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Abstract This paper presents two variations of the artificial
bee colony (ABC) algorithm, the classical and amodifiedver-
sion, calledGBest, for the design of the proportional–integral
and supplementary damping controllers: power system sta-
bilizers and the unified power flow controller (UPFC)–power
oscillation damping set. The objective is to insert additional
damping to the low-frequency oscillation modes present in
multimachine electrical power systems, to guarantee the
small-signal stability of the system considering different
loading conditions. A new current injection formulation for
theUPFC is proposed and incorporated into the current sensi-
tivity model used to represent the dynamical operation of the
electric power system. Static and dynamical analysis were
performed for the New England system to validate the pro-
posed formulation and to evaluate the performance of the
optimization algorithms. The results indicate that the modi-
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fied version of the ABC algorithm has superior performance
for this problem, providing robust solutions, that ensure the
stability of the system even when small variations of the load
are considered.

Keywords Artificial bee colony algorithm · Current
sensitivity model · Power oscillation damping · Power
system stabilizers · Unified power flow controller

1 Introduction

With the growing demand for electric energy, electrical
power systems are increasingly subjected to high-load condi-
tions, resulting in undesirable voltage levels and deviations
in the operating frequency. These facts, together with the
interconnections among various systems by means of long
transmission lines and the action of automatic voltage regula-
tors (AVRs)with high gains and low time constants, facilitate
the appearance of low-frequency electromechanical oscil-
lations, capable of harming the stability and the operation
of the system (Anderson and Fouad 2003). The electrome-
chanical oscillation modes are classified according to their
frequency of occurrence, being the local (0.7–2.0 Hz) and
inter-area (0.1–0.8 Hz) types the ones of more interest (Kun-
dur 1994). For the safe operation of the system, it is essential
that these modes are sufficiently damped. The small-signal
stability study considered in this work assumes small varia-
tions in the system loading conditions and covers the analysis
of the mentioned oscillation modes.

To overcome the negative effects on the stability of elec-
trical power systems caused by the operation of the AVRs,
a supplementary controller, called power system stabilizer
(PSS), is included in the excitation systemof the synchronous
machines. The objective of the PSS is to insert electrical

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40313-017-0341-z&domain=pdf
http://orcid.org/0000-0002-0862-0576
http://orcid.org/0000-0002-0683-3914
http://orcid.org/0000-0001-9178-0601


J Control Autom Electr Syst (2017) 28:762–773 763

torque in phase with the variations of the angular speed of
the rotor (damping torque) (Demello and Concordia 1969;
Larsen and Swann 1981). When adjusted, the PSS has great
influence on local oscillationmodes.However, in some cases,
the PSSmaynot introduce the necessary damping to the inter-
area modes (Cai and Erlich 2005). In view of this, flexible
AC transmission systems (FACTS) are an interesting alter-
native, because in addition to improve the operation of the
power system (Hingorani and Gyugyi 2000), they can insert
additional damping to the inter-area oscillation modes when
operating together with a power oscillation damping (POD)
controller (Fortes et al. 2016a; Furini and Araujo 2008; Mar-
tins et al. 2016).

Among the existing FACTS devices, the unified power
flow controller (UPFC), the focus of this work, is one of
the most complete, because of its ability to manage (simul-
taneously or not) the active and reactive power flows in the
transmission line in which its series converter is installed and
the voltage magnitude at the bus where its shunt converter is
connected (Gyugyi et al. 1995).

The correct parameterization of the supplementary con-
trollers is fundamental for damping the low-frequency oscil-
lations to guarantee the stability of the power system. Several
approaches have been successfully used to achieve this goal,
including the residue method (Yang et al. 1998), the Nyquist
stability criterion (Zhenenko and Farah 1984), and the decen-
tralized modal control (DMC) method (Furini et al. 2011;
Valle and Araujo 2015). The coordinated and simultaneous
tuning of these controllers is a complex optimization prob-
lem with multiple local minima. Thus, in addition to the
approaches focused on classical control theory, other studies
were carried out using different optimization techniques to
obtain adequate adjustments.

Among these techniques, the stochastic bio-inspired ones,
such as those based on the genetic algorithms (GAs) (Fortes
et al. 2016b; Hassan et al. 2014), particle swarm optimization
(PSO) (Menezes et al. 2016; Shayeghi et al. 2010), and the
artificial bee colony algorithm (ABC) (Abedinia et al. 2011;
Martins et al. 2016), can be cited. All the search approaches
used by the cited works are inspired by behaviors observed in
nature. The GA and the PSO are based on evolutionary biol-
ogy (Goldberg 1989) and on the dynamics of the flight of
birds (Kennedy and Eberhart 1995), respectively. In the case
of theABC, the inspiration comes from the foraging behavior
of honeybee swarms (Karaboga 2005). Alternatively, meta-
heuristic optimization techniques that extend local search
frameworks to avoid local optimal solutions, but are not bio-
inspired, such as the variable neighborhood search (Fortes
et al. 2018), were also used to solve this problem.

This work investigates the effects of the UPFC FACTS
device in combination with the supplementary damping con-
trollers (PSSs and POD) to the small-signal stability of power
systems. To do so, the power system is represented by a lin-

ear model called current sensitivity model (CSM), based on
Kirchhoff’s current law (Fortes et al. 2016b; Pádua Júnior
et al. 2013). Because of this, a linear model for the UPFC,
based on current injection, is proposed. The currents are cal-
culated by an expanded power flow formulation based on
the mismatches of the current injection equations on each
bus of the system, differently from the proposal presented
in Kopcak et al. (2007), where nodal power injections are
used. The control system used in the UPFC model consists
of proportional–integral (PI) controllers, similar to that pre-
sented Valle and Araujo (2015), but coupled to the shunt
voltage source converter (VSC).

In this work, the design of supplementary damping con-
trollers (PI–UPFC–POD and PSSs) is formulated as an
optimization problem and the classical and GBest (Global
Best) ABC algorithms are used to solve it. The problem is
formulated to optimize two objective functions, based on
the eigenvalues of the electrical power system, comprising
the minimum damping factor and the difference between the
natural undamped frequencies of the desired and calculated
eigenvalues of interest, considering three operating points for
the system. The controllers are tuned with the optimization
of these functions, guaranteeing the stability of the system
for the desired operating region. The performances of the
proposed algorithms are evaluated using the New England
multimachine system under different loading conditions.

