of solutions can also help to correct
errors that may occur in the trajectory injection and/or
intermediate maneuvers. Those steps may generate tra-
jectories arriving to the secondary body which may be
different from the expected ones. Those maps also show
the regions of captures and escapes of the spacecraft,
so giving different options for a given magnitude of the
impulse available, which are controlled by the direction
of the impulse and the location of the application point.
It is also important to note that several details of each
solution are shown in plots and tables, so giving all the
information required to plan a mission in advance or to
minimize problems due to errors in the arrival trajec-
tory. The solutions presented here are obtained using an
accurate model, the regularized restricted three-body
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problem, which is an important factor when consid-
ering the Earth—-Moon system. This particular system
has a high mass ratio and so introduces large errors in
the results obtained with the “patched-conics” model.
The errors increase because the spacecraft spends too
much time in intermediate regions that are not highly
dominated by one of the primaries. Those errors are
eliminated by adopting our numerical approach that
takes into account the whole three-body system. Simu-
lations are made for two different systems of primaries,
Earth—-Moon and Sun—Jupiter, to show the importance
of the mass parameter in those maneuvers. It should
be emphasized, at this point, that a global optimization
of the whole trajectory is a mandatory and important
step in this type of problem but, as done in references
[1,2,4], an analyses of the powered Swing-By part of
the mission can give several results that are useful when
making the global planning, as shown in the next parts
of the present paper. It is even possible to compensate
errors in the approach trajectory. In other words, the
results shown here give several “a priori” information
that can guide a global optimization of the mission.

2 Literature review

There are many publications in topics related to Swing-
Bys [5,6]. The Voyager mission was one of the first and
most famous mission using this concept [7,8]. Byrnes
and D’ Amario [9] studied the Galileo mission that was
sent to Jupiter. Multiple Swing-By trajectories using the
Moon were considered in reference [10]. The Ulysses
mission used this technique to observe the poles of the
Sun, by making a three-dimensional Swing-By with
Jupiter [11]. Swing-By trajectories around Jupiter and
passing near the Earth were also mapped [12,13], as
well as around the Moon [14]. Sukhanov [15] stud-
ied maneuvers of this type in the inner planets of the
solar system, before going to the Sun. Casalino et.
al. [16] studied Swing-By maneuvers to maximize the
energy of satellites. Longuski and Strange [17] devel-
oped graphical methods to design Swing-By trajecto-
ries. McConaghy et al. [18] combined low thrust with
Swing-By maneuvers. The Moons of Jupiter have been
considered for this type of mission, like making a trip
to Europa [19] or to make close approaches with all the
Galilean Moons [20,21]. Missions to Pluto can also
benefit from this concept [22]. Trajectories to Mars
using a passage by Venus are considered in Hollister
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and Prussing [23] and Striepe and Braun [24]. Another
application is described in Muhonen et al. [25]. An
analytical study was made by Broucke [26]. Aratjo et
al. [27] used the effect of Swing-By of single and mul-
tiple encounters between asteroids. Swing-By maneu-
vers combined with low thrust were considered in
Okutsu et al. [28] and Santos et al. [29]. Recent exam-
ples of missions using Swing-Bys are Messenger and
BepiColombo, both of them having the planet Mer-
cury as a target (see McNutt et al. [30,31], Grard [32]
and Jehn et al. [33]). There are also studies consider-
ing clouds of particles, instead of a single particle, as
shown in references [34-36].

3 System dynamics

The dynamical system used in the present research is
the restricted three-body problem [37-41] combined
with the regularization of Lemaitre [38]. This tech-
nique is used to increase the accuracy of the numer-
ical integrations when the spacecraft is passing near
the primaries. The system consists of three bodies: M,
the primary body; M5, the secondary body that is in a
circular orbit around Mj; and M3, a spacecraft with
a negligible mass that makes a Swing-By with M>.
The equations of motion of the restricted three-body
problem using the rotating system of reference and the
canonical system of units [38] are given by:

09 0
TTEE o
. . 0Q
V+2x=—, (2
dy
1 1 -
Q=G+ —4 B 3)
2 r r

In those equations, x and y represent the position of
the spacecraft, u the mass of the smaller body in canon-
ical units, r; the distance between M| and M3 and r;
the distance between M> and M3. Those equations of
motion depend on the potential €2, which depends on 7|
and r, in the denominator. When M3 approaches one of
the primaries, 71 or r» becomes small, and this fact may
affect the accuracy of the numerical integration. The
purpose of the regularization technique is to eliminate
these singularities, by using the technique of replac-
ing variables. Regularization can be classified as local,
when the singularities are removed one at a time, or

global, when the two singularities are eliminated simul-
taneously. Several transformations are available in the
literature, like Thiele—-Burrau, Lemaitre and Birkhoff
[38]. In this work the global regularization proposed
by Lemaitre is used, which proofed to be efficient in
this type of maneuver [12—14]. To perform the required
transformation it is necessary to introduce a complex
variable ¢ = g1 + g2i, where i is the imaginary unit,
as follows.

g1 =x+ % - “)
g =y &)

This transformation defines a new plane for the ref-
erence system (q; — q2), which has its center exactly
at the average distance between the bodies M and M>.
This is a first change of variables, but it is necessary to
make a second change of variables. For the Lemaitre
regularization, this second transformation of variables
for the position is done using the function f (w) defined
by Eq. (6). In this equation ® = w1 + iw; is the new
complex variable used to represent the position of the
spacecraft. Equation (7) defines the transformation of
time, so defining the variable 7, which is the regular-
ized time. The symbol f’(w) means the derivative of
f (w) with respect to the regularized time.

1/, 1
q—f(w)—1<w +E> (6)
ot 1"
4wl

The equation of motion for the particle with neg-
ligible mass, under the model given by the restricted
three-body problem, in the complex form (variables
q1, q2), is given by Eq. (8). Over dots mean derivative
with respect to the physical original time and U the
potential.

Jat ,
§=|f(w)‘2= (7

Gg+2ig=VU(q). ®)

This same equation of motion of the spacecraft, in
the new variables, becomes

" +2i |f/(a))| o = VO* ©)
in Eg 0) V0 ropreems 42+ 22 g
(Q_%)|f/(a))|2, with Cl —/L(l _M)_z.] and J

the Jacobi integral; o’ and w” denote first and second
derivatives of w with respect to the regularized time 7.
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Fig.1 The pure gravity Swing-By maneuver. Prado [1]

Vi

Next, it is important to look into some detail at the
pure gravity Swing-By maneuver. This maneuver needs
three independent parameters to be uniquely identified.
In the present research, the following set of parameters
is used [1]:

(1) Veo—, the magnitude of the velocity of the space-
craft when approaching the secondary bodys;
(ii) rp, the periapsis distance of the hyperbolic orbit
of the spacecraft around M>;
(iii) ¢, the angle between the periapsis line and the
line M; — M>.

Figure 1 shows some details of the pure gravity
Swing-By maneuver, as well as the most important vari-
ables used in the present paper. Since this third body has
a negligible mass, it does not interfere in the motion of
the two primaries. They travel in circular orbits around
their center of mass, in the version of the problem con-
sidered here. The spacecraft arrives at the sphere of
influence [3] of M, at the point A; travels to the peri-
apsis of its trajectory around M; (point marked P);
and then leaves the sphere of influence of M, at the
point B. At the points A and B, the influence of M,
is neglected and the two-body energy spacecraft-M is
assumed to be constant after B and before A (the orbits
are assumed to be Keplerian). Two of the initial con-
ditions are marked in Fig. 1: the periapsis distance 7,
(from the point P to the center of M>) and the angle
of approach v, counted from the M| — M line in the
counterclockwise sense. The distances are not in scale,
to provide an easier visualization of the geometry of the
maneuver. Note that only planar motions are allowed
for the spacecraft in the present research.

Remember that this maneuver changes the velocity,
energy and angular momentum of the spacecraft in its
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orbit with respect to M1, due to the close passage by
M. It is assumed that the orbits are Keplerian before
the point A and after the point B. There are equations
to measure those changes in the literature, based in the
“patched-conics” approach [26]. This approximation
divides the total maneuver into three parts, all of them
governed by the Keplerian celestial mechanics. The
first part studies the motion of the spacecraft around
M; before the close encounter, neglecting the effects
of M. When the spacecraft (M3) enters the sphere
of influence of M>, the effects of M| are neglected
and another Keplerian system is formed, now with the
bodies M3 — M,. After that, the spacecraft leaves M,
and goes back to another orbit around M;. The Kep-
lerian system M3 — M is formed again, but the new
orbit is different from the first one. The main goal of
this maneuver is to modify these two Keplerian orbits
around M. The equations used for those calculations
[26] are given by Eqgs. (10-13). Note that those equa-
tions are just a guide to the most suitable geometry for
a desired maneuver. The results shown in the present
paper are based in numerical integrations of the more
accurate restricted three-body regularized problem, as
already explained before.

