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Abstract Nowadays, millions of people are affected by

heart diseases worldwide, whereas a considerable amount

of them could be aided through an electrocardiogram

(ECG) trace analysis, which involves the study of

arrhythmia impacts on electrocardiogram patterns. In this

work, we carried out the task of automatic arrhythmia

detection in ECG patterns by means of supervised machine

learning techniques, being the main contribution of this

paper to introduce the optimum-path forest (OPF) classifier

to this context. We compared six distance metrics, six

feature extraction algorithms and three classifiers in two

variations of the same dataset, being the performance of the

techniques compared in terms of effectiveness and effi-

ciency. Although OPF revealed a higher skill on general-

izing data, the support vector machines (SVM)-based

classifier presented the highest accuracy. However, OPF

shown to be more efficient than SVM in terms of the

computational time for both training and test phases.

Keywords ECG heart beats � Electrophysiological
signals � Cardiac dysrhythmia classification � Feature
extraction � Pattern recognition � Optimum-path forest

1 Introduction

The automatic detection and classification of arrhythmias

in electrocardiography-based signals (ECG) has been

widely studied in the last years in order to aid the diagnose

of heart diseases. One way to perform this type of test is to

conduct a long-time recording of the cardiac activity of an

individual in his/her normal routine in order to obtain a

& João Manuel R. S. Tavares

tavares@fe.up.pt

Victor Hugo C. de Albuquerque

victor.albuquerque@unifor.br

Thiago M. Nunes

tmnun@hotmail.com

Danillo R. Pereira

dpereira@ic.unicamp.br

Eduardo José da S. Luz
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reasonable amount of information about the individual’s

heartbeats. However, the posterior task of analyzing such

data may be tiresome and more prone to errors when

interpreted by human beings, since there is a huge amount

of information to be processed.

In order to cope with such problem, several works have

been carried out arrhythmia classification in EEG signals by

means of machine learning-oriented techniques

[1, 5, 14, 15, 18]. However, regardless of the classification

algorithm used, some processing steps are crucial to design a

reasonable approach to detect arrhythmia. The quality of

classification when dealing with ECG signals is directly

dependent on the preprocessing phase, which aims at filter-

ing noise frequencies that might interfere with ECG signal

[21]. After preprocessing, it is required to detect and segment

each heartbeat of the ECG signal. In order to perform this

task, an important step is the detection of the QRS complex

(three deflections from ECG signal), specifically theR wave,

since most part of the techniques for the detection and seg-

mentation of heartbeats are based on the location of such

deflection. Because of the steep angular coefficient and

amplitude of the R wave, the QRS complex becomes more

obvious than any other part of the ECG signal, being easier to

be detected for later segmentation.

The final step is the classification of ECG signals, which is

usually accomplished in a supervised fashion. Support vector

machines (SVMs) [1, 7–9, 13, 27, 29, 31] and artificial neural

networks (ANNs) [6, 10, 12, 14, 20, 23, 28, 30, 32, 33] are

among the most used machine learning techniques for this

purpose. Other approaches such as linear discriminant

analysis [5] and a hybridization of support vector machines

and artificial neural networks [11] are also applied for

heartbeat classification. However, one of the main short-

comings related to the aforementioned pattern recognition

techniques concern with their parameters, which need to be

fine-tuned prior to their application over the unseen samples

(test set). SVMs are known due to their good skills on gen-

eralizing over test samples, but with the cost of having a high

computational burden when learning the statistics of the

training data, since each different kernel has its own

parameters to be set up. ANNs are usually very fast for

classifying samples, but its training step may be trapped in

local optima, as well as it is not straightforward to choose a

proper neural architecture.

Based on such assumptions, Papa et al. [25, 26] pro-

posed the optimum-path forest (OPF) classifier, which is a

framework for designing classifiers based on graph parti-

tions, being the samples (feature vectors) encoded by graph

nodes and connected to each other by means of a prede-

fined adjacency relation. A set of key nodes (prototypes)

competes among themselves in order to conquer the

remaining nodes offering to them optimum-path costs. This

competition process generates a set of optimum-path trees

rooted at each prototype node, meaning that a sample of a

given tree is more strongly connected to its root than to any

other in the forest.

The OPF classifier has gained considerable attention in the

last years, since it has some advantages over traditional clas-

sifiers: (1) it is free of hard-to-calibrate control parameters; (2)

it does not assume any shape/separability of the feature space;

(3) it runs the training phase usuallymuch faster; and (4) it can

take decisions based on global criteria. However, to the best of

our knowledge, theOPF classifier has never been employed to

aid the diagnosis of arrhythmias in heart rate bymeans ofECG

signals so far. Therefore, themain contribution of this paper is

to evaluate OPF effectiveness in ECG-based arrhythmia

classification, being its results compared against some state-

of-the-art pattern recognition techniques in terms of accuracy,

computational time, sensitivity and specificity. Finally,

another contribution of this work is to assess the performance

of six different feature extraction methods in the aforemen-

tioned context, mainly: the approaches proposed by Chazal

et al. [5], Güler and Übeyli [10], Song et al. [29], Yu and Chen

[32], You and Chou [33], and Ye et al. [31].

2 Methodology

In this section, we describe the methodology employed in

this work. Initially, the MIT-BIH (Massachusetts Institute

of Technology—Beth Israel Hospital Boston) arrhythmia

database [19] is described addressing considerations of

ANSI/AAMI standard EC57 [3], which standardizes the

evaluation of computational tools for the classification of

cardiac arrhythmia datasets. After that, the feature extrac-

tion techniques used to generate the feature vectors are then

described, followed by the description of the statistical

parameters used to evaluate the performance of the clas-

sifiers under comparison.

