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ABSTRACT
In general, small bodies of the Solar system, e.g. asteroids and comets, have a very irregular
shape. This feature affects significantly the gravitational potential around these irregular bodies,
which hinders dynamical studies. The Poincaré surface of section technique is often used to
look for stable and chaotic regions in two-dimensional dynamic cases. In this work, we show
that this tool can be useful for exploring the surroundings of irregular bodies such as the
asteroid 4179 Toutatis. Considering a rotating system with a particle, under the effect of the
gravitational field computed three dimensionally, we define a plane in the phase space to build
the Poincaré surface of section. Despite the extra dimension, the sections created allow us to
find trajectories and classify their stabilities. Thus, we have also been able to map stable and
chaotic regions, as well as to find correlations between those regions and the contribution of
the third dimension of the system to the trajectory dynamics as well. As examples, we show
details of periodic (resonant or not) and quasi-periodic trajectories.

Key words: methods: numerical – celestial mechanics – minor planets, asteroids: individual:
Toutatis.

1 IN