-1
5 = sin”! (1 n %> (10)
142
AV =2Va_sind (1)
AE = =2V, Vs_sindsinyr (12)
AC = —2V5Viao_ sin 8 sin ¢ (13)

In those equations § is the curvature of the trajec-
tory of the spacecraft (Fig. 1), V2 is the velocity of M»
around the center of mass of the system M| — M>, AV
is the increment of velocity obtained from the close
approach, u; is the gravitational parameter of the body
M3, AE’ is the energy variation, and AC is the angular
momentum variation. Equations (12) and (13) are the
same because the angular velocity of the system is one.
The general relation is AE’ = wsAC, with wy the
angular velocity of the rotating reference frame [26].

4 Results

The results show the variation of energy of the space-
craft under different parameters of the maneuver. The
direction, magnitude and location of the impulse are
varied. The main idea is to generate maps showing the
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Fig. 2 Geometry of the powered Swing-By maneuver

variation of energy as a function of those parameters,
but, from the results obtained, it is also possible to ver-
ify the parameters that give maximum energy variation
for the maneuver, if this is the goal of the mission. It
is important to remember that the geometric parame-
ters of the maneuver (angle and velocity of approach
and periapsis distance) are given based in the unpow-
ered maneuver, because these are the parameters used
to design the incoming trajectories. The real values are
modified by the impulsive maneuver, so modifying the
target values that give maximum variations of energy.
Figure 2 describes in detail the powered maneuver con-
sidered in the present paper. The position r = (x, y)
of the point where the impulse §V is applied is spec-
ified by the true anomaly of this point with respect
to the hyperbolic orbit of M3 around M, designated
by 6. It is assumed that 8 is positive in the counter-
clockwise sense, measured from the periapsis vector
rp = (xp, yp). The darker black line represents the first
orbit, before the impulse is applied. The gray line rep-
resents the second orbit, after the impulse. The dashed
parts of the trajectories are the continuations of the two
orbits (with and without the impulse), in the parts that
do not really exist.

As shown in Fig. 2, the position where the impulse
is applied is a function of 6. This angle can be obtained
from the scalar product of the vectors 7 and r, so it is
possible to get it from

0 = cos”! <M> . (14)

rpr

The algorithm for the numerical solution of the prob-
lem is shown below.

(i) The study starts with the spacecraft placed at the
point P. This is done by getting the initial condi-
tions from the three variables that uniquely define
a Swing-By trajectory: Vs_, the magnitude of the
velocity of the spacecraft when it is approaching
the secondary body, which is transformed in V,
the magnitude of the velocity of the spacecraft
when passing by the periapsis (this transformation
is made by assuming a Keplerian orbit around M;
for this approach); r, the periapsis distance; and
¥, the angle between the line connecting the two
primaries and the line of the periapsis;

(i) From there, a numerical integration is performed
until the spacecraft reaches the point Q, shown in
Fig. 2, where the impulse is applied. This point is
defined by the angle 6;

(iii) From this point a numerical integration is made
in reverse time [42], for the first orbit without the
impulse, until a point A, far from Mj, is reached.
At point A the values of the energy (E_), veloc-
ity and angular momentum (C_) of the spacecraft
before the maneuver are obtained, using equations
from the two-body dynamics (M| — M3), which are
assumed to be valid at the point A:

_ G +E-y? -
2 ri
C_=x>4+y*+xy—yx (16)

E_

5)

(iv) The impulse 6V is applied at the point Q, form-
ing an angle o with the direction of the motion
of the spacecraft. The magnitude and direction of
the impulse are free parameters, used to reach the
desired goals of the maneuver;

(v) An integration forward in time gives the new orbit
after the impulse. The integration starts just after
the impulse is applied and goes to a point B, dis-
tant from M». At this point it is possible to obtain
the energy (E), velocity and angular momentum
(C4) of the spacecraft after the complete maneu-

Ver;
N2 ) 2
— 1—
E, = x+N"+E -y Iz a7
2 r
Ci=x*4y*+xy—yi (18)

(vi) Finally, the variations are calculated. In particular
the energy variation, the most important parameter
in the present paper, is obtained as a function of
the magnitude of the impulse (8 V), its direction «
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and the angle 6, which defines the location of the
application of the impulse. This quantity can then
be written in the form shown in Eq. (19).

AE = f(8V,a,0) (19)

Therefore, the problem is studied considering two
sets of initial conditions. The first one is to specify
the gravity maneuver, using the variable r,, ¥, Voo.
The second one defines the impulse, with the vari-
ables shown in Eq. 19. The position and velocity of
the spacecraft when located in Q are obtained by mak-
ing numerical integrations of the equations of motion
given by the restricted three-body problem, which is
more accurate than the “patched-conics” model used
before in the literature [1,4]. The integration has an
initial point at P and goes up to the position described
by the true anomaly 6. The integration is made using
negative times when 6 is negative and in positive times
when 6 is positive. The variation of energy is obtained
from the difference of the energy of the orbits before
and after the passage by the celestial body. Two sys-
tems are simulated: Earth—-Moon-spacecraft and Sun—
Jupiter-spacecraft, with the goal of investigating the
effects of the mass parameter of the system in the results
shown here.

The results of the simulations focus on the energy
variations as a function of « and 6 for different values
of ¥, 8V and r),. For all the plots, the horizontal axis
represents the variation of « and the vertical axis repre-
sents the variation of 6, both in degrees. The variables
related to some particular important cases are shown in
“Appendices 1 and 2”. They show the maximum energy
variations (A Epmax) and its corresponding data, as the
true anomaly of the point where the impulse is applied
(6), the angle between the velocity vector of the space-
craft and the direction of the impulse («), the deflection
angle (¢), the escape velocity (Voo+) and R, which is
the distance between the spacecraft and the secondary
body at the instant that the impulse is applied. Different
values for 7, are used to study the importance of this
variable in this problem in some more detail. Results
are first shown for the Earth—-Moon-spacecraft system
and then for the Sun—Jupiter-spacecraft system. The
notation used here indicates the radius of the Moon by
Ry, the radius of Jupiter by R; and canonical units
by c.u. A lower limit for the periapsis distance is not
used here, like done in reference [4], because the goal
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is to map all types of occurrences, including collisions
and escapes. But a practical limit equal to the radius of
the secondary body exists, since the collisions with the
secondary body are indicated.

4.1 Earth-Moon system

The first results are presented for the Earth—-Moon sys-
tem, in Fig. 3. It shows the energy variations for r,, =
1.02 R, ¥ = 270° and §V = 0.1,0.3,0.5,1.0, 1.5
and 2.0 km/s. This value for the angle of approach is
used because the idea is to study a situation where the
energy variation is positive and ¢ = 270° is the case of
maximum gains of energy for the unpowered maneu-
ver. The increase of the magnitude of the impulse helps
to give more energy to the spacecraft. This fact can be
seen from the scales of the color codes. The upper limit
increases very fast with the magnitude of the impulse.
This is expected, since a larger impulse can give more
energy to the system. Even considering that, the results
shown here can quantify this increase, which is not
easy to estimate due to the complex dynamics involved.
Another point visible in Fig. 3 is that the regions of
minimum energy are concentrated in the lateral bor-
ders of the figures. It means angles o near £180°,
which corresponds to apply the impulse in the direc-
tion opposite to the motion of the spacecraft. This fact
can be explained because a retrograde impulse removes
energy from the spacecraft. Figure 3 also shows that the
regions of maximum variations of energy are concen-
trated near the middle of the figures, with shifts to the
left, in the regions near « = —20°, and to the top, in
the regions near & = 50°. Those results are in agree-
ment with references [1] and [4]. These locations can
be explained by two facts: (i) an impulse with nega-
tive angles makes the spacecraft to move closer to the
body, so getting more energy from the gravity part of
the maneuver, which helps to increase the energy in a
geometry with ¢ = 270°; (ii) positive values for the
locations of the impulse make the maneuver to be per-
formed after the close approach, so getting the gains in
energy from the maneuver before modifying the trajec-
tory of the spacecraft. It is also noted that the regions
where the spacecraft is captured by the Moon are near
the borders of the plots (the blank regions in the plots),
with the impulse applied in the retrograde direction.
Those are also the regions where the minimum energy
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Fig. 3 Energy variation in kmz/sz, forr, = 1.02 Ry, ¥ = 270° and §V from 0.1 to 2.0km/s,a §V = 0.1km/s, b 6V = 0.3km/s, ¢
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rp =5.0Ry

variations are concentrated. The reason is that retro-
grade impulses remove energy from the spacecraft.