From the above, the main contributions of this study are:
(i) to present a current injection model for the UPFC; (ii)
to develop and use an expanded power flow tool based on
mismatches currents in the polar form to determine theUPFC
injections; (iii) to implement the classical andGBest versions
of theABCalgorithm; and (iv) to compare their performances
with respect to the coordinated tuning of the parameters of the
supplementary damping controllers (PSSs and UPFC–POD)
and the PI controllers of the UPFC.

2 Power System Modeling

2.1 Expanded Power Flow

The mismatch of the injected current at bus k(� Îk) is deter-
mined using the balance of the specified current phasor ( Î spek )

and the calculated current phasor ( Î calck ), as illustrated in
Fig. 1 and shown in (1).

� Îk = Î spek − Î calck = ÎGk − ÎLk −
∑

m∈�k

Îkm = 0 (1)

The variables ÎGk, ÎLk , and Îkm, that appear in (1), are the
phasors of the injected and demanded current at bus k, and
the current through branch km, respectively. The set �k rep-
resents all buses connected to bus k.
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Fig. 1 Current balance at bus k

Rewriting (1) as a function of the active (Pspe
k ) and reactive

(Qspe
k ) specified powers of the conventional power flow, the

voltage phasor at bus k (Vk � θk), the conductance (Gkm), and
susceptance (Bkm) of branch km, and separating the resulting
current in real (�Irk) and imaginary (�Iik) parts, the com-
ponents of the mismatches of the currents at bus k, shown in
(2) and (3), are obtained.

�Irk =
(
Pspe

k cos θk + Qspe
k sin θk

)

Vk

−
∑

m∈κ

Vm (Gkm cos θm − Bkm sin θm)

(2)

�Iik =
(
Pspe

k sin θk − Qspe
k cos θk

)

Vk

−
∑

m∈κ

Vm (Gkm sin θm + Bkm cos θm) (3)

In (2) and (3), the set κ is formed by the union of the set�k

and bus k. By applying the Newton–Raphson (NR) method
to (2) and (3), the matrix formulation (4), that represents the
linearized system used to determine the algebraic variables
of the power flow, is obtained.

(4)

2.2 Current Mismatches Equations

The mismatches of the current components �Irk and �Iik at
bus k can be expressed as function of the mismatches of the
active (�Pk) and reactive (�Qk) powers, of the conventional

k̂V
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Fig. 2 a Equivalent circuit, b phasor diagram of the UPFC

formulation of the power flow problem, as shown in (5).

�Irk = �Pk cos θk+�Qk sin θk
Vk

= 0

�Iik = �Pk sin θk−�Qk cos θk
Vk

= 0
(5)

2.3 Current Injection Model for the UPFC

TheUPFCcontroller canbe represented by twoVSCconvert-
ers, one in series with the transmission line (VSC1) and the
other in shunt at the installation bus (VSC2). The connection
of the UPFC to the power system is performed by coupling
transformers (Noroozian et al. 1997). Due to the use of these
converters, the UPFC is able to perform simultaneous (or
not) control of the voltage magnitude at the connection bus
of the VSC2 and the power flow on the transmission line of
VSC1.

In the UPFC equivalent circuit shown in Fig. 2a, the trans-
mission line is represented by its susceptance ( jbkm), the
converter VSC1 is represented by a synchronous voltage
source, while the converter VSC2 is represented by an ideal
current source. Based on the current injection equations for
the UPFC obtained from Meng and So (2000), the approach
presented in Huang et al. (2000) is applied, where the voltage
phasor V̂s is decomposed in terms of its in phase (Vq) and
quadrature (Vp) components, as illustrated in Fig. 2b. Thus,
(6)–(10), that determine the real and imaginary components
of the current injections carried out by the device installed
between buses k and m, are obtained.

C1 = Vm

Vk

(
Vp cos θkm + Vq sin θkm

)
bkm (6)

I upfcrk = C1 cos θk + (
Vqbkm + Iq

)
sin θk (7)

I upfcik = C1 sin θk − (
Vqbkm + Iq

)
cos θk (8)

I upfcrm = − (
Vp cos θk + Vq sin θk

)
bkm (9)

I upfcim = − (
Vp sin θk − Vq cos θk

)
bkm (10)

The current injection model for the UPFC is shown in
Fig. 3. This representation is appropriate for both small-
signal stability studies and static analysis.
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Fig. 3 Current injection model for the UPFC
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Fig. 4 Structure of the control system of the UPFC

2.4 Configuration of the Control System of the UPFC

In order to perform the control of the power flows by the
UPFC in the common buses of its installation, PI controllers
are used (Fortes et al. 2016b; Valle and Araujo 2015) (see
Fig. 4).

From Fig. 4, it can be seen that the PI controllers are
responsible formodulating the control variables (Vp, Vq , and
Ip) of the converters VSC1 and VSC2. In this structure, the
parameters of the controllers are represented by the gains
K1u, K2u, and K3u (in p.u.) and by the time constants T 1u,
T 2u, and T 3u (in seconds). In addition, the time constant Tm
is the inherent delay of the control device and is in the range of
1–10 ms (Hingorani and Gyugyi 2000). The supplementary
signal of the POD controller is Vpod and, in this work, is used
to modulate the quadrature component (Vp) of the converter
VSC1.

In Fig. 4, the specified values of the active and reactive
power flows in line km and the voltage magnitude at bus k
are P ref

m , Qref
m , and V ref

k , respectively.

The complex power (Ŝctrl
m =Pctrl

m + j Qctrl
m ) controlled by

the UPFC can be obtained by performing the nodal power
balance at bus m of the system, as shown in (11).

Ŝctrl
m = Ŝupfc

m − Ŝmk (11)

In (11), Ŝupfc
m and Ŝmk represent, in this order, the complex

power injected by theFACTSat busm and the complex power
flow from bus m to bus k. By separating (11) into real and
imaginary parts, the active (Pctrl

m ) and reactive (Qctrl
m ) power

flows controlled by the UPFC are obtained.