2.1 MIT-BIH arrhythmia database

The MIT-BIH arrhythmia database is composed of signals

from electrocardiography exams, being widely used to

evaluate the performance of algorithms concerning the task

of detecting arrhythmias [22]. The data consist of 48 records,

30 min long, taken from 24 h of ECG acquisition, being the

samples obtained from two different channels. The signals

were acquired from 47 patients between 1975 and 1979 at the

laboratory of Arrhythmia Boston’s Beth Israel Hospital,

which are aged between 23 and 89 years of which 22 females

and 25males. The analog recordswere digitized according to

a sampling rate of 360 Hz, and the heartbeats marked and

manually classified by experts in 15 classes regarding the

type of arrhythmia. The types of arrhythmia identified in the

database are indicated in Table 1.
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Since the detection and segmentation of beats in ECG

signals is not the main goal of this work, we have

employed precomputed annotations of R waves provided

by the database in order to accomplish the signal seg-

mentation. In addition, 4 records derived from patients that

make use of pacemakers that were discarded, following the

recommendation of ANSI/AAMI standard EC57 [3], which

also recommends to group the 15 classes reported in the

database’s annotations into 5 classes (Table 1). Figure 1

depicts some ECG signals for each class, being class

Q represented by 10 signals, and the remaining ones rep-

resented by 100 signals. The signals were randomly picked

up from the database.

2.2 Training and test set

The database was partitioned into two sets of records in

order to separate the patients in training and testing groups.

The composition of both sets was based on the study of

Chazal et al. [5], which proposed to separate the patients by

balancing each heartbeat class, as presented in Table 2.

Besides the division of heartbeats into 5 classes as defined

in [3], it was also considered the classification of heartbeats

proposed by Llamedo and Martı́nez [15], which divided the

5 classes proposed in [3] into three main classes: N, S and

V. Classes F and Q, which are less significant, were added

to class V.

Table 1 Types of heartbeats

presented in the MIT-BIH

database grouped according to

AAMI Standard

AAMI class MIT-BIH original class Type of beat

Normal (N) N Normal beat

L Left bundle branch block beat

R Right bundle branch block beat

e Atrial escape beat

j Nodal (junctional) escape beat

Supraventricular ectopic beat (S) A Atrial premature beat

a Aberrated atrial premature beat

J Nodal (junctional) premature beat

S Supraventricular premature beat

Ventricular ectopic beat (V) V Premature ventricular contraction

E Ventricular escape beat

Fusion beat (F) F Fusion of ventricular and normal beat

Unknown beat (Q) / Paced beat

f Fusion of paced and normal beat

Q Unclassifiable beat

Fig. 1 MIT-BIH heartbeat signals grouped according to [3]
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2.3 Feature extraction

Six feature extraction approaches (associated with Dataset

A–F) were chosen based on the work of Luz and Menotti

[16], which performed a comparison among some of the

most used approaches for such purpose, mainly: Discrete

Wavelet Transform (DWT), Independent Component

Analysis (ICA), Principal Component Analysis (PCA), as

well as information about RR range/interspace, which is

the distance between peaks of two successive R waves in

an ECG signal. For each dataset, the following methods

were considered in this work:

• Dataset A—morphology of the signal and RR range

[5];

• Dataset B—DWT [10];

• Dataset C—DWT [29];

• Dataset D—DWT, RR range and signal energy [32];

• Dataset E—DWT, ICA and RR range [33] and

• Dataset F—DWT, ICA, PCA and RR range [31].

The distribution of heartbeats by class and feature extrac-

tion approach considering the division of classes proposed

by [3] is shown in Table 3, while Table 4 displays the same

information considering the distribution into 3 classes

proposed by [15]. In this Table Tb and nf stand for the

number of heartbeats of the set and the number of features

extracted by each technique, respectively. One can noticed

the variation in the number of beats among the methods

concerns with the feature extraction techniques that usually

do not allow using the entire database. Samples located at

the extremities of the signal, for instance, do not contain

enough neighboring samples/segments to perform the

proper feature extraction.

Table 2 Composition of the training and test sets according to Chazal et al. [5]

Set Records

Training 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223 e 230

Test 100, 103, 105, 11, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233 e 234

Table 3 Description of the

experimental datasets according

to AAMI classes [3]

Dataset Feature extraction nf Hearbeat class Tb

N S V F Q

Training

A [5] 155 45,747 940 3777 415 8 50,887

B [10] 19 45,845 943 3788 415 8 50,999

C [29] 21 45,825 943 3788 414 8 50,978

D [32] 13 45,844 943 3788 415 8 50,998

E [33] 31 45,511 929 3770 412 8 50,630

F [31] 100 45,844 943 3788 415 8 50,998

Test

A [5] 155 44,181 1786 3218 388 7 49580

B [10] 19 44,238 1836 3221 388 7 49690

C [29] 21 44,218 1836 3219 388 7 49,668

D [32] 13 44,238 1836 3221 388 7 49,690

E [33] 31 43,905 1823 3197 388 7 49,320

F [31] 100 44238 1836 3221 388 7 49,690

Table 4 Description of the experimental datasets according to [15]