Figure 4 shows the energy variation for ¥y = 270°,
8V = 0.5 km/s and different values for the radius of
the periapsis (r,). Note that the energy variations are
in the same range. The minimum variations of energy
are located in the lateral border of the plots, for the
reasons already explained. The maximum energy vari-
ations are located near the center of the plots, with
the same shifts already observed and explained. In this
case, the increasing of the periapsis distance reduces
the gains of energy, as expected.

The effects of the angle of approach () in the
maneuver are visible from Fig. 5. It presents the energy
variation for r, = 1.02R,,, §V = 0.5 and differ-
ent values for . Because the goal of the maneu-
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ver is to get gains in energy, the interval 180° <
¥ < 360° is used, which is the region of positive
gains of energy. The results confirm the predictions
based in the “patched-conics” approach, and maneu-
vers with ¥ = 270° give the maximum gains of
energy. It is also noted that the values of the location
of the impulses change with the angle of approach.
The angle 6 decreases with the value of v, going
from near 75°, when v = 225°, to near 10°, when
¥ = 315°. The angle that represents the direction of
the impulse increases with the angle of approach, going
from near —30°, when i = 225°, to near —5°, when
Y = 315°.

The blank regions in all the figures indicate colli-
sions or captures of the spacecraft with respect to the
secondary body, as explained before.
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Fig. 5 Energy variation in km?/s2, for rp = 1.02 Ry, 8V = 0.5 and different values of ¥ a i = 225°, b ¢ = 270°, ¢ = 315°

The maximum energy variations are summarized in
Figs. 6 and 7, for r, = 1.02 and 2.0 Ry, respectively.
Figure (a) shows the angle of approach (¢) versus the
angle that defines the direction of the impulse («). Fig-
ure (b) shows the angle of approach (¥) versus the
angle that defines the application point of the impulse
(0). Figure (c) shows the angle of approach () versus
the maximum energy variation (A Emax). All the cases
considered a magnitude of impulse from §V = 0.1
to §V = 4.0km/s. As expected, the maneuvers with
maximum energy variations try to get as most energy
as possible from the impulsive and the gravity part of
the maneuver. In Fig. 6a it is noted that, for i in the
range from 190° to 225°, the maneuver tries to change
the final angle of approach such that it gets as close as
possible to 270°, the point of maximum gains of energy

for the gravity part of the maneuver. It makes « to vary
in a larger range, depending on the value of the magni-
tude of the impulse. It is noted a more uniform behavior
after = 225°. The best values started near —30°, for
Y = 225°, and then increased almost linearly, reach-
ing values near zero when ¥ = 350°. For this situ-
ation, the modifications in the angle of approach are
small, because it is already close to the optimal point,
and then o assumes small values to obtain the maxi-
mum effects from the impulse itself. The lines repre-
senting the magnitude of the impulses are near each
other, and they are parallel, showing that this parame-
ter does not modify the general behavior of the effects.
The same fact occurs for the location of the impulse,
with a more uniform behavior in the region of positive
gains of energy. The best values started between 50°
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Fig. 6 a v versus «, b ¢ versus 6 and ¢ v versus A Epax for 1.02 R,

and 70°, depending on the magnitude of the impulse,
for ¥ = 225°, and then it decreased almost linearly,
reaching values near zero or negative when ¥y = 350°.
The lines representing the magnitude of the impulses
are near each other and parallel, as in the previous case,
showing that this parameter does not modify the gen-
eral behavior of the effects. The variations of energy
are very affected by the magnitude of the impulse. For
smaller values, it follows closely the results predicted
by the “patched-conics” approach, with a curve that is
symmetric with respect to the line ¢ = 270°, having
a maximum at this point. The increase in the magni-
tudes of the impulse gives larger variations of energy,
as expected and mentioned before, but it also changes
the general behavior of the curves. The locations of the
maximum are modified and go to ¥ = 315°. Figure 5
is made for a larger distance of periapsis, so the effects
of the gravity part of the Swing-By are reduced. It has
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more negative values for the location of the periapsis,
because negative values allow more control over the tra-
jectory to get the most energy possible from the gravity
part of the maneuver. The impulse generates a trajec-
tory with a smaller periapsis distance, which was not
possible in the previous cases, because it was already
very near to the surface of the Moon. The values of the
direction of the impulse also go to larger negative val-
ues, to make the spacecraft to get closer to the Moon
during the passage. This type of plots is new in the liter-
ature and can help to plan the whole mission. The plot
shown in Fig. 6, letter ¢, shows the maximum variations
of energy as a function of the angle of approach and
the magnitude of the impulse. The information coming
from this plot can be seen better by looking at horizon-
tal and vertical lines. A vertical line represents a fixed
angle of approach. From this line it is possible to get the
minimum magnitude of the impulse to obtain a given
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Fig. 7 a i versus «, b ¢ versus 6 and ¢ ¢ versus A Ep,x for 2.0 Ry,

variation of energy, which is usually the requirement
of a mission. It also gives the maximum variation of
energy for a given magnitude of the impulse available
to the spacecraft. The horizontal lines represent a fixed
variation of energy. From those lines it is possible to
see the value of the angle of approach that minimizes
the magnitude of the impulse required. It is shown that
it is not 270°, as one could expect in a first analysis.
It happens because the angles of approach shown in
the plots are referred to the unpowered maneuver, and
the impulse changes the geometry of the system. Those
lines also give the minimum magnitude of the impulse
for a given angle of approach. This information can
be combined with other constraints to choose the best
geometry for the maneuver. After this choice is made,
the plots shown in Fig. 6a, b give the solution of prob-

0 L
190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

lem, which are the point of application and the direc-
tion of the impulse that gives the maximum variation
of energy.

Itis also possible to use those results to correct errors
in the arriving trajectory. If the arriving trajectory is not
the expected one, it is possible to find the maximum
variation of energy that can be obtained for the real
value of the angle of approach. Therefore, the magni-
tude, direction and location of the impulse are found
in Fig. 6. In this way, the mission designer can correct
errors in the approach trajectory by making the best
choice of the location, direction and magnitude of the
impulse. The same arguments can be given for Fig. 7,
which is similar to Fig. 6, just made for a different value
of the periapsis distance.
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Table 1 Information about the maximum energy variation for r;, = 1.02 R, in the Earth-Moon-spacecraft system

8V (km/s)  AEmg(km?/s?), () AEma(km?/s?) @) 0C) L) Veilcw)  Ricu)
for 6 = 0° for 0 = 0°

¥ = 225°
0.1 1.2460 —36.0 1.2853 —27.5 80.5 -9.8 1.3721 0.0089
0.3 1.5492 —35.5 1.6702 —27.5 78.5 -3.6 1.6295 0.0086
0.5 1.9080 —34.0 2.1086 —27.5 76.0 0.8 1.8770 0.0082
1.0 3.0378 -30.5 3.4167 —27.5 71.5 7.7 2.4651 0.0076
1.5 4.4786 —28.0 5.0076 -27.5 68.5 11.9 3.0250 0.0073
2.0 6.2069 —24.0 6.8690 -27.0 65.5 14.4 3.5760 0.0070
2.5 8.2092 -21.5 8.9946 -27.0 63.5 16.3 4.1111 0.0068
3.0 10.4806 —20.0 11.3804 -27.0 62.0 17.9 4.6365 0.0066
35 13.0116 —18.5 14.0238 -27.0 60.5 19.0 5.1571 0.0065
4.0 15.8039 -17.5 16.9234 —26.5 59.0 19.6 5.6807 0.0064

¥ = 270°
0.1 1.8997 —12.0 1.9132 —10.5 325 —144 1.4230 0.0050
0.3 2.4971 —16.0 2.5544 —13.0 40.0 -9.4 1.7275 0.0053
0.5 3.1057 —18.0 3.2147 —14.5 43.0 -59 1.9991 0.0054
1.0 4.7760 —20.5 5.0150 —-16.5 45.5 -0.2 2.6153 0.0056
1.5 6.6987 -21.0 7.0566 —-17.5 45.5 3.3 3.1894 0.0056
2.0 8.8822 -21.5 9.3477 —18.0 45.0 5.8 3.7414 0.0055
25 11.3260 -21.5 11.8900 —18.5 44.5 7.8 42.2776 0.0055
3.0 14.0254 —20.0 14.6838 —18.5 44.0 9.1 4.8082 0.0055
3.5 16.9739 —18.5 17.7292 —-19.0 43.5 10.6 5.3265 0.0055
4.0 20.1746 -17.5 21.0259 —-19.0 43.0 11.4 5.8 0.0054