2.5 Inclusion of the UPFC Equations in the Power Flow
Modeled by Current Injections

In order to observe the operation of the UPFC in the power
system, it is necessary that its equations are added to the
power flow. For this purpose, it is assumed that its state vari-
ables are constant with respect to time, which makes their
temporal derivatives equal to zero. This consideration makes
the differential equations of the UPFC become algebraic
equations. In this way, the problem is restricted to the deter-
minationof the zeros of a set of nonlinear algebraic equations,
whose solution can be obtained using the NR algorithm in
the same way as in a conventional power flow (Kopcak et al.
2007). Since, in this work, the power flowmodeling was per-
formed by current injection, the essence of the problem is to
satisfy all current mismatches at the installation buses of the
UPFC k and m, as shown in (12) and (13).

� Îk = Î espk − Î calck + Î upfck = 0 (12)

� Îm = Î espm − Î calcm + Î upfcm = 0 (13)

In (12) and (13), Î upfck and Î upfcm are the phasors of current
injections at the UPFC installation buses k and m, due to
the converters VSC1 and VSC2. It is important to note that
in the other buses of the system, the mismatches of the cur-
rent components do not differ from the power flow equations
presented.

By linearizing the system formed by the equations result-
ing from the substitution in (12) and (13) of the current
injections of theUPFC and of the currentmismatches defined
in (6)–(10) and (2)–(3), respectively, and by the set of dynam-
ical equations (ẋu = fu(xu, y)), obtained from Fig. 4, the
matrix formulation of the expanded power flow by current
injection (14) is obtained.

In (14),�xu = [�Vp �X1 �Vq �X2 �Iq �X3]t

are the linearized state variables of the PI controllers of the
UPFC and the matrix J4u is defined in (15).
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(14)

(15)

2.6 Dynamical Models for the PSS and POD Controllers

In this work, the structures used to represent the supplemen-
tary damping controllers (PSS and POD) differ only by the
input and output signals. The basic structure is shown in
Fig. 5.
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Fig. 5 Basic structure of the PSS and POD controllers
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Fig. 6 Automatic voltage regulator model

This structure consists of a gain K that determines the
amount of damping introduced by the controllers, a washout
block that functions as a high-pass filter with a time con-
stant Tw conveniently adjusted to allow the controller to
operate only during transient periods, and a phase compensa-
tion block (usually T 1 = T 3 and T 2 = T 4) that provides the
appropriate phase advance characteristics to compensate for
the phase delay between the control loop output of the AVR
and the torque produced by the generator (Kundur 1994).

For the PSSs, the input signal, vin, is the angular speed
(ωk) of the rotor of the generator k, whereas for the POD,
the input is the active power flow (Pkm) of the transmission
line adjacent to the installation of the UPFC–POD set. The
intermediate signals v1 and v2 for the PSSs are: V 1k and V 2k

and, for the POD: Y1 and Y2. The output signals, vout, for
the PSSs are the voltage V E

k added to the AVR control loop
shown in Fig. 6, together with the bus voltage (Vk) and its
voltage reference (V r

k ). For the POD, vout assumes the value
of the voltage Vpod, that will be included in the control loop
of the VSC1, according to Fig. 4.

2.7 Current Sensitivity Model

The power system is represented by a linear model called
current sensitivity model (CSM), based on the Kirchhoff’s
current law, that must be satisfied even when the system suf-
fers a small-signal perturbation (Fortes et al. 2016b; Pádua
Júnior et al. 2013). An important feature of this tool is that it
maintains all the system buses in the model, which facilitates
the inclusion of FACTS-POD and PSSs devices.

In the CSM, the dynamics of a multimachine electri-
cal power system consisting of ng generators, nb buses,
np PSSs, and an UPFC–POD set is described according to
Eqs. (16)–(19).

�xT =
[[

�ω1 · · · �ωng
] [

�δ1 · · · �δng
] [

�E ′
q1 · · · �E ′

qng

]

[
�Efd1 · · ·�Efdng

] [
�V11 · · · �V1np

] [
�V21 · · · �V2np

]

[
�V

pss
1 · · · �Vnp

pss
]

�xt
u
[
�Y1�Y2�Vsup

]]t
(16)

�uT =
[[

�Pm
1 · · · �Pm

ng

] [
�V r

1 · · · �V r
ng

] [
�PL1 · · · �PLng

]

[
�QL1 · · · �QLng

]
�Pref

m �Pref
m �Qref

m �Qref
m �V ref

k �V ref
k

]t
(17)

�y = [[�θ1 · · · �θnb] [�V1 · · ·�Vnb]]
t (18)
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[
�ẋT
0

]
=

⎡

⎢⎣
J1T J2T
J3T J4pf + J4u

︸ ︷︷ ︸
J4T

⎤

⎥⎦ ·
[

�xT
�y

]
+

[
B1T
B2u

]
· [�uT] (19)

In (19), the submatrices J1T, J2T, J3T, and J4T associate
the state variables of the complete system (angular speed
(�ω), internal angle of the rotor (�δ), internal quadrature
(�E ′

q) and field (�E fd) voltages of the generator, control
parameters of the converters VSC1 and VSC2 of the UPFC
(�Vp, �Vq , and �Ip) and auxiliary variables (�X1, �X2,
and �X3), variables of the PSSs (�V 1k , �V 2k , and �V E

k ),
and variables of the POD (�Y1, �Y2, and �Vpod)) with the
algebraic variables (voltagemagnitude (�V ) and angle (�θ)

at the buses of the power system). The input variables are
the mechanical power (�Pm), the reference voltage of the
AVR (�V r), the active (�PL) and reactive (�QL) loads,
the active (�P ref

m ) and reactive (�Qref
m ) power references,

and the voltage reference (�V ref
k ) of the PI controllers of the

UPFC, related to submatrices B1T and B2u.
The space state representation is obtained by eliminating

�y of the system defined in (19), which results in the state
matrixA = J1T−J2TJ4−1

T J3T and input matrixB = B1T−
J2TJ4−1

T B2u.