Dataset Method Heartbeat class Tb

nf N SVEB VEB

Train

A [5] 155 45,747 940 4200 50,887

B [10] 19 45,845 943 4211 50,999

C [29] 21 45,825 943 4210 50,978

D [32] 13 45,844 943 4211 50,998

E [33] 31 45,511 929 4190 50,630

F [31] 100 45,844 943 4211 50,998

Test

A [5] 155 44,181 1786 3613 49580

B [10] 19 44,238 1836 3616 49,690

C [29] 21 4,4218 1836 3614 49,668

D [32] 13 44,238 1836 3616 49,690

E [33] 31 43,905 1823 3592 49,320

F [31] 100 44,238 1836 3616 49,690
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2.4 Optimum-path forest classifier

Let D ¼ D1 [ D2 be a k-labeled dataset, where D1 and D2

denote the training and test sets, respectively. Let S � D1

be a set of prototypes of all classes (i.e., the key samples

that best represent each samples class). The complete graph

ðD1;AÞ is composed of nodes that represent samples in D1,

and any pair of samples defines an edge in A ¼ D1 �D1

(Fig. 2a). 1 Additionally, let ps ¼ \s1; s2; . . .; sn; s[ be a

path with terminus at node s 2 D1.

Roughly speaking, the OPF classifier contains two dis-

tinct phases, being the first one employed for training

purposes, and the latter used to assess the robustness of the

classifier designed in the previous phase. The training

phase aims at building the optimum-path forest, and the

test step classifies each test node individually, i.e. ,they are

added to the training set for classification purposes only,

and further removed.

2.4.1 Training step

S� is an optimum set of prototypes when the OPF algorithm

minimizes the classification errors for every s 2 D1. Such set

S� can be found by the theoretical association between the

minimum spanning tree (MST) and the optimum-path tree

for fmax [2]. Briefly, the training is the process of finding the

S� and an OPF classifier rooted at S�. The MST in the com-

plete graph ðD1;AÞ (Fig. 2b) is represented by a connected

acyclic graph whose nodes are all samples of D1, and the

edges are undirected and weighted by the distances d

between two adjacent samples. Every pair of samples is

connected by a single path, which is minimum according to

fmax. Hence, the minimum spanning tree contains one opti-

mum-path tree for any selected root node.

The optimum prototypes are the closest nodes of the

MST with different labels in D1 (i.e., samples that fall in

the frontier of the classes, as highlighted in Fig. 2b).

Removing the edges between different classes, their adja-

cent nodes become prototypes in S�. The OPF algorithm

can define an optimum-path forest with minimum classi-

fication errors in D1 (Fig. 2c).

Soon after finding prototypes, the OPF algorithm is

used, which essentially aims at minimizing the cost of

every training sample. Such cost is computed using the fmax

path-cost function, given by:

fmaxðhsiÞ ¼
0 if s 2 S

þ1 otherwise;

�

fmaxðps � hs; tiÞ ¼ maxffmaxðpsÞ; dðs; tÞg;
ð1Þ

where hsi is a trivial path, hs; ti is the arc between the

adjacent nodes s and t such that s; t 2 D1, d(s, t) denotes the

distance between nodes s and t, and ps � hs; ti, is the
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Fig. 2 a In the training step the training set is modeled as a complete

graph, b a minimum spanning tree over the training set is computed

(prototypes are highlighted), c optimum-path forest over the training

set, d classification process of a test sample (in green), and e test

sample classification (color figure online)

1 The edges are weighted by the distance between their correspond-

ing samples/nodes.
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concatenation of path ps with the arc hs; ti. One can note that
fmaxðpsÞ computes the maximum distance between adjacent

samples in ps when ps is not a trivial path. Roughly speaking,

the OPF algorithm aims at minimizing fmaxðptÞ; 8 t 2 D1.

2.4.2 Classification step

For any node t 2 D2, we consider all edges connecting t

with samples s 2 D1, as though t were part of the training

graph (Fig. 2d). Considering all possible paths from S� to t,

OPF finds the optimum path P�ðtÞ from S� and labels t with

the class kðRðtÞÞ of its most strongly connected prototype

RðtÞ 2 S� (Fig. 2e). This path can be identified incremen-

tally evaluating the optimum cost C(t):

CðtÞ ¼ minfmaxfCðsÞ; dðs; tÞgg; 8s 2 D1: ð2Þ

Let the node s� 2 D1 be the one that satisfies Eq. (2)

(i.e., the P(t) in the optimum path P�ðtÞ). Given that

Lðs�Þ ¼ kðRðtÞÞ, the classification simply assigns Lðs�Þ as

the class of t. An error occurs when Lðs�Þ 6¼ kðtÞ.

3 Results and discussion

In this section, we present the experimental results con-

cerning the effectiveness and efficiency of each pair clas-

sifier/feature extraction technique employed in this work.

First of all, the OPF classifier is evaluated considering six

distance metrics: Euclidean, Chi-square, Manhattan, Chi-

squared and squared Bray–Curtis. After that, a comparison

among OPF with the best metrics, support vector machines

with radial basis function (SVM-RBF) and a Bayesian

classifier (BC), is then presented.

3.1 Experimental analysis of optimum-path forest

In this section, we evaluate the performance and the

computational time of the OPF classifier using six distance

metrics.2 The evaluation is performed considering the

classification according to five [3] and three classes [15].

3.1.1 Five-class problem

Here, we present the results considering the experimental

dataset divided into five classes. Table 5 displays the recog-

nition rates obtained byOPFusing eachdistancemetric3 in the

datasets defined by each feature extraction approach.