¥ =315°
0.1 1.5980 -1.0 1.5982 -0.5 2.5 0.1 1.3303 0.0046
0.3 2.4855 -3.0 2.4891 -2.5 9.1 3.8 1.6848 0.0046
0.5 3.3385 —4.5 3.3512 —4.0 13.0 5.9 2.0 0.0047
1.0 5.5172 =7.5 5.5640 —6.0 18.0 9.3 2.6609 0.0047
1.5 7.8743 -9.0 7.9587 =75 19.6 11.6 3.2634 0.0047
2.0 10.4545 -10.0 10.5746 -8.0 20.5 13.2 3.8344 0.0048
2.5 13.2720 —10.5 13.4255 —8.5 21.0 14.6 4.3846 0.0048
3.0 16.3328 —-11.0 16.5172 —8.5 21.5 15.6 4.9233 0.0048
35 19.6398 —-11.0 19.8531 -9.0 21.5 16.6 5.4515 0.0048
4.0 23.1941 —11.5 23.4348 -9.0 21.5 17.2 5.9752 0.0048

Empirical equations were developed to estimate
the maximum energy variations, from the independent
variables ¢ and §V. The equations were obtained by
making a curve fitting of the data available. Equa-
tion (20) refers to the data shown in Fig. 6c, for
rp = 1.02 Ry, and their coefficients are described in
“Appendix 3”.

AEmix = ai¥* + by + a2 +diy +e1 (20)
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Empirical Eq. (21) refers to the data shown in Fig. 7c,
for r, = 2.0 R,. The coefficients are described in
“Appendix 3”.

AEmax = ¥ + boy® +oy? + o+ (21)

The largest magnitude of A Ep,x occurs for r, =
1.02, §V = 4.0 km/s and ¢ = 350°. The value for
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Table 2 Information about the maximum energy variation with r,, = 1.1 R, in the Earth—-Moon-spacecraft system

8V(km/s)  AEmax(km?/s?),  a()for® =0°  AEpu(km?/s?)  «(°)  0() ()  Vei(cu)  Ricu)

for 6 = 0°

Y = 225°
0.1 1.2185 —38.5 1.2586 —29.5 845 —12.5 1.3611 0.0105
0.3 1.5102 —37.5 1.6325 -29.0 80.5 —6.0 1.6106 0.0097
0.5 1.8578 —35.5 2.0597 -29.0 78.0 1.4 1.8506 0.0092
1.0 2.9591 —31.5 3.3389 —28.5 73.0 59 2.4299 0.0085
1.5 4.3700 -29.0 4.9001 —28.5 69.5 10.2 2.9846 0.0080
2.0 6.0702 —27.5 6.7311 28.0 67.0 13.0 3.5280 0.0077
2.5 8.0473 —26.0 8.8257 -28.0 65.0 15.1 4.0578 0.0075
3.0 10.2934 —25.5 11.1800 -28.0 63.03 16.7 4.5820 0.0073
35 12.8033 -25.0 13.7915 -28.0 61.5 17.9 5.1008 0.0071
4.0 15.5739 —24.5 16.6588 -27.5 60.0 18.6 5.6215 0.0070

Y = 270°
0.1 1.8551 —13.0 1.8696 —11.0 351  —16.1 1.4183 0.0055
0.3 2.4309 —16.5 2.4903 —13.5 415 —11.0 1.7144 0.0058
0.5 3.0221 —-19.0 3.1334 —15.0 44.0 -7.3 1.9797 0.0059
1.0 4.6547 -21.0 4.8951 —-17.0 46.5 —-1.2 2.5848 0.0060
1.5 6.5422 —21.5 6.9003 —18.0 46.5 2.5 3.1518 0.0060
2.0 8.6913 —22.0 9.1555 —18.5 46.0 5.2 3.6986 0.0060
2.5 11.1007 —22.0 11.6623 —-19.0 45.6 73 4.2306 0.0060
3.0 13.7686 —22.0 14.4206 —19.0 45.0 8.7 4.7581 0.0060
35 16.6932 —22.0 17.4305 —19.5 44.0 10.0 5.2771 0.0059
4.0 19.8731 —22.0 20.6917 19.5 43.5 11.0 5.7924 0.0059

Y = 315°
0.1 1.5594 -1.0 1.5596 -1.0 2.5 —23 1.3287 0.0049
0.3 2.4191 —35 2.4233 -3.0 9.5 1.69  1.6736 0.0050
0.5 3.2490 -5.0 3.2628 —4.5 13.6 4.0 1.9736 0.0050
1.0 5.3789 —8.0 5.4273 —6.5 18.6 7.7 2.6326 0.0051
1.5 7.6927 -9.5 7.7785 =75 20.0 10.1 3.2294 0.0051
2.0 10.2319 —10.0 10.3530 —8.0 21.0 11.8 3.7954 0.0051
2.5 13.0096 -11.0 13.1635 —8.5 21.5 13.3 4.3420 0.0052
3.0 16.0312 -11.0 16.2154 -9.0 21.5 14.4 4.8770 0.0052
35 19.2992 —11.5 19.5117 -9.0 21.5 15.3 5.4047 0.0052
4.0 22.8151 —11.5 23.0544 -9.5 21.5 16.2 5.9238 0.0052

rp was expected to be the minimum one, because the
closer to the body is the maneuver, the stronger is the
interaction between the bodies. The effects of the §V
were also as expected, since we concluded, from Fig. 3,
that the increase of the energy variation is directly
proportional to the increase of the magnitude of the
impulse. It is known that the energy obtained is a com-
bination of the effects coming from the standard Swing-

By with the impulse applied. The fact that the trajec-
tory is deviated and has a real angle of approach in the
region of positive gains of energy also cooperates to
make this maneuver the one with the largest maximum
energy variation for the system studied. It explains
the value obtained for the angle of approach, which
is very far from 270°, the best value for the unpowered
maneuver.
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Table 3 Information about the maximum energy variation for r;, = 2.0 R, in the Earth-Moon-spacecraft system

8V(km/s)  AEmx(km?/s?),  a(®)forf =0°  AEpGkm?/s?)  «(®)  6C) () Veor (cu)  R(cu)
for6 =0°

¥ =225°
0.1 0.9954 —60.5 1.4341 —-770 —108.0 —14.8 1.2810 0.0650
03 1.228 —54.0 1.6140 —-745 —91.0 —103 1.3740 0.0262
0.5 15118 —49.0 1.8190 =720 =790 78 1.5104 0.0188
1.0 2.4400 —41.5 2.7930 -38.5 820 9.6 2.1873 0.0202
L5 3.6644 -38.0 4.1605 -38.0 775 3.1 2.6931 0.0181
2.0 5.1686 -355 5.7921 -375 745 1.3 3.1983 0.0170
25 6.9428 -345 7.6829 -37.0 720 43 3.7051 0.0162
3.0 8.9808 -335 9.8302 -36.5 700 65 42112 0.0156
35 11.2788 -325 12.2323 -36.5 685 84 4.7099 0.0152
4.0 13.8343 -32.0 14.8879 -36.5 670 9.9 5.2085 0.0148

¥ =270°
0.1 1.4865 -22.0 1.7037 —-385 —111.0 —114 1.2954 0.1020
03 1.9317 —24.5 2.0264 —-350 —105.0 —10.7 1.4771 0.0507
0.5 2.4156 —26.0 2.5346 -21.0 530 —17.8 1.8395 0.0121
1.0 3.8121 -27.0 4.0451 225 525 95 2.3754 0.0120
L5 5.4767 -27.0 5.8103 —23.0 515 —42 2.8973 0.0119
2.0 7.4051 —27.5 7.8291 —235 50.5  —0.3479  3.4103 0.0117
25 9.5934 —27.5 10.1004 —24.0 49.5 25407 39177 0.0116
3.0 12.0391 -275 12.6236 -24.0 485 45 4.4258 0.0115
35 14.7402 -275 15.3983 —245 480 65 4.9244 0.0114
4.0 17.6955 -275 18.4241 —245 470 7.8 5.4276 0.0113