Algorithm 1: Artificial Bee Colony Algorithm

1: Initialize the population of solutions zi using (20) and evaluate it;
2: cycle ← 1;
3: Repeat;
4:Create the new solutions vi for the employed bees with (21) and
evaluate it;

5:Apply the greedy selection process for the employed bees;
6:Calculate pi for zi using (22);
7:Create vi for the onlookers from zi selected according to pi and
evaluate it;

8:Apply the greedy selection process for the onlookers;
9:Determine the abandoned solution for the scout bee, if it exists, and
replace it with a new solution zi randomly generated;

10:Store the best solution achieved so far;
11: cycle ← cycle + 1;
12:Until cycle = MCN.

3 Techniques for the Design of the Supplementary
Damping Controllers

3.1 Artificial Bee Colony Algorithm

The ABC algorithm is based on the collective behavior of a
swarm of bees in the search for food and has been success-
fully applied in several optimization problems (Karaboga and
Akay 2009). Although there are several types of tasks in a
real beehive, the ABC algorithm uses a simplified model that
mimics the search for sources of food, that are equivalent to
the solutions of the problem, by employed bees, onlookers,
and scouts (Karaboga et al. 2007).

Half of the colony is formed by employed bees, and the
other half is formed by onlookers. Employed bees store the
neighborhood information from their food sources and pass it
on to onlooker bees that tend to select the best sources. Then,
they intensify the search around the selected food source.
The scout bees are formed by some employed bees, who
abandon their food sources and randomly search for other
sources. These steps are repeated up to a maximum number
of iterations itmax or until a stop criterion is satisfied.

The ABC algorithm has some advantages in relation to
other bio-inspired algorithms such as GAs and the PSO,
among them the good balance between the intensification and
diversification processes (Akay and Karaboga 2012) and the
need for a smaller number of control parameters (Karaboga
and Akay 2009).

The initial population of candidate solutions is formed
by SN sources of food, randomly generated. A food source
zi = [zi1 zi2. . .zid ] is a d-dimensional vector, where d is the
number of variables in the optimization problem. The initial
population is obtained through (20).

zi j = zmin
i j + εi j

(
zmax

i j − zmin
i j

)
(20)

In (20) i = {1, 2, . . . , SN }, j = {1, 2, . . . , d}, zmin
i j and zmax

i j
are, respectively, the upper and lower bound of each variable
and εi j is a random number in the interval [0, 1]. Each one
of the SN sources of food will be occupied by an employed
bee, and the value of the evaluation function F(zi ) will be
calculated.

After the initialization, the population is evaluated, and
then, each employed bee, placed in zi , generates a new
food source, vi , in the neighborhood of its current position
using (21).

vi j = zi j + φi j
(
zi j − zk j

)
(21)

In (21), k ∈ {1, 2, . . . , SN } and j ∈ {1, 2, . . . , d} are
randomly chosen indexes, with k different from i , and φi j is
a random number in the interval [−1, 1].

Once vi is determined, it will be evaluated and compared
to zi . If the evaluation function of vi is better than or equal to
zi , then vi will replace zi in the population; otherwise, zi will
bemaintained. In otherwords, a greedy selectionmechanism,
between the old and new candidate solution, is employed.

After the employed bees complete their searches, they
share information about the amount of nectar (objective func-
tion value) of their best food sources with the observing bees
in the hive dance area. An onlooker bee evaluates this infor-
mation for all employed bees and selects a food source based
on a probability pi related to the amount of nectar. This prob-
abilistic selection depends on the values of the evaluation
function obtained from the current set of solutions. In the
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classical ABC, the roulette wheel selection mechanism, in
which each slice has the size proportional to the value of the
evaluation function, is used, as shown in (22).

pi = fiti/
B N∑

n=1

fitn (22)

In (22), fiti is the value of the evaluation function of solution
i . Thus, the greater fiti is, the greater the probability that
the ith food source is selected, considering a maximization
problem.

Once the onlooker bee selects its source of food zi , it
modifies it using (21). As in the case of employed bees, if
this modified source vi has an amount of nectar greater than
or equal to the amount of zi , this new source will replace zi

and will become a new member of the population.
If a source of food zi cannot be improved after a limit of

lmt attempts, it must be abandoned and the employed bee in
charge of exploring it becomes a scout bee. It will randomly
search for a new source of food, as shown in (20).

It is possible to identify from the above that the ABC algo-
rithm has three control parameters: the number of sources of
food SN , which is equal to the number of employed and
onlooker bees, the limit value lmt , and the maximum num-
ber of iterations itmax. The detailed pseudocode of the ABC
algorithm is shown in Algorithm 1.

3.2 Artificial Bee Colony Algorithm Global Best

The ABC GBest algorithm seeks to improve the capacity to
intensify the local search of the classical ABC algorithm.
For this, (21) is replaced by (23), as proposed by (Gao et al.
2012).

vi j = zbest j + φi j
(
zr1 j − zr2 j

)
(23)

In (23), zbest j is the best solution, j , of the population and
the indices r1 and r2 are mutually exclusive integers cho-
sen randomly within the set {1, 2, . . . , N } and different from
index i . With this modification, we intend to overcome two
problems of the classical algorithm: the first one is related
to the rate of convergence of the solution for unimodal prob-
lems, usually smaller than the rate of other population-based
algorithms such as the PSO algorithm. The second problem
is the ease with which the classical algorithm gets stuck in

local optimal solutions when it involves complexmultimodal
problems (Karaboga and Akay 2009).

4 Problem Formulation

For an electrical power system to operate safely in terms
of small-signal stability, it is necessary that the damp-
ing coefficients (ξ) of its low-frequency oscillation modes
assume sufficiently positive values, even with possible load-
ing changes.

In this sense, this work proposes a new objective function
F(z) that should be able to lead the search of the optimiza-
tion algorithm within the space of solutions for determining
a tuning for the parameters of the controllers that guaran-
tee enough damping for the system even with variations in
its operating point. For this purpose, three loading levels are
considered: nominal (Pspe + jQspe) and ±10% of nominal
variation. It is expected to ensure the highest possible damp-
ing for any operating pointwithin the specified loading range.
In addition, F(z) should ensure that the frequencies of the
oscillation modes of interest, ωcalc, obtained at the end of the
parameterization process, do not suffer toomuch alteration in
relation to those frequencies obtained without the operation
of the controllers. Thus, for each iteration of ABC algorithm,
the eigenvalues of interest must be selected and directed to
the left semi-plane of the complex plane.