We can observe that OPF with Manhattan distance

obtained the best recognition rate with dataset D

(91.21 %), and that is approximately 0.35 % higher than

the second best result obtained with the Canberra distance

metric (90.88 %), as well as 0.5 % higher than the result

obtained with the squared Chi-squared metric (90.75 %).

Additionally, the results using dataset D were the best for

all employed distances, suggesting that the method pro-

posed by Yu and Chen [32] might be a good feature

extractor to be used together with OPF. In addition to the

recognition rate, we also computed the sensitivity (Se) and

specificity (Sp), as well as the harmonic mean (H) of these

two parameters (Table 6).

The best values of H considering class N were obtained

using Canberra (0.78) and squared Chi-squared (0.78)

distances and feature extractor C. The combination of

squared Chi-squared metric and extractor C resulted in the

best value of H for class S (0.60). In regard to classes V and

F, Euclidean distance has provided the best results with

feature extractor F. As to class Q, OPF did not classify any

sample properly due to the following main factors: the non-

concentrated distribution of samples from that class and the

low representation of samples in the training and test sets

(� 0.00015 % of the total number of samples).

However, a high recognition rate not always reflects a

satisfactory performance in terms of classes separation,

once that only class N (patient without cardiac arrhythmia)

represents � 90 % of all dataset. For instance, let us con-

sider the case of Chi-square metric, which presented the

best accuracy rates for feature extractor B (Table 5). The

Table 5 OPF accuracy considering 5 classes

Dataset Distance metric

Euclidean (%) Chi-square (%) Manhattan (%)

A 80.68 83.26 77.57

B 79.63 88.80 79.43

C 81.25 87.60 84.46

D 90.70 89.12 91.21

E 86.54 89.05 86.47

F 89.12 85.28 90.39

Dataset Distance metric

Canberra (%) Squared Chi-squared (%) Bray–Curtis (%)

A 77.93 76.14 79.81

B 80.51 80.61 87.69

C 84.90 82.63 76.55

D 90.88 90.75 88.90

E 86.53 86.62 81.79

F 86.60 85.70 78.41

The most accurate result is indicated in bold

2 For such purpose, we used the LibOPF library [24].
3 The recognition rates were computed using the standard formula,

i.e., the ratio of the number of correct classifications by the number of

database samples and H the harmonic mean between sensitivity and

specificity.
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good results of such metric did not lead us to a satisfactory

performance in terms of classes separation, since it pre-

sented low values for sensitivity and specificity for all

classes, except for class N. This is due to the misclassifi-

cation of most samples of classes S, V, F and Q, as

belonging to class N, leading to a low harmonic mean

(2 %). In order to clarify this, the confusion matrix related

to feature extractor B and squared Chi-square metric was

built, Table 7. From the data obtained, one can verify that

the dataset is dominated by class N, which clearly influ-

Table 6 Specificity, sensitivity and their harmonic mean considering the OPF classifier and the AAMI five-class categorization

Metrics Dataset Heartbeat classes

N S V F Q

H—Se—Sp H—Se—Sp H—Se — Sp H—Se—Sp H—Se—Sp

Euclidean A 066—085—054 002—001—097 084—078—091 055—038—097 000—000—100

B 050—086—035 005—002—097 056—041—090 001—001—098 000—000—100

C 074—085—066 031—018—095 084—078—091 014—007—097 000—000—100

D 073—096—059 030—018—099 084—075—097 007—004—099 000—000—100

E 065—092—050 006—003—098 076—062—097 029—017—097 000—000—100

F 074—093—062 022—012—099 091—086—097 031—018—097 000—000—100

Chi-square A 017—093—009 003—001—099 015—008—095 005—002—099 000—000—100

B 002—100—001 000—000—100 000—000—100 001—001—100 000—000—100

C 015—098—008 002—001—100 017—009—098 000—000—100 000—000—100

D 004—100—002 000—000—100 004—002—100 000—000—100 000—000—100

E 004—100—002 000—000—100 004—002—100 000—000—100 000—000—100

F 012—095—006 002—001—099 011—006—097 001—001—100 000—000—100

Manhattan A 066—081—056 003—002—095 086—082—090 051—035—096 000—000—100

B 046—087—031 006—003—097 051—035—090 001—000—099 000—000—100

C 076—088—066 031—018—097 085—078—093 013—007—098 000—000—100

D 071—096—056 023—013—099 085—075—098 008—004—099 000—000—100

E 064—092—048 006—003—098 075—061—097 023—013—097 000—000—100

F 072—095—058 010—006—099 090—083—098 034—021—098 000—000—100

Canberra A 071—081—063 047—031—098 080—073—087 025—015—096 000—000—100

B 042—088—028 005—003—098 045—029—091 002—001—099 000—000—100

C 078—088—071 056—039—096 084—077—093 016—009—099 000—000—100

D 071—096—057 026—015—099 085—075—098 011—006—099 000—000—100

E 064—092—049 007—004—098 076—062—097 024—014—097 000—000—100

F 064—092—049 007—004—099 083—071—098 009—005—095 000—000—100

Squared Chi-square A 065—080—056 006—003—097 081—076—086 037—023—097 000—000—100

B 048—088—033 004—002—098 053—037—091 001—001—098 000—000—100

C 078—085—072 060—044—095 085—078—093 022—012—097 000—000—100

D 073—096—060 032—019—099 085—075—097 009—005—099 000—000—100

E 065—092—050 006—003—098 076—062—097 027—016—097 000—000—100

F 069—090—056 020—011—099 087—079—098 008—004—093 000—000—100

Bray–Curtis A 051—086—036 018—010—098 057—041—090 016—009—098 000—000—100

B 005—098—002 000—000—100 000—000—098 000—000—100 000—000—100

C 055—083—041 008—004—096 057—043—088 001—000—099 000—000—100

D 002—100—001 001—000—100 000—000—100 000—000—100 000—000—100

E 036—090—022 005—003—098 044—028—096 006—003—096 000—000—100

F 053—085—039 003—002—096 054—038—091 021—012—098 000—000—100

The best values for the harmonic mean are indicated in bold. Notice the H, Se and Sp values are not divided by 100 due to the lack of space