¥ =315°
0.1 1.2447 -35 1.2461 -35 105 —22.1 1.3213 0.0091
03 1.9191 -7.0 1.9288 —6.0 16.5 —16.9 1.5990 0.0092
0.5 2.5975 -85 2.6196 -7.0 200 —13.1 1.8521 0.0094
1.0 4.4099 —11.0 4.4667 -9.0 25 -7.1 2.4373 0.0095
15 6.4418 —125 6.5312 —10.0 240 3.0 2.9861 0.0095
2.0 8.7130 -13.0 8.8316 -10.5 240 0.4 3.5194 0.0095
2.5 11.2292 —135 11.3744 —11.0 240 18 40.0411 0.0095
3.0 13.9929 -14.0 14.1626 —115 240 3.6 4.5554 0.0095
35 17.0053 —14.0 17.1977 —115 235 49 5.0675 0.0095
4.0 20.2666 -14.0 20.4806 -12.0 235 6.0 5.5727 0.0095

“Appendix 17, Tables 1, 2, 3 and 4, show the results
forr, = 1.02 Ry, 1.1 Ry , 2.0 Ry, and 5.0 Ry, respec-
tively, concerning the maximum variation of energy.
The second and third columns show the maximum vari-
ation of energy and « for 6 = 0°. From the fourth col-
umn forward it is presented by the information for the
optimum value of 8, to show the gains obtained by opti-
mizing this variable, instead of keeping it fixed in zero;
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¢, which is the deflection angle between the velocity
vector of the spacecraft before and after the maneu-
ver; Vo4, the magnitude of the velocity of the space-
craft when it leaves the secondary body; and R, the
distance between the spacecraft and M, at the moment
that the impulse is applied. Those tables confirm the
previous results, with some detailed information about
the variables involved. It also shows another important
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Table 4 Information about the maximum energy variation for r;, = 5.0 R, in the Earth-Moon-spacecraft system

8V(km/s)  AEmx(km?/s?),  a()for§ =0°  AEpu(km?/s?) (%) 6C)  Z°)  Veoilcuw)  R(cu)

for 6 = 0°

Y = 225°
0.1 0.6555 =75.0 1.1962 —89.5 -90.5 -36.9 1.2519 0.1534
0.3 0.8690 =71.0 1.8604 —56.5 —87.5 —133 1.4246 0.1002
0.5 1.1192 —65.5 2.0874 =57.5 815 —114 1.5589 0.0693
1.0 1.9312 —56.0 2.7810 —66.0 —66.5 —5.6 1.8804 0.0413
1.5 3.0150 =51.5 3.6767 —69.5 =540 =23 2.2550 0.0330
2.0 4.3650 —49.0 4.8176 =70.5 —46.5 -0.7 2.6783 0.0296
2.5 5.9759 —47.5 6.4474 -50.0 68.0 —12.5 3.3858 0.0438
3.0 7.8445 —46.5 8.3946 —49.5 66.5 -9.2 3.8682 0.0422
35 9.9687 —45.5 10.5942 —49.5 65.5 —6.3832 4.3482 0.0412
4.0 12.3470 —45.0 13.0455 —49.5 64.5 —4.0 4.8299 0.0403

Y = 270°
0.1 0.9487 —36.0 1.3130 —77.0 -91.0 -—-23.1 1.2583 0.1641
0.3 1.3074 —36.0 1.9523 —27.5 -91.0 32 1.4404 0.1641
0.5 1.7135 —35.5 2.3435 —16.5 -91.0 —6.1 1.6527 0.1641
1.0 2.9251 —35.0 3.3646 —29.5 —85.0 —63 2.0921 0.0831
1.5 4.4054 —34.5 4.6268 —32.5 53.0 -149 2.6390 0.0325
2.0 6.1469 —34.5 6.4228 —32.5 515 -9.8 3.1206 0.0317
2.5 8.1454 —34.5 8.4714 —32.5 500 —6.1 3.6060 0.0311
3.0 10.3987 —34.5 10.7717 —32.5 49.0 33 4.0926 0.0306
35 12.9053 —34.5 13.3232 —32.5 48.0 1.1 4.5812 0.0302
4.0 15.6644 —34.5 16.1256 —32.5 475 0.8 5.0689 0.0300

Y = 315°
0.1 0.8041 —11.0 0.8084 —10.5 245 =539 1.3212 0.0242
0.3 1.3176 —13.0 1.3323 —12.0 27.0 —46.9 1.5277 0.0246
0.5 1.8650 —14.0 1.8902 —13.0 265 —41.8 1.7330 0.0245
1.0 3.3998 —15.5 3.4483 —14.0 27.0 —-32.8 2.2385 0.0246
1.5 5.1807 —16.5 5.2485 —15.0 265 —269 2.7388 0.0245
2.0 7.2104 —-17.0 7.2948 —15.0 260 —23.1 3.2395 0.0244
2.5 9.4896 -17.0 9.5889 —15.5 255 =202 3.7363 0.0243
3.0 12.0186 —17.5 12.1315 —15.5 25.0 —18.1 4.2336 0.0242
35 14.7973 —17.5 14.9231 —15.5 250 —16.3 4.7286 0.0242
4.0 17.8260 —17.5 17.9640 —16.0 245 —14.6 5.2211 0.0242

point. Comparing the maximum variations of energy
for the case where the impulse is applied at the periap-
sis with the case where this location is a free parameter,
it is possible to measure the benefits of the second type
of maneuver. In general, for small values of the mag-
nitude of the maneuver, which are the more practical
cases, the differences are very large when optimizing

or not the location of the impulse. Table 1 shows that,
in most cases, the impulse dominates the maneuver and
the location has smaller effects in the maneuver. The
regions with more or less effects change with the geom-
etry (angle of approach).

Those tables also show that the values of «, in
most of the cases, are negative. The reason is that,
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Fig. 8 Gain in the maximum energy variation for 6 optimal compared to § = 0°ar, = 1.02R,;,br, = 1.1 Ry, r, =2.0R,, d

rp =5.0Ry

for —180° < « < 0°, there is a negative component
from the impulse in the radial direction. This fact makes
the spacecraft to get closer to the secondary body and,
therefore, cause an increase in the energy variations.

It is also noted that, in several cases, 6 is negative for
the point of maximum variation of energy. It means that
the impulse is applied before the spacecraft passage
by the periapsis of the orbit, when the spacecraft is
approaching M». This type of maneuver allows a better
geometry for the interaction between the spacecraft and
M>, so making possible adjustments in the trajectory,
to obtain the optimal point.

The percentage gain in the maximum energy vari-
ation for 6 optimal compared with the case where the
impulse is applied in the periapsis of the orbit (6 = 0°),
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for the same initial conditions and different periapsis
distances, is shown next, in Fig. 8.

Note that, for all the situations studied, the gain is
positive. It means that the impulse applied outside the
periapsis of the orbit of the spacecraft around M5 is the
best option. The gain depends on the geometry of the
maneuver.

The radius of the sphere of influence of the Moon
1s 0.172 c.u. [37]. The value R is the distance between
M, and the spacecraft when the impulse is applied.
Comparing R and the radius of influence of M, it is
shown that the impulses were always applied inside the
sphere of influence of M>.
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rp =5.0R;
4.2 Sun-Jupiter system

Next, it is shown the results for the Sun—Jupiter sys-
tem. The approach velocity (Vso—) used in the sim-
ulations is 0.7633 c.u. Figure 9 shows the energy
variation for r, = 1.02R;, ¥ = 270° and §V =
0.1,0.3,0.5,1.0, 1.5 and 2.0 km/s. It is observed that
the magnitude of the energy variation is significantly
larger for this system, when compared to the Earth—
Moon system. As occurred in the previous case, the
energy variation is directly proportional to the magni-
tude of the impulse, as expected. Compared to the pre-
vious case (Earth—-Moon), it is also clear that the loca-
tions of the maximum variations of energy are now near
the center of the plot (0, 0). This fact occurs because
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the impulse has smaller effects compared to the gravity
part of the maneuver, since the mass of Jupiter is much
larger than the mass of the Moon. But, when the mag-
nitude of the impulse increases, this location goes to
negative values of « and positive values of 6. In other
aspects, the behaviors are similar to the previous cases.
The location of the impulse now has some effects in
the borders, with the value zero given the more nega-
tive values for the variation of energy.

Figure 10 shows the variation of energy (on the same
scale) for ¢y = 270°, 5V = 0.5 km/s and different val-
ues for the periapsis radius (rp). It shows the decrease
of the maximum energy variation when the space-
craft is passing at larger distances from the secondary
body.
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Fig. 11 a y versus o, b v versus 6 and ¢ ¥ versus A Ep,x for 1.1 R;

The blank regions in Figs. 9 and 10 also indicate
collisions or captures of the spacecraft with respect
to Jupiter. Note that, for periapsis distance equal to
1.1 and 5.0 R;, there is no capture or collision of the
spacecraft.