From the above considerations, at each iteration, the
damping matrix ξ ∈ R

q×p and the distances matrix δ ∈
R
n×p, with each element δi j =

∣∣∣ωdes
i j − ωcalc

i j

∣∣∣, will be

defined. The dimensions p, q, and n represent, in this order,
the number of operating points considered for the system,
the number of damping coefficients of each solution, and the
number of eigenvalues of interest. These matrices, together
with the dimensionless constant η (defined empirically), will
be used as input values for the evaluation of F(z), defined
in (24).

F (z) = η |1 − min (ξ)| +
p∑

j=1

n∑

i=1

δi j (24)

In the proposed method, for a system with ng generators,
np PSSs, and an UPFC–POD set, both ABC algorithms will
provide a set of gains and time constants for each PSS, for the
POD, and for the PI controllers of the UPFC, as a solution.
In this way, the solution is represented by a vector consisting
of the parameters of ns supplementary damping controllers,
according to (25).

zi =
[

T u
1 K u

1 T u
3 K u

3︸ ︷︷ ︸
UPFC

T pod
1 T pod

2 K pod

︸ ︷︷ ︸
POD

T pss
11 T pss

21 K pss
1︸ ︷︷ ︸

PSS1

· · · T pss
1np T pss

2np K pss
np

︸ ︷︷ ︸
PSSnp

]
(25)
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Fig. 7 One-line diagram of the New England system

5 Tests and Results

5.1 Steady-State Analysis of the Power System

The tests were conducted using the New England system,
whose data can be found in (Fortes et al. 2016b). Its one-
line diagram, with the inclusion of the UPFC–POD set, is
shown in Fig. 7. For the installation of this device, it was
necessary to create a fictitious branch, F1 −37, consisting of
the coupling reactance of the transformer that connects the
VSC1, which was assumed to be 0.01 p.u. The choice of the
FACTS installation site, between buses 37 and 38, has two
justifications: to improve the voltage profiles at buses 12, 15,
33, 34, 36, and 37, that are below the±5% interval limit, and
to introduce damping to the inter-area mode.

When the UPFC is not operating in the system performing
its functions of voltage and power flow control (situation that
will be referred to as the base case), the variables related to the
VSCs are zero, indicating the inexistence of power injections
by the device. In this operating condition, the power flow in
the line F1 − 38 is −16.41 − j121.50 MVA and the voltage
magnitude at bus 37 is 0.94 p.u.

To adjust the voltage magnitudes within the acceptable
range of ±5%, the power flow in the line F1 − 38 and the
voltage magnitude at bus 37, controlled by the UPFC, were
adjusted to−75 − j150MVA and 1.0 p.u., respectively. The
voltage profiles of the system before (base case) and after the
actuation of the UPFC are shown in Fig. 8.

By analyzingFig. 8, it can be verified that the voltage prob-
lems were corrected. In this operating condition, the UPFC
control variables assume the values (in p.u.) of Vp= −0.101,
Vq= −0.094, and Iq= 2.882.
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Fig. 8 System’s voltage profile for the specified loadingwith andwith-
out the actuation of the UPFC
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Fig. 9 Active power control performed by the UPFC

The active power flows (MW) near the fictitious bus, for
the two cases analyzed, are shown in Fig. 9.

The comparison between the power flows before and after
the operation of the UPFC allows us to verify that it does not
provide active power to the system, since all the active power
generated (consumed) by the VSC1 is consumed (generated)
by the VSC2. In this way, the device re-manages the active
flows in order to implement the specified control. With the
data presented in Fig. 9, it is possible to perform the nodal
active power balance (inMW) for the installation buses of the
UPFCand, thus, to validate the power flowcontrol performed
by the device.

For the base case (UPFC not operating), the eigenvalues
of interest (λi) of the state matrix of the power system are
presented in Table 1, as well as the associated oscillation
frequencies (ωni ) and damping coefficients (ξi ).

The eigenvalues shown in Table 1 indicate that the system
presents, in this point of operation, eight local oscillation
modes, three of them unstable (L1–L3) and five weakly
damped modes (L4–L8). In addition, there is a weakly
damped inter-area mode (I1). This characterizes the oscil-
lation instability of the system for this operating condition.
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Table 1 Dominant eigenvalues, natural undamped frequencies, and
damping coefficients for the base case

Mode Eigenvalue ωni (Hz) ξ (p.u.)

L1 0.1717 ± j5.9098 0.9410 −0.0290

L2 0.1291 ± j6.3571 1.0120 −0.0203

L3 0.0848 ± j6.8490 1.0901 −0.0124

I1 −0.0015 ± j3.4821 0.5542 0.0004

L4 −0.1068 ± j6.4583 1.0280 0.0165

L5 −0.1982 ± j8.2615 1.3152 0.0240

L6 −0.2516 ± j8.3149 1.3240 0.0302

L7 −0.2114 ± j7.1701 1.1417 0.0295

L8 −0.2703 ± j8.0966 1.2893 0.0334

To increase the damping of the oscillation modes in the
system to the highest possible levels, eight PSSs (one for each
local mode) will be installed at generators G1–G5 and G7–
G9, according to the participation factors criterion presented
in (Kundur 1994). Also, a UPFC–POD set, responsible for
damping the inter-area mode, will be installed between buses
37 and 38. The local input signal adopted for the POD is the
active power variation (�Pkm) through line 37–34.

5.2 Performance of the Methods

For the definition of the supplementary damping controller
settings, three operating points (90, 100 and 110% of the
nominal loading) will be evaluated. The values assigned to
the parameters of the ABC algorithm are: SN = 20; lmt =
320 (lmt = 0.5 × SN × Dmax, where Dmax is the dimension
of the problem, in this case Dmax= 32), and itmax= 500.