Neural Comput & Applic (2018) 29:679–693 685

123



enced all other classes. This can be confirmed by analyzing

the results obtained for classes S, V, F and Q that had the

majority of the samples misclassified as being from class

N (first column of Table 7). Also, it is important to stress

that the accuracy calculated in this work do consider

unbalanced datasets [25].

3.1.2 Three-class problem

We have also evaluated OPF considering the three-class

dataset division proposed by Llamedo and Matı́nez [15],

where classes F and Q are merged into class V. Table 8

presents the accuracy results obtained considering the

three-class problem. Once again, the best result was

obtained with Manhattan distance and feature extractor D

(91.42 %), as happened in the five-class problem (Table 5).

Although some classes have been merged, we still have an

unbalanced dataset. The aggregation of classes F and

Q into class V has smoothed such problem, but class C still

concentrates approximately 90 % of the samples. Table 9

presents the results obtained in terms of sensitivity,

specificity and harmonic mean.

Considering class N, Canberra and squared Chi-squared

distances together with the feature extractor C presented

the best values for the harmonic mean (H) (0.78). Addi-

tionally, squared Chi-squared and the same feature

extractor achieved the best result over class S. This may

indicate that aggregation into 3 classes does not influence

the measure H for classes N and S, the same values where

obtained in the five-class problem (Table 6). In regard to

class V, the best value ðH ¼ 0:88Þ was obtained with

Euclidean and Manhattan distances over the feature

extractor F. Therefore, the aggregation into three classes

seemed to improve the results for the classes V, F and Q,

which are now clustered into class V.

Table 10 presents the OPF computational time (in sec-

onds) for the training and test phases, being the fastest

approaches the ones using Bray–Curtis and Manhattan

metrics, since they are simpler to compute. It is important

to highlight that these results are accompanied by a

satisfactory classification performance, since OPF with

Manhattan distance obtained generally very good classifi-

cation results.

3.1.3 Comparative analysis of the classifiers considering

the five-class problem

In order to compare the performance of OPF over tradi-

tional classifiers (SVM-RBF4 and Bayesian classifier), we

considered only the two best distance metrics found in the

previous section, i.e., Manhattan and squared Chi-squared

distances. Therefore, we can summarize the techniques to

be compared as follows:

• OPF-L1: OPF with Manhattan distance;

• OPF-SCS: OPF with squared Chi-squared distance;

• SVM-RBF: support vector machines using RBF

kernel;5

• BC: Bayesian Classifier.

Table 11 shows the accuracy obtained for each feature

extractor and classifier considering five classes of heart-

beats. The most accurate technique was SVM-RBF with

94.09 % of classification accuracy, followed by OPF-L1,

BC and OPF-SCS, which obtained 91.21, 90.95 and

90.75 % of classification accuracies, respectively,

Table 7 Confusion matrix obtained for Chi-square and feature

extractor B

True class

N S V F Q

Predicted class

N 44,115 1834 3209 350 7

S 27 0 2 4 0

V 76 0 7 32 0

F 19 2 3 2 0

Q 1 0 0 0 0

Table 8 OPF accuracy considering three classes

Dataset Distance metric

Euclidean (%) Chi-square (%) Manhattan (%)

A 81.00 83.41 77.82

B 80.43 88.89 80.18

C 81.41 87.68 84.61

D 90.92 89.13 91.42

E 86.81 89.08 86.80

F 89.46 85.35 90.78

Dataset Distance metric

Canberra

(%)

Squared Chi-squared

(%)

Bray–Curtis

(%)

A 78.29 76.43 80.20

B 81.21 81.46 88.48

C 85.18 82.84 76.88

D 91.07 90.94 88.92

E 86.84 86.90 82.11

F 86.87 85.94 78.73

The most accurate result is indicated in bold

4 SVM parameters were optimized through cross-validation

procedure.
5 SVM implementation used was based on LIBSVM [4].
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considering the feature extractor D. Additionally, Table 12

presents the sensitivity, specificity and harmonic mean

results.

From Table 12, one can realize that the best results in

terms of harmonic mean were obtained for class N with

SVM-RBF and feature extractor D (80.00 %). This result is

about 2 % higher than the second best result obtained by

OPF-SCS with feature extractor C (78.00 %). In regard to

class S, the best classifier was OPF-SCS using feature

extractor C, followed by SVM-RBF with 51 % of classi-

fication accuracy, which achieved the best recognition rates

for classes V and F.