The maximum variation of energy, for each con-
dition, is shown in Figs. 11 and 12, for r, = 1.1
and 5.0 R;, respectively. Figure (a) shows the angle
of approach () versus the angle that defines the direc-
tion of the impulse (). Figure (b) shows the angle of
approach (i) versus the angle that defines the appli-
cation point of the impulse (6). Figure (c) shows the
angle of approach (y) versus the maximum variation
of energy (A Emax). All the cases used §V = 0.1 to
8V = 4.0 km/s. The results are similar to the previous
cases, with the differences coming from the relative
small effects of the impulse.

The empirical equations that describe the maximum
energy variations for the Sun—Jupiter system, forr, =

1.1 R; and the coefficients described in “Appendix 37,
are as follows:

AEmax = a3'0 + b3y® + 3y + dsy’
+e3y® + Y + g3yt + h3y?
+ i3y + 30 + k3 (22)

Figure 12 shows the maximum energy variations
and their respective data for r, = 5.0 R}, and in the
sequence, it is presented the equations that estimate
this value. The coefficients of Eq. 23 are shown in
“Appendix 3”.

AEmax = asyp'® + bayp® + cayr® + day’
+ea¥C + f1v + gart + hay?
+isy? 4 ¥ + ky (23)

Tables 5, 6 and 7, in “Appendix 27, show the maxi-
mum energy variations for & = 0 and 6 optimal, for
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rp = 1.02R;, 1.1 R; and 5.0 R;, respectively. The
same increases in the variation of energy obtained by
optimizing the location of the impulse are noticed, with
large magnitudes now. The same applications for those
plots shown in the simulations for the Earth-Moon sys-
tem are also valid here, with the horizontal and vertical
lines given the same information described in that point.

The gain for the maximum energy variations con-
sidering the optimal point for the impulse application
with respect to & = 0° is shown in Fig. 13.

Forr, =1.02R; and r, = 1.1 R, the gain for the
angle of approach equal to 270° and 315° is from O to
1%. For r, = 5.0 R; this interval is larger, from 0 to
approximately 7.5 %. The best gains are for ¢ = 225°
for each periapsis distance. The gains in maximum
energy variations for optimal 6 increase when the dis-
tance from the periapsis increases. The radius of the
sphere of influence of Jupiter is 0.062 c.u. [37]. Note
that, in all cases, the impulse was applied inside the
sphere of influence of Jupiter.
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5 Conclusions

In general, the results showed mappings that described
the main effects of a powered Swing-By, in terms of
the variation of energy as a function of the parameters
involved in this maneuver. In particular, it shows the
locations, in terms of the direction and the location of
the impulse applied, for the solutions with maximum
variations of energy. It is shown that they occur when
the impulse is not applied in the tangential direction
and in points which are not located in the periapsis of
the orbits, as expected from the literature. The expla-
nation for this fact is the effect of the gravity part of the
maneuver combined with the impulse.

The organization of the results in plots showing
the variations of energy, direction and location of the
impulsive maneuver as a function of the angle of
approach gives a new view of this maneuver and helps
to plan a complete mission. Vertical lines give the min-
imum magnitude of the impulse required to get a given
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Table 5 Information about the maximum energy variation for r,, = 1.02 R; in the Sun—Jupiter-spacecraft system

SV (km/s)  AEpy(km?/s?),for0 =0°  a(®)ford =0° AEpu(km?/s?)  a () 0C) () Veylcu) R(cu)
W = 225°
0.1 183.4815 -35 183.5259 -35 13.1 9.5  1.1092 0.0001
0.3 196.6664 —4.0 196.8390 —4.0 150 12.0 1.1709 0.0001
0.5 209.0945 —45 209.4492 —45 175  13.8  1.2289 0.0001
1.0 237.9061 —6.0 255.2349 —59.0 —158.0 759 0.9120 0.0133
15 264.6469 -7.5 271.2379 —355 —158.0 845 0.9411 0.0133
2.0 290.1508 -85 293.4219 -75 28.5 205 1.5901 0.0001
25 314.8936 -9.0 319.6123 —8.0 306 214 1.6936 0.0001
3.0 339.1763 —10.0 345.5059 -9.0 325 222 1.7893 0.0001
3.5 363.1958 —10.5 371.2656 -9.5 340 227 1.8815 0.0001
4.0 387.0919 —11.0 397.0022 -9.5 355 23.1  1.9699 0.0001
¥ = 270°
0.1 262.0352 -0.5 262.0388 —0.5 26 —169 1.0651 0.0001
0.3 285.4367 -1.0 285.4527 -1.0 35 —127  1.1241 0.0001
0.5 307.5417 -1.0 307.5792 -1.0 40 —9.6 1.1818 0.0001
1.0 358.7315 —-1.5 358.8749 -1.5 6.1 —44 13194 0.0001
15 405.8705 -2.0 406.2099 -2.0 8.1 —1.5 1.4475 0.0001
2.0 450.2507 -2.5 450.8897 -2.5 96 05 15655 0.0001
2.5 492.6379 -3.0 493.6866 -3.0 11.6 1.7 16769 0.0001
3.0 533.5344 -35 535.1019 -35 13.0 25 1.7818 0.0001
35 573.2904 —4.0 575.4819 —4.0 14.1 32 1.8808 0.0001
4.0 612.1626 —45 615.0798 —4.0 155 3.6 19759 0.0001
¥ = 315°
0.1 190.4964 1.0 190.5014 1.0 =31 102 08784 0.0001
0.3 217.4980 1.0 217.5143 1.0 =31 158 0.9482 0.0001
0.5 243.4551 1.0 243.4832 1.0 =35 197 10164 0.0001
1.0 304.9972 1.0 305.0512 1.0 —35 256 1.1749 0.0001
15 363.0884 1.0 363.1581 1.0 =31 287 13183 0.0001
2.0 418.7093 1.0 418.7831 1.0 —3.1 305 1.4497 0.0001
2.5 4724514 0.5 472.5188 0.5 —26 314 15716 0.0001
3.0 5247111 0.5 524.7639 05 =20 320 1.6857 0.0001
35 575.7684 0.5 575.8037 05 —16 323 17934 0.0001
4.0 625.8366 0.5 625.8542 0.5 —1.1 323 1.8959 0.0001

energy variation and the maximum variation of energy
for a given magnitude of the impulse. Horizontal lines
indicate a fixed variation of energy, from where it is vis-
ible the value of the angle of approach that minimizes
the magnitude of the impulse, which is not 270° , as
one could expected. Those lines also give the minimum
magnitude of the impulse for a given angle of approach.
It helps to choose the most adequate parameters for a

given mission. After that, the other plots give the point
of application and the direction of the impulse.

The results showed here help to optimize the whole
mission, by showing the energy variations as a function
of the geometry of the maneuver. In that way, the effects
of other constraints of the mission that impact in the
incoming trajectories to M> can be evaluated and a
balance between the goals of the mission can be done.
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Table 6 Information about the maximum energy variation for r,, = 1.1 R; in the Sun—Jupiter-spacecraft system

8V(km/s)  AEmy(km?/s?),  a()for0 =0°  AEm(km?/s?)  a(®) 6% ¢(®)  Veor(cuw)  R(cu)
for6 =0°

¥ =225°
0.1 1823517 —4.0 182.4022 -35 14.0 76 1.1079 0.0001
03 194.7724 —4.5 194.9666 —4.5 165 100 1.1671 0.0001
0.5 206.4901 -5.0 206.8863 -5.0 185 118 12225 0.0001
1.0 233.6808 —6.5 261.6039 -390 —157.5 768  0.9236 0.0183
L5 258.9480 -8.0 274.3658 —-250 —157.5 838  0.9471 0.0183
2.0 283.0748 -9.0 286.6224 -8.0 300 183 1.5728 0.0001
25 306.5114 —10.0 311.5987 -9.0 326 193 16715 0.0001
3.0 329.5400 -10.5 336.3335 -9.5 345 201 1.7655 0.0001
35 352.3511 —115 360.9756 —10.0 360 206  1.8550 0.0001
4.0 375.0731 -12.0 385.6259 -10.5 376 212 1.939% 0.0001

¥ =270°
0.1 260.5056 -1.0 260.5096 -1.0 31 —17.9  1.0665 0.0001
03 282.9395 -1.0 282.9584 -1.0 36 —138 11229 0.0001
0.5 304.1496 -1.0 304.1930 -1.0 50 —108  1.1787 0.0001
1.0 353.3039 -2.0 353.4658 -2.0 6.6 —58 13123 0.0001
L5 398.5886 -2.5 398.9678 -2.5 85 —29  1.4362 0.0001
2.0 441.2305 -3.0 441.9393 -3.0 105 —1.0 15512 0.0001
25 481.9640 -35 483.1186 -3.0 12.1 02  1.6597 0.0001
3.0 521.2716 —4.0 522.9899 -35 13.6 12 17611 0.0001
35 559.4924 —45 561.8853 —4.0 155 1.8 1.857 0.0001
4.0 596.8740 -5.0 600.0466 —45 16.5 23 1.950. 0.0001