For both ABC algorithms, the bounds for the time con-
stants (seconds) and gains (p.u.) for the POD were: 0.01 ≤
T 1pod ≤ 0.25, 0.25 ≤ T 2pod ≤ 0.5, and 0.1 ≤ K pod ≤ 0.5;
for the UPFC: 0.001 ≤ T 1u ≤ 0.1, 0.01 ≤ T 3u ≤ 1,
0.001 ≤ K1u ≤ 0.5, and 1 ≤ K3u ≤ 10; and for the
PSSs: 0.5 ≤ T 1pssk ≤ 1.5, 0.01 ≤ T 2pssk ≤ 0.5, and
1 ≤ K pss

k ≤ 15. The time constant Tm was assumed to be
0.001 s.

To evaluate the performance of the algorithms, two cases
were considered for the FACTS device in the power sys-
tem: (I) assuming the PI-UPFC-POD set operating and (II)

assuming the PI-UPFC-POD set not operating. In both cases,
eight PSSs were installed at generators G1–G5 and G7–G9.
In addition, 25 trials were performed for each version of
the algorithm for the two cases, using the objective function
defined in (24). The data presented in Table 2 provide a gen-
eral statistical overview of the results determined by each
algorithm after 2500 iterations for each case.

By examining Table 2, it can be seen that the solutions
obtained by the two versions of the ABC algorithm in Case I
produce results for the minimum damping better than those
provided by the algorithms in Case II, demonstrating the
role of the PI-UPFC-POD for improving the damping of the
oscillations in the system. In addition, considering Case I as
being of interest (thanks to the better results), it is observed by
analyzing the statistical metrics, the superiority of the GBest
version of the algorithm over the classical one, for both cases.

Figure 10 shows the mean evolution, along the iterations,
of the minimum damping in the system obtained with the
tuning provided by the algorithms for Case I. Its examination
reinforces the superiority of the ABC GBest algorithm over
the classical one, since theGBest provided solutions that lead
the system to operatewith higher damping levels, on average.

Since the ABC GBest algorithm achieved superior per-
formance for all established criteria and for both cases, the
parameters obtained by it will be used for the adjustment of
the controllers in the results in the following section.

5.3 Small-Signal Stability Analysis

The set of parameters used to tune the controllers was the
one obtained in the test that presented the highest minimum
damping value after 2500 iterations of the algorithm, consid-
eringCase I. Tables 3 and 4 show the values of the parameters
of the PSSs, UPFC–POD, and PI provided by theABCGBest
algorithm.

For the nominal loading level and after the parameteri-
zation of the supplementary controllers, it can be seen from
Table 5 that the previously unstable system (see Table 1)
begins to operate with the damping of the eigenvalues within
the specified range. The region in the complex plane of
the eigenvalues of interest for the base case and for Case
I (Fig. 11) reinforces this conclusion.

Table 2 Comparison of the
performance of the algorithms
for 25 tests

Case Method Damping coefficients (p.u.)

Best Worst Mean Median SD

I ABC 0.1563 0.0685 0.1136 0.1128 0.0200

ABC GBest 0.1623 0.1092 0.1307 0.1282 0.0137

II ABC 0.1040 0.0664 0.0861 0.0854 0.0112

ABC GBest 0.1111 0.0704 0.0946 0.0930 0.0111
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Table 3 Gains and time constants of the PSS and POD controllers
adjusted by the ABC GBest

Device T 1 (s) T 2 (s) K (p.u.)

PSS 1 1.5000 0.0505 15.000

PSS 2 1.0637 0.1197 11.327

PSS 3 0.8084 0.1184 10.658

PSS 4 0.7402 0.1039 6.5083

PSS 5 0.7238 0.1976 8.7635

PSS 7 0.9496 0.1721 0.6787

PSS 8 0.8733 0.0928 15.000

PSS 9 0.5113 0.1852 5.7099

POD 0.1333 0.4189 0.2368

Table 4 Gains and time constants of the PI controllers adjusted by the
ABC GBest

T 1 = T 2 (s) T 3 (s) K1 = K2 (p.u.) K3 (p.u.) Tm (s)

0.0277 0.0522 9.2951 0.0101 0.001

The high margin of stability to small perturbations pro-
vided by the solution can be observed when the mechanical
power of the generator 1 undergoes a disturbance (step) of
0.05 p.u.

In order to verify the minimum damping of the system
(with the controllers parameterized according to Tables 3 and
4), under operating conditions different from those consid-
ered in the optimization process of theABCGBest algorithm,
but within the range evaluated (90% to 110% of the load
for the base case), five operating points were considered, as
shown in Fig. 12.

By analyzing Fig. 12, it is possible to conclude that the
value of the minimum damping in the system remains above
15%, when the variation of the load is considered. Regarding
the maximum damping of the eigenvalues of interest, there is
a visible variation in the range, which is reasonable, given the
fact that there is no control over these values. In this way, the

Table 5 Dominant eigenvalues, natural undamped frequencies, and
damping coefficients for the solution

Mode Eigenvalue ωni (Hz) ξ (p.u.)

L1 −2.1797 ± j4.4624 0.7904 0.4389

L2 −2.0544 ± j4.9836 0.8579 0.3811

L3 −1.3863 ± j6.4093 1.0437 0.2114

I1 −1.2817 ± j3.0712 0.5296 0.3851

L4 −3.3638 ± j5.1354 0.9770 0.5479

L5 −3.3483 ± j7.7447 1.3429 0.3968

L6 −2.2253 ± j8.5425 1.4050 0.2521

L7 −3.1197 ± j6.4484 1.1401 0.4355

L8 −1.5271 ± j8.0026 1.2966 0.1874
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New England system operates with a high level of damping
in all cases studied, showing the robustness of the solution
obtained by ABC GBest algorithm.
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6 Conclusion

This work presented two variants of the artificial bee
colony (ABC) algorithm—the classical version and the
ABC GBest—applied to the problem of the design of the
proportional–integral (PI) and supplementary damping con-
trollers: power system stabilizers (PSSs) and the unified
power flow controller (UPFC)—power oscillation damping
(POD) set. The main objective was to determine a robust
coordinated tuning for the parameters of these controllers
that inserted the desired damping to the multimachine elec-
trical power system.