Table 9 Specificity, sensitivity

and their harmonic mean

considering the OPF classifier

and the three-class

categorization

Metric Dataset Heartbeat class

N S V

H—Se—Sp H—Se—Sp H—Se—Sp

Euclidean A 066—085—054 002—001—097 082—077—088

B 050—086—035 005—002—097 062—047—090

C 074—085—066 031—018—095 080—072—089

D 073—096—059 030—018—099 081—070—096

E 065—092—050 006—003—098 074—060—094

F 074—093—062 022—012—099 088 —082—094

Chi-square A 016—093—009 003—001—099 016—009—094

B 002—100—001 000—000—100 002—001—100

C 015—098—008 002—001—100 016—009—098

D 004—100—002 000—000—100 004—002—100

E 004—100—002 000—000—100 004—002—100

F 012—095—006 002—001—099 011—006—097

Manhattan A 066—081—056 003—002—095 083—080—086

B 046—087—031 006—003—097 056—041—090

C 076—088—066 031—018—097 081—072—091

D 071—096—056 023—013—099 081—070—097

E 064—092—048 006—003—098 073—060—094

F 072—095—058 011—006—099 088 —081—096

Canberra A 071—081—063 047—031—098 077—072—083

B 042—088—028 005—003—098 051—035—091

C 078—088—071 056—039—096 081—073—092

D 071—096—057 026—015—099 081—070—097

E 064—092—049 007—004—098 074—061—094

F 064—092—049 007—004—099 078—068—093

Squared Chi-square A 066—080—056 006—003—097 078—074—083

B 048—088—033 004—002—098 059—044—090

C 078—085—072 060—044—095 081—074—090

D 074—096—060 032—019—099 081—070—096

E 065—093—050 006—003—098 074—061—094

F 069—090—056 020—011—099 082—074—091

Bray–Curtis A 051—086—036 018—010—098 057—042—088

B 001—099—001 000—000—100 001—000—099

C 055—083—041 008—004—096 057—042—087

D 002—100—001 001—000—100 000—000—100

E 035—090—022 005—003—098 045—030—092

F 053—085—039 003—002—096 055—039—089

The best values for the harmonic mean are indicated in bold
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Table 13 displays the mean execution times considering

the training, testing and total time (training ? testing)

required by each classifier.6 The fastest classifier in the

training phase was the BC in all datasets, followed by OPF-

L1. The OPF-SCS was faster than SVM-RBF in all datasets

as well, except for dataset F, where SVM-RBF had the

third best time. The excessive times of SVM-RBF were due

to the grid search that is necessary to fine-tune its

parameters.

In the test phase, the best computational time was

obtained by SVM-RBF (6.7 s), being almost 8 times faster

than OPF-L1 (53.3 s), both with feature extractor D. The

third fastest technique was OPF-SCS (131.3 s), while BC,

despite being the fastest in the training phase, took 173 s to

classify the samples. In resume, SVM-RBF was the fastest

in the classification phase, followed by OPF-L1, OPF-SCS

and BC. Usually, SVM is fast for classifying samples, since

it only considers the support vectors for such purpose,

while OPF may need to evaluate a considerable number of

training samples for that. However, if we consider the total

time, OPF-L1 was the most efficient technique, which may

lead us to consider it as a very suitable classifier concerning

the trade-off between low computational time and high

recognition rate.

Table 14 presents the confusion matrix related to

SVM-RBF classifier in the five-class problem for the

Dataset A [5]. It can be noted a confusion of class SVEB

with class N, where only 37 (2 %) samples were clas-

sified correctly for class SVEB. However, using the

OPF-SCS classifier with Dataset C [29], the amount of

samples correctly classified in the same class was around

43 %. Thus, to detect Cardiac arrhythmia, also known as

cardiac dysrhythmia or irregular heartbeat, the accuracy

over class SVEB is usually considered most important.

As such, the OPF-SCS accuracy obtained for this class,

which is much higher than the one of SVM-RBF, is of

greater clinical relevance.

3.1.4 Comparative analysis of the classifiers considering

the three-class problem

In this section, we analyze the performance and computa-

tional time of all classifiers considering the three-class

Table 10 OPF computational

time (in s) considering the three-

class problem

Distance metrics

Euclidean Chi-square Manhattan

Training Test Total Training Test Total Training Test Total

A 445.18 682.89 1128.07 3230.23 1987.14 5217.37 335.07 584.79 919.86

B 145.53 173.48 319.01 416.65 6.57 423.21 54.50 94.53 149.03

C 142.70 177.63 320.34 464.50 102.25 566.74 55.19 97.24 152.43

D 128.90 132.96 261.86 299.52 2.74 302.26 40.09 53.07 93.15

E 172.76 181.13 353.89 650.34 14.66 665.00 80.58 108.42 189.00

F 317.86 444.96 762.82 2103.07 818.28 2921.35 219.07 360.48 579.55

Distance metrics

Canberra Squared Chi-squared Bray–Curtis

Training Test Total Training Test Total Training Test Total

A 1479.33 1588.78 3068.11 1478.00 1588.67 3066.67 1143.30 1168.50 2311.81

B 187.74 161.54 349.28 189.63 183.48 373.11 43.35 0.06 43.41

C 203.89 225.74 429.63 204.11 230.33 434.44 104.88 118.07 222.96

D 130.45 142.55 273.00 132.00 136.51 268.52 35.22 6.01 41.22

E 297.03 198.04 495.07 299.07 227.00 526.07 150.78 125.34 276.12

F 969.35 997.24 1966.59 9682.9 976.22 1944.50 431.96 519.69 951.66

Best values are indicated in bold

Table 11 Accuracy rates obtained considering AAMI five classes

Dataset Classifier

OPF-L1 (%) OPF-SCS (%) SVM-RBF (%) BC (%)

A 77.57 76.14 88.21 80.69

B 79.43 80.61 84.06 79.52

C 84.46 82.63 89.82 81.37

D 91.21 90.75 94.09 90.95

E 86.47 86.62 87.06 86.82

F 90.39 85.70 87.12 89.14

The best accuracy value is indicated in bold

6 We have executed all techniques 10 times for statistical purposes.
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division proposed by [15]. Table 15 presents the recogni-

tion rates for each pair classifier/feature extractor method,

being the sensitivity, specificity and harmonic mean results

displayed in Table 16.