¥ =315°
0.1 189.3229 1.0 189.3285 1.0 -35 89  0.8806 0.0001
03 215.4730 1.0 215.4898 1.0 —-35 143 0.9479 0.0001
0.5 240.6286 1.0 240.6571 1.0 -35 182  1.0135 0.0001
1.0 300.2986 1.0 300.3523 1.0 -35 240 11671 0.0001
15 356.6313 1.0 356.6991 1.0 -35 271 13068 0.0001
2.0 410.5637 1.0 410.6329 1.0 —-3.1 288 14350 0.0001
25 462.6667 0.5 462.7274 0.5 —-26 298  1.5539 0.0001
3.0 513.3234 0.5 513.3687 0.5 2.1 304 1.6654 0.0001
35 562.8089 0.5 562.8355 0.5 -15 307 1.7709 0.0001
4.0 611.3303 0.0 611.3412 0.0 -1.0 308 18711 0.0001

Besides that, the results showed here also help to
correct errors in the arriving trajectory. They can find
the maximum variation of energy, the magnitude, direc-
tion and location of the impulse, as a function of the
new actual angle of approach.

The results detailed and confirmed that the optimum
maneuver is not at the periapsis and aligned to the
velocity of the spacecraft. The reason is the combined
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effect of the impulsive maneuver with the Swing-By.
Applying the impulse in different positions and in dif-
ferent directions changes the main parameters of the
Swing-By. The periapsis distance will be different, as
well as the deflection angle. In this way, the loss of
energy coming from the fact that the impulsive maneu-
ver is not applied in the geometry that gets the most
energy possible is compensated by the extra gain due
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Table 7 Information about the maximum energy variation for r, = 5.0 R; in the Sun—Jupiter-spacecraft system

SV (km/s)  AEpy(km?/s?),for0 =0°  a(®)ford =0° AEpu(km?/s?)  a () 0C) () Veylcu) R(cu)

Y = 225°
0.1 147.8296 —35.5 168.7364 -91.5 —-136.5 —-353 1.0658 0.0206
0.3 150.6772 —37.5 215.5769 —89.0 —136.5 —18.0 1.0816 0.0206
0.5 153.5374 —38.5 234.3809 —485 —136.5 —11.2 1.0961 0.0206
1.0 160.8007 —40.5 244.0048 —35.0 —-1355 -93 1.1260 0.0144
1.5 168.2862 —41.5 253.6129 —39.5 —136.5 782 0.8645 0.0206
2.0 176.0348 —42.5 264.3384 —29.0 —136.5 843 09107 0.0206
2.5 184.0695 —42.5 273.1743 —43.0 —129.0 -3.8 1.2051 0.0056
3.0 192.4022 —43.0 283.7682 —445 —-127.0 2.1 1.2336 0.0047
35 201.0424 —43.0 294.4068 —41.0 —-1265 —-13 1.2733 0.0045
4.0 209.9940 —43.0 305.2776 —43.0 —1245 0.1  1.3033 0.0039

Y = 270°
0.1 211.7407 -7.0 219.8661 —83.5 —136.5 —33.0 1.0592 0.0207
0.3 220.3136 —8.0 236.6536 —65.5 —136.5 —18.6 1.0153 0.0207
0.5 228.5964 —8.5 2443214 —41.5 —-136.5 —12.7 1.0075 0.0207
1.0 248.3450 —-10.5 258.4967 —22.5 —136.5 —6.7 1.0244 0.0207
1.5 267.1440 —12.0 271.7682 —-15.5 —136.5 —49 1.0583 0.0207
2.0 285.3485 —13.5 289.4412 -11.0 37.0 —28.8 1.3344 0.0005
2.5 303.1905 -15.0 308.8418 -12.0 39.0 —=27.1  1.3930 0.0005
3.0 320.8294 -16.0 328.1579 —12.5 40.5 —=25.6  1.4499 0.0005
35 338.3743 -17.0 347.4695 -13.0 42.0 =242 1.5049 0.0005
4.0 355.9066 —17.5 366.8341 —13.5 435 =229 1.5575 0.0005

¥ = 315°
0.1 153.1102 0.5 153.1120 0.5 —-2.5 =228 09612 0.0005
0.3 166.2673 0.5 166.2702 -0.5 —-2.0 =204 0.9932 0.0005
0.5 179.0641 0.5 179.0659 0.5 —1.5 —184 1.0253 0.0005
1.0 209.7650 0.0 209.7653 0.0 0.5 —14.5 1.1033 0.0005
1.5 239.0249 —0.5 239.0417 -0.5 25 —11.7 1.1785 0.0005
2.0 267.2117 -1.0 267.2795 —-1.0 4.0 =97 12513 0.0005
25 294.5898 -2.0 294.7520 -1.5 56 —=8.0 1.3211 0.0005
3.0 321.3548 -2.5 321.6600 —-2.0 70 —6.6 1.3881 0.0005
35 347.6561 -3.0 348.1538 -2.5 85 =55 14530 0.0005
4.0 373.6112 -3.5 374.3482 -3.0 9.5 —44 15155 0.0005

to the Swing-By to be performed with a large value of
the deflection angle and a smaller value for the periapsis
distance.

Some of the results shown here are expected from
the “patched-conics” model, but accurate measure-
ments need the better numerical model developed here.
In particular, the results for the Earth-Moon system
are subjected to large errors, due to the high mass
parameter of the system. Some special and important

cases, like captures, collisions and maneuvers where
the spacecraft goes to larger distances from M», are
not correctly identified by the “patched-conics” model,
because the spacecraft spends too much time in inter-
mediate regions that are not highly dominated by one of
the primaries. It means that the variations of energy for
each initial conditions will not be corrected, and even
the locations of the points of maximum and minimum
variations of energy will not be corrected.
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Appendix 1: Detailed information about the trajec-
tories in the Earth—-Moon system

It is shown here the maximum energy variations
(AEmax) and its corresponding data, as the true
anomaly of the point where the impulse is applied (6),
the angle that gives the direction of the impulse (&),

@ Springer

the deflection angle (¢), the escape velocity (Voot)
and R, which is the distance between the spacecraft
and the secondary body at the instant that the impulse
is applied.

Appendix 2: Details of the trajectories for the Sun—
Jupiter system

It is shown here the maximum energy variations
(AEmax) and its corresponding data, as the true
anomaly of the point where the impulse is applied (6),
the angle that gives the direction of the impulse (&),
the deflection angle (¢), the escape velocity (Vio+)
and R, which is the distance between the spacecraft
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and the secondary body at the instant that the impulse + <3.083l X 10_5) 8V6 —0.000128248 V7
is applied. 4 3
+0.000312828 V* — 0.000448825V
+0.000355378 V2 — 0.000129425V
Appendix 3: Coefficients of the empirical equations + (7.0061 X 10_6) (30)

that describe the maximum energy variation

Equations (24) and (28) describe the coefficients of
Eq. 20 as a function of the magnitude of the impulse

V).

a = — (6.9093 x 10*‘0) sV 4 (1.2491 x 10*8) sv7

- (9.4632 % 1078) sV (3.8896 % 1077) sV5

)sve )
- (9.3631 x 10~ 7) SV4 ¢ (1.3226 x 10—6) sv3
‘) )

(1 0262 x 10~ 8V2+(3.6004>< 10-7) sV

_ (2.1218 x 10—8) (24)
by = (8.1943 x 10—7) sV — (1.4749 x 10—5) sv7

+0.000111218V0 — 0.000454868 V>
+0.00108958 V4 — 0.00153158 V3
+0.00118318V2 — 0.000414165V

+ (2.4623 x 10*5) (25)

1 = —0.000361685V3 + 0.00648075 V7
—0.0486328V0 +0.197918V — 0.471595V*
+0.659538V3 — 0.507085 V2 + 0.177028 V
—0.010831 (26)

dy = 0.070338V8 — 1.25465V7 + 9.36945V°
—37.9358V° 4 89.9175V* — 125.085 V3
+95.6918V2 — 33.2678V + 2.1306 27)

e] = —0.742318V° + 7.6992s V& — 1.7016 V7
—311.828V° 4+ 1875.78 V> — 52295 V*
+7892.56V3 — 6304.65V2 +2239.95V — 151.11

(28)
Equations (29) and (33) describe the coefficients of
Eq. (21) as a function of the magnitude of the impulse
c(zivz)'— (2.0996 x 10*‘0) sV8 4+ <3.7802 x 10*9> sv7
~ (28519 107%) 5v° + (1.1676 x 1077) 5V
— (28016 x 10—7) sV + (3.951 x 10—7) sv3
- (
- (

by = (2.2047 x 10—7) sV8 — (4.0258 x 10—6) s5v7

3.071 x 10—7)5v2+ (1.0911 x 10—7)5\/

5.1707 x 10—9) (29)