It was also proposed a new model for the UPFC based
on current injections, for both static and dynamical analysis.
The static analysis performed using the New England system
validated the model presented for the UPFC. In relation to
the dynamical analysis, it was possible to conclude that the
ABC GBest algorithm was more efficient than the classical
ABC algorithm for the design of the controllers. The results
indicated that the system remained stable, with high damping
margin, even in different loading scenarios, demonstrating
the robustness of the parameterization obtained.

Acknowledgements This work was supported by the Paraná Federal
Institute of Education, Science, and Technology (IFPR), Coordination
for the Improvement of Higher Education Personnel (CAPES), and the
São Paulo Research Foundation (FAPESP), under Grant 2016/10992-9.

References

Abedinia, O., Wyns, B., & Ghasemi, A. (2011). Robust fuzzy PSS
design using ABC. In 2011 10th International Conference on
Environment and Electrical Engineering (EEEIC). doi:10.1109/
EEEIC.2011.5874849.

Akay, B., & Karaboga, D. (2012). Artificial bee colony algorithm for
large-scale problems and engineering design optimization. Jour-
nal of Intelligent Manufacturing, 23(4), 1001–1014. doi:10.1007/
s10845-010-0393-4.

Anderson, P. M., & Fouad, A. A. (2003). Power system control and
stability (2nd ed.). Piscataway, NJ: Wiley-IEEE Press.

Cai, L.-J., & Erlich, I. (2005). Simultaneous coordinated tuning of PSS
and FACTS damping controllers in large power systems. IEEE
Transactions on Power Systems, 20(1), 294–300. doi:10.1109/
TPWRS.2004.841177.

Demello, F. P., & Concordia, C. (1969). Concepts of synchronous
machine stability as affected by excitation control. IEEE Trans-
actions on Power Apparatus and Systems, PAS, 88(4), 316–329.
doi:10.1109/TPAS.1969.292452.

Fortes, E. V., Araujo, P. B., Macedo, L. H., Gamino, B. R., & Martins,
L. F. B. (2016a). Analysis of the influence of PSS and IPFC-POD
controllers in small-signal stability using a Simulated Annealing
algorithm. In 2016 12th IEEE International Conference on Indus-
try Applications (INDUSCON). doi:10.1109/INDUSCON.2016.
7874512.

Fortes, E. V., Araujo, P. B., &Macedo, L. H. (2016). Coordinated tuning
of the parameters of PI, PSS and POD controllers using a Special-
ized Chu-Beasley’s Genetic Algorithm. Electric Power Systems
Research, 140, 708–721. doi:10.1016/j.epsr.2016.04.019.

Fortes, E.V.,Macedo, L.H.,Araujo, P. B.,&Romero, R. (2018).AVNS
algorithm for the design of supplementary damping controllers for
small-signal stability analysis. International Journal of Electrical
Power & Energy Systems, 94, 41–56. doi:10.1016/j.ijepes.2017.
06.017.

Furini,M. A., &Araujo, P. B. (2008).Melhora da estabilidade dinâmica
de sistemas elétricos de potência multimáquinas usando o dis-
positivo FACTS “thyristor-controlled series capacitor—TCSC”.
SBA: Controle & Automação Sociedade Brasileira de Automática,
19(2), 214–225.

Furini, M. A., Pereira, A. L. S., & Araujo, P. B. (2011). Pole placement
by coordinated tuning of power system stabilizers and FACTS-
POD stabilizers. International Journal of Electrical Power &
Energy Systems, 33(3), 615–622. doi:10.1016/j.ijepes.2010.12.
019.

Gao,W., Liu, S., &Huang, L. (2012). A global best artificial bee colony
algorithm for global optimization. Journal of Computational and
Applied Mathematics, 236(11), 2741–2753. doi:10.1016/j.cam.
2012.01.013.

Goldberg, D. E. (1989).Genetic algorithms in search, optimization, and
machine learning (1st ed.). Boston, MA: Addison-Wesley.

Gyugyi, L., Schauder, C. D.,Williams, S. L., Rietman, T. R., Torgerson,
D. R., & Edris, A. (1995). The unified power flow controller: A
new approach to power transmission control. IEEE Transactions
on Power Delivery, 10(2), 1085–1097. doi:10.1109/61.400878.

Hassan, L. H., Moghavvemi, M., Almurib, H. A. F., & Muttaqi, K. M.
(2014). A coordinated design of PSSs and UPFC-based stabilizer
using genetic algorithm. IEEE Transactions on Industry Applica-
tions, 50(5), 2957–2966. doi:10.1109/TIA.2014.2305797.

Hingorani, N. G., & Gyugyi, L. (2000). Understanding FACTS: Con-
cepts and technology of flexible AC transmission systems (1st ed.).
New York, NY: Wiley-IEEE Press.

Huang, Z., Ni, Y., Shen, C. M., Wu, F. F., Chen, S., & Zhang, B.
(2000). Application of unified power flow controller in intercon-
nected power systems-modeling, interface, control strategy, and
case study. IEEE Transactions on Power Systems, 15(2), 817–824.
doi:10.1109/59.867179.

Karaboga, D. (2005). An idea based on honey bee swarm for numerical
optimization. Technical Report-TR06, Erciyes University.

Karaboga, D., & Basturk, B. (2007). Artificial bee colony (ABC) opti-
mization algorithm for solving constrained optimization problems.
In P. Melin, O. Castillo, L. T. Aguilar, J. Kacprzyk, & W. Pedrycz
(Eds.), Foundations of fuzzy logic and soft computing. Lecture
notes in computer science (Vol. 4529). Berlin: Springer. doi:10.
1007/978-3-540-72950-1_77.

Karaboga, D., & Akay, B. (2009). A comparative study of artificial bee
colony algorithm.Applied Mathematics and Computation, 214(1),
108–132. doi:10.1016/j.amc.2009.03.090.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization.
1995 IEEE International Conference on Neural Networks (ICNN).
doi:10.1109/ICNN.1995.488968.

Kopcak, I., Costa, V. F., & Silva, L. C. P. (2007). A generalized load
flow method including the steady state characteristic of dynamic
devices. In 2007 IEEE Lausanne Power Tech. doi:10.1109/PCT.
2007.4538297.

Kundur, P. (1994). Power system stability and control (1st ed.). New
York, NY: McGraw-Hill Education.