In regard to class N, the SVM-RBF classifier has

obtained the best harmonic mean value with feature

extractor D; meanwhile, OPF-SCS was the most accurate

technique for class S using feature extractor C. These

results are consistent with those obtained considering five

classes. With respect to class V, three classifiers obtained

the best harmonic mean values: SVM-RBC with feature

extractor A, and OPF-L1 and BC with feature extractor F.

However, in all these three cases, the values are followed

by low sensitivity values for class S.

Table 17 presents the mean computational time in sec-

onds concerning all techniques. Once again, the lowest

computational time for training was achieved by BC and

followed by OPF-L1 for all datasets. Except for feature

extractors C and F, where OPF took longer to train, SVM-

RBF classifier was the most costly technique for training

the samples. Relatively to the five-class problem, similar

computational times could be observed for BC and OPF-

based classifiers, evidencing the robustness of these clas-

sifiers when dealing with different number of classes. As

expected, the SVM computational time decreased, since we

have less classes to be analyzed during the pair-wise

comparison against them.7 Last but not least, SVM-RBF

was the fastest technique for the classification phase, while

OPF-L1 obtained the lowest execution time considering

both training and test phases.

Also, based on a similar analysis to the one carried out

with the data in Table 14, it could be confirmed that also in

the three-class problem, OPF-SCS is the most appropriate

to identify the pathological classes, i.e., the ones with

greater clinical interest. Luz et al. [17] considered only the

Euclidean metric and obtaining highest accuracy rates of

90.7 and 90.9 % in the 3- and 5-class problems,

Table 12 Harmonic mean, specificity and sensitivity obtained considering five classes and all classifiers

Metric Dataset Heartbeat class

N S V F Q

H—Se—Sp H—Se—Sp H—Se—Sp H—Se—Sp H—Se—Sp

OPF-L1 A 066—081—056 003—002—095 086—082—090 051—035—096 000—000—100

B 046—087—031 006—003—097 051—035—090 001—000—099 000—000—100

C 076—088—066 031—018—097 085—078—093 013—007—098 000—000—100

D 071—096—056 023—013—099 085—075—098 008—004—099 000—000—100

E 064—092—048 006—003—098 075—061—097 023—013—097 000—000—100

F 072—095—058 010—006—099 090—083—098 034—021—098 000—000—100

OPF-SCS A 065—080—056 006—003—097 081—076—086 037—023—097 000—000—100

B 048—088—033 004—002—098 053—037—091 001—001—098 000—000—100

C 078—085—072 060—044—095 085—078—093 022—012—097 000—000—100

D 073—096—060 032—019—099 085—075—097 009—005—099 000—000—100

E 065—092—050 006—003—098 076—062—097 027—016—097 000—000—100

F 069—090—056 020—011—099 087—079—098 008—004—093 000—000—100

SVM-RBF A 074—092—063 006—003—099 093—091—096 082—072—097 000—000—100

B 049—091—033 001—000—100 061—045—093 000—000—098 008—005—100

C 070—094—056 015—008—098 089—083—097 003—002—100 000—000—100

D 080—098—067 051—035—099 090—082—099 004—002—100 000—000—100

E 070—092—057 012—007—099 089—082—098 001—001—094 000—000—100

F 074—091—063 026—015—099 093—089—096 030—018—096 000—000—100

BC A 066—084—054 002—001—097 084—078—091 055—038—097 000—000—100

B 050—086—035 005—002—097 056—041—090 001—001—099 000—000—100

C 074—085—066 031—018—095 084—078—091 013—007—097 000—000—100

D 073—096—059 029—017—099 085—076—097 007—004—099 000—000—100

E 064—093—049 005—003—098 076—062—097 027—016—097 000—000—100

F 074—093—062 021—012—099 091—086—097 031—018—097 000—000—100

The best values are indicated in bold

7 LIBSVM implements the one-against-one method for multi-class

tasks.
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respectively, considering in both cases the extraction

method proposed by [33]. However, the present work could

improve the accuracy of OPF with Manhattan distance,

obtaining 91.42 and 91.21 % in the 3- and 5-class prob-

lems, respectively, for the same dataset and with compu-

tational time inferior to the one achieved by Luz et al. [17].

This considerable increase in accuracy directly leads to a

more accurate detection of pathological classes. As such, it

is possible to identify more precisely a cardiac arrhythmia

with the Manhattan distance than with Euclidean one.

Again, it should be stressed that the aforementioned classes

are of great importance for clinical analysis, and that the

SVM classifier could not detect accurately enough the

samples of these classes.