¢y = — (7.2312 x 10—5) 5V +0.00115875V8

—0.00735618V7 +0.0225035V® — 0.0277675 V>

—0.0196528V* +0.101255 V3

—0.114738V2 4 0.0494055V — 0.0031216  (31)
dy = 0.0165565V° — 0.269955V® + 1.76618V7

—5.75428 VO 4+ 8.7551 — 1.08268V* — 15.5628 V>

+20.5538V2 — 9.3448V +0.70129 (32)
er = —1.33648V° +22.0035V® — 146.328 V7

+492.148V® — 817.075V° + 345.126V*

+902.478V3 — 1390.68 V2 + 659.138V — 56.513

(33)

Equations (34) and (44) describe the coefficients of
Eq. (22) as a function of the magnitude of the impulse
V).

a3 = (1.6042 x 10—17)5v8 - (2.5231 x 10—16)5\/7
+ (16116 x 10719) 6V — (53638 x 10—15) 5V
+ (9:9236 x 10719) v+ — (10104 x 10714) 5773
(5 3072 x 10*15) sV2— (1.2438 x 10*15) %
(8 7211 x 10~ ‘7) (34)
by = (4 3206 x 10~ 4) s5v8 (6.7949 x 10—13) sv7

43399 x 10712) 56 + (1.4442 x 10—“>5v5

n
+(

+ (2.72 x 10—“)5\/3
+ (3.3473 x 10—12) 5V

23467 x 10713

)
2.6716 x 10~ 1) sv4

)

) (35)

-
-
— (14287 x 10711) 62
~(

c3 = (5 2025 x 10*”)3v8 - (8.1812 x 10*10)5V7

5.2248 x 10~ )8V6 - (1.7385 % 1078) sV/5

1.7197 x 10—8)5\/2 - (4.0281 x1070) sV

( )

(3 2158 x 10~ )5V4 - (3.2737 x 10—8) sv3
( )

(

2.8236 x 10—10) (36)

dy = — (3.6871 x 10—8) 5V8 4+ (5‘7978 x 10—7) sv7
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e3 =

hy =

i3 =

k3 =

(3.7024 x 10 6)5v6 (12318 x 107) 5V
— (22783 x 107) sv* + (23193 x 107%) 6V
— (12185 x 10—5) sV2 4+ (2.8537 x1070) s

(2.0002 x 1077) 37)
(1.7033 x 10*5) 5V —0.000267815V7

+0.001718V0 — 0.0056898 V> + 0.0105218V*
—0.010718V> 4+ 0.00562798 V' 2

—0.0013185V + (9.2376 x 10—5) (38)

= —0.00661058V? + 0.108485 V'8

—0.73498 V7 + 2.66065V©
—5.57485V° + 6.86165V*
—4.83235V3 + 1.80365 V2
—0.299598 V + 0.014695

144378V — 23.6995 V8

+160.638V7 — 58198V + 1220.35V7
—1503.85V* + 1060.65 V3
—396.538V2 + 66.0398V — 3.2517
—214.765V? +3526.68 V3 — 239145V

+866915V6 — (1.8196 x 10—5) 5V

(39)

(40)

T (2.245 x 10—5) sV4— (1.5858 x 10—5) s5v3

+593938V2 — 9916.85 + 490.14 (41)

208248V — (3.4209 x 10—5) sv38
T (2.3209 x 10—6) sv7 — (8.4193 x 10—") sv6

<l7688><10 )5\/5 (2.1851x10—7)5v4
)
)

- (1 1884 x 10~ 6)5

(1 5459 % 1077 ) 5V3 — (5.8 x 10—6)8\/2

(9 7087 x 1073) 5V — 48163 (42)

(1.953 x 10*7) sv8

- (1 3257 x 10~ 8) sv7 4+ (4.8126 x 10—8) s5V6
)
)sv?
)

5.5947 x 10~7) 8V (2 7855 x 10—6) (43)

1.0121 x 10°2) 8V3 + (1.2518x10_9)8V4

(
(8 8709 x 10~8) 5V (3.334 x 10—8) sv?2
-(

+
(3 0312 x 10~ )5v9 (

(3.3847 x 10*9) sv7 — (1.2296 x 10*‘0) 50

9835 x 10*8) 58

2.5884 x 10*10) sV — (3.2059 x 10*‘0) sv4
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+ (2.2755 x 10—10) sV3 = (8.5671 x 10—9) 5v2

+ (1.4412 x 10—9) 5V — (7.2007 x 10—7) (44)

Equations (45) and (55) describe the coefficients of

Eq. (23) as a function of the magnitude of the impulse
V).

1.0705 x 10~18) sv 1.6883 x 10~17) sv8

( )sv
( )
(8 5765 x 10~ 16) SV 4+
(

—(1.1045 x 10716} sv7

1.2342 x 10~1%) sv*

N /N /N /N

)
3.9381 x 10*‘6) 5V
)
1.229 x 10—15) SV3 ( 7792 x 10—16) V2

- (1.9375 x 10—‘6) SV + (9.8868 x 10—18) (45)

by = (4.2985 x 10—15) sV8 <6.1705 x 10—‘4) sv7

eq4 =

f4 = 0.000257915V°

+(3.4654 x 10717) V0 — (9.4239 x 1071%) V9
+(1.1863 x 10712) 3V* — (34127 x 10712) 5773
— (4.98 x 10*‘3) sV (1.9964 x 10*'3) 3%

—(7.101 x 10*15) (46)

—(3.1033 x 10*‘2) SVO (4.8112 x 10*“) sv8

—(2.2718 x 10—9) SVS 4+ (3.2536 x 10—9) sv4
— (3.3468 x 10—9> sV3 4 <2.2308 x 10—9) s5V2

(47)

(
(
(
(
- (3.0786 x 10—10) 6V + (10691 x 10—9) 5Vo
(
(
(

— (56288 x 10710) 5V + (28565 x 1071)

- (3.8859 x 10*9) sV — (5.6072 x 10*8) sv7

3.1746 x 10~ )5v6 - (8.761 x 10*7) 5V

+(
(1 1436 x 10~ 6) sV — (4.2105 x 10*7) V3
(3 5995 x 10~ 7) sV 4 (1.5266 x 10*7) sV
~( ’)

5.3446 x 10~ (48)

- (8.8741 x 10~ )5\/9 T (1.3434 x 10—5) %

—(8.3238 x 107°)8V7 + 0.000277518V°
—0.00056678 V> + 0.000805998 V* — 0.000876235 V>
+0.000631435V2 — 0.000162525 V

+ (8.1928 x 10*6) (49)

—0.00384325 V3
+0.0232895V7 — 0.0753578 V¢
+0.149168V> — 0.211085V* + 0.239898 V3

—0.182695 V2 4 0.0476688V — 0.0023935 (50)
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g4 = —0.0511795V° +0.747885V® — 4.40365V”

+13.6768V°® — 25.8595 V> + 36.3348V*
—44.118V3 +36.1198V? — 9.58748V

+0.47923 (51)

= 6.84428V° — 97.598 V8 + 553.126 V7

—1619.36V° 4 28455 V> — 3950.45V*
+5330.85V3 — 4813.38V2 + 1305.28V — 64.903 (52)

iy = —588.656V° + 8132.25V® — 437155V

+ (1.1669 x 105) SVO (1.7871 x 105) V3
+ (2.4225 x 105) sV~ (3.9806 x 105) V3

+ (4.1292 x 105) sV2 — (1.15 x 105) 8V +5684.5

(53)

ju = 292865V° — (3,8778 x 105) sv8

+ (1.9269 x 106> sv7 - (4.355 x 106) sVo

+ (4.6593 x 106) sVS = (5.8182 x 106) sv4

+ (1.5982 x 107) sV3 - (2.053 x 107) V2

+ (5.9161 x 106) sV — (2.9038 x 105) (54)
ky = — (6.389 x 105) sV + (7.9757 x 106) sv8

- (3.4901 x 107) sV7 + (5.3272 x 107> Ve

+(2.0075 x 107) 8V° — (52271 x 107) sV

- (2.3901 x 108) 5V + (4,4785 x 108> sv?

- (1.3483 x 108) SV + (6.5623 x 106) (55)
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