Larsen, E. V., & Swann, D. A. (1981). Applying power system stabi-
lizers part II: Performance objectives and tuning concepts. IEEE
Transactions on Power Apparatus and Systems, PAS, 100(6),
3025–3033. doi:10.1109/TPAS.1981.316410.

Martins, L. F. B., Gamino, B. R., Araujo, P. B., Fortes, E. V., & Miotto,
E. L. (2016). Comparison between artificial bee colony and particle
swarm optimization algorithms in the tuning of PSS and UPFC-
POD controllers. In 2016 12th IEEE International Conference on

123

http://dx.doi.org/10.1109/EEEIC.2011.5874849
http://dx.doi.org/10.1109/EEEIC.2011.5874849
http://dx.doi.org/10.1007/s10845-010-0393-4
http://dx.doi.org/10.1007/s10845-010-0393-4
http://dx.doi.org/10.1109/TPWRS.2004.841177
http://dx.doi.org/10.1109/TPWRS.2004.841177
http://dx.doi.org/10.1109/TPAS.1969.292452
http://dx.doi.org/10.1109/INDUSCON.2016.7874512
http://dx.doi.org/10.1109/INDUSCON.2016.7874512
http://dx.doi.org/10.1016/j.epsr.2016.04.019
http://dx.doi.org/10.1016/j.ijepes.2017.06.017
http://dx.doi.org/10.1016/j.ijepes.2017.06.017
http://dx.doi.org/10.1016/j.ijepes.2010.12.019
http://dx.doi.org/10.1016/j.ijepes.2010.12.019
http://dx.doi.org/10.1016/j.cam.2012.01.013
http://dx.doi.org/10.1016/j.cam.2012.01.013
http://dx.doi.org/10.1109/61.400878
http://dx.doi.org/10.1109/TIA.2014.2305797
http://dx.doi.org/10.1109/59.867179
http://dx.doi.org/10.1007/978-3-540-72950-1_77
http://dx.doi.org/10.1007/978-3-540-72950-1_77
http://dx.doi.org/10.1016/j.amc.2009.03.090
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/PCT.2007.4538297
http://dx.doi.org/10.1109/PCT.2007.4538297
http://dx.doi.org/10.1109/TPAS.1981.316410


J Control Autom Electr Syst (2017) 28:762–773 773

Industry Applications (INDUSCON). doi:10.1109/INDUSCON.
2016.7874534.

Menezes, M. M., Araujo, P. B., & Valle, D. B. (2016). Design of PSS
and TCSC damping controller using particle swarm optimization.
Journal of Control, Automation and Electrical Systems, 27(5),
554–561. doi:10.1007/s40313-016-0257-z.

Meng, Z. J., & So, P. L. (2000). A current injection UPFC model for
enhancing power system dynamic performance. In 2000 IEEE
Power Engineering Society Winter Meeting. doi:10.1109/PESW.
2000.850212.

Noroozian, M., Angquist, L., Ghandhari, M., & Andersson, G. (1997).
Use of UPFC for optimal power flow control. IEEE Transactions
on Power Delivery, 12(4), 1629–1634. doi:10.1109/61.634183.

Pádua Júnior, C. R., Takahashi, A. L. M., Furini, M. A., & Araujo, P.
B. (2013). Proposta de um modelo para análise de estabilidade a
pequenas perturbações baseado na lei de Kirchhoff para correntes.
In 2013 XI Simpósio Brasileiro de Automação Inteligente (SBAI).

Shayeghi, H., Safari, A., & Shayanfar, H. A. (2010). PSS and TCSC
damping controller coordinated design using PSO in multi-
machine power system. Energy Conversion and Management,
51(12), 2930–2937. doi:10.1016/j.enconman.2010.06.034.

Valle, D. B., & Araujo, P. B. (2015). The influence of GUPFC FACTS
device on small signal stability of the electrical power systems.
International Journal of Electrical Power & Energy Systems, 65,
299–306. doi:10.1016/j.ijepes.2014.10.012.

Yang, N., Liu, Q., & McCalley, J. D. (1998). TCSC controller design
for damping interarea oscillations. IEEE Transactions on Power
Systems, 13(4), 1304–1310. doi:10.1109/59.736269.

Zhenenko, G. N., & Farah, H. B. (1984). Simultaneous optimiza-
tion of the adjustable parameters in multimachine power systems.
Electric Power Systems Research, 7(2), 103–108. doi:10.1016/
0378-7796(84)90019-1.

123

http://dx.doi.org/10.1109/INDUSCON.2016.7874534
http://dx.doi.org/10.1109/INDUSCON.2016.7874534
http://dx.doi.org/10.1007/s40313-016-0257-z
http://dx.doi.org/10.1109/PESW.2000.850212
http://dx.doi.org/10.1109/PESW.2000.850212
http://dx.doi.org/10.1109/61.634183
http://dx.doi.org/10.1016/j.enconman.2010.06.034
http://dx.doi.org/10.1016/j.ijepes.2014.10.012
http://dx.doi.org/10.1109/59.736269
http://dx.doi.org/10.1016/0378-7796(84)90019-1
http://dx.doi.org/10.1016/0378-7796(84)90019-1

	Design of the PI–UPFC–POD and PSS Damping Controllers Using an Artificial Bee Colony Algorithm
	Abstract
	1 Introduction
	2 Power System Modeling
	2.1 Expanded Power Flow
	2.2 Current Mismatches Equations
	2.3 Current Injection Model for the UPFC
	2.4 Configuration of the Control System of the UPFC
	2.5 Inclusion of the UPFC Equations in the Power Flow Modeled by Current Injections
	2.6 Dynamical Models for the PSS and POD Controllers
	2.7 Current Sensitivity Model

	3 Techniques for the Design of the Supplementary Damping Controllers
	3.1 Artificial Bee Colony Algorithm
	3.2 Artificial Bee Colony Algorithm Global Best

	4 Problem Formulation
	5 Tests and Results
	5.1 Steady-State Analysis of the Power System
	5.2 Performance of the Methods
	5.3 Small-Signal Stability Analysis

	6 Conclusion
	Acknowledgements
	References