Table 13 Mean computational

time (in s) required in the AAMI

five-class problem

Dataset Classifier

OPF-L1 OPF-SCS

Train Test Total Train Test Total

A 337.0 (1.6) 584.2 (0.7) 921.2 (1.8) 1487.2 (10.8) 1604.7 (12.4) 3091.9 (22.3)

B 54.8 (0.7) 102.9 (13.4) 157.7 (13.7) 191.9 (2.4) 181.2 (4.0) 373.1 (3.6)

C 55.5 (0.4) 95.1 (4.0) 150.6 (3.9) 206.9 (2.0) 242.5 (7.9) 449.4 (9.9)

D 40.3 (0.2) 53.3 (7.3) 93.6 (7.2) 132.4 (0.8) 131.3 (4.9) 263.7 (5.4)

E 81.1 (0.8) 115.1 (3.5) 196.2 (3.2) 302.2 (3.7) 223.8 (4.9) 525.9 (6.9)

F 220.4 (2.1) 380.3 (6.9) 600.8 (6.1) 974.9 (6.7) 990.0 (3.4) 1964.8 (9.9)

Dataset Classifier

SVM-RBF BC

Train Test Total Train Test Total

A 2668.4 (26.2) 32.2 (6.7) 2700.6 (31.3) 62.9 (0.3) 1622.2 (8.6) 1685.2 (8.9)

B 576.0 (474.0) 12.6 (1.7) 588.6 (472.3) 11.1 (0.2) 236.0 (2.7) 247.1 (2.8)

C 195.3 (8.6) 6.9 (2.1) 202.2 (10.5) 11.9 (0.0) 253.8 (3.0) 265.7 (2.9)

D 170.7 (5.7) 6.7 (0.0) 177.4 (5.7) 8.7 (0.1) 173.0 (1.9) 181.7 (1.9)

E 546.5 (48.2) 9.4 (0.7) 555.9 (47.5) 15.6 (0.1) 354.1 (4.1) 369.6 (4.0)

F 608.7 (9.5) 15.3 (0.1) 624.0 (9.6) 42.0 (0.1) 1058.8 (9.2) 1100.8 (9.2)

The standard deviation is also displayed. The lowest times are indicated in bold

Table 14 Confusion matrices obtained for SVM-RBF and OPF-SCS

classifiers

True class

N SVEB VEB F Q

SVM-RBF—Dataset A [5]

Classified as

N 40099 1705 221 83 3

SVEB 361 37 3 0 0

VEB 2285 23 2933 15 4

F 1436 21 61 290 0

Q 0 0 0 0 0

OPF-SCS—Dataset C [29]

Classified as

N 37677 612 591 322 2

SVEB 2495 802 33 2 0

VEB 2798 412 2514 17 5

F 1245 9 81 47 0

Q 3 2 0 0 0

Table 15 Classification accuracy considering the three-class problem

Dataset Classifier

OPF-L1 OPF-SCS SVM-RBF BC

A 77.82 76.43 80.01 80.98

B 80.18 81.46 84.29 80.31

C 84.61 82.84 90.01 81.53

D 91.42 90.94 93.72 91.17

E 86.80 86.90 88.45 87.07

F 90.78 85.94 83.66 89.47

The best accuracy value is indicated in bold
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4 Conclusions and future works

In this paper, a detailed study about the performance and

computational time of supervised classification algorithms

regarding the task of arrhythmia detection in ECG signals

was presented. The main contributions of this work are: (1)

to evaluate the OPF classifier in the task of arrhythmia

detection, (2) to evaluate six distances with OPF, among

which the best accuracy rates were obtained by the Man-

hattan metric, while better generalization (i.e., the accuracy

achieved per class) was attained using squared Chi-square

distance, (3) to test six feature extraction techniques and

investigate which one leads to better recognition rates and

generalization, (4) to compare OPF against support vector

machines and a Bayesian classifier, being found that OPF

was the less generalist, while the SVM classifier was the

most accurate, and, finally, (5) to find that OPF achieved

the best trade-off between computational load and recog-

nition rate.

OPF being less generalist with respect to classes V and

S, which are of great clinical significance regarding class N,

one can conclude that this classifier is more appropriate for

the classification of arrhythmias in ECG signals than the

SVM and Bayesian classifiers.

Since we observed that OPF and SVM-RBF were the

most accurate classifiers, our future works will be guided to

explore the synergy between these classifiers in order to

build an ensemble of classifiers aiming at increasing the

Table 16 Harmonic mean,

specificity and sensitivity

considering three classes and all

classifiers

Metric Dataset Heartbeat class

N S V

H—Se—Sp H—Se—Sp H—Se—Sp

OPF-L1 A 066—081—056 003—002—095 083—080—086

B 046—087—031 006—003—097 056—041—090

C 076—088—066 031—018—097 081—072—091

D 071—096—056 023—013—099 081—070—097

E 064—092—048 006—003—098 073—060—094

F 072—095—058 011—006—099 088—081—096

OPF-SCS A 066—080— 56 006—003—097 078—074—083

B 048—088—033 004—002—098 059—044—090

C 078—085—072 060—044—095 081—074—090

D 074—096—060 032—019—099 081—070—096

E 065—093—050 006—003—098 074—061—094

F 069—090—056 020—011—099 082—074—091

SVM-RBF A 072—082—065 007—004—098 088—092—084

B 053—090—038 001—000—100 069—056—091

C 070—095—056 012—007—099 083—074—095

D 080—098—067 052—035—099 084—074—098

E 071—093—057 012—006—099 086—080—093

F 072—087—062 023—013—099 086—085—088

BC A 066—085—054 002—001—097 082—077—088

B 050—086—035 005—002—097 062—047—089

C 074—085—066 031—018—095 080—072—089

D 073—096—059 029—017—099 082—071—096

E 065—093—049 005—003—098 074—060—094

F 074—093—062 021—012—099 088—083—094

The best values are indicated in bold
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recognition rate of arrhythmia detection in ECG signals, as

well as to evaluate other traditional and most recent feature

extraction methods.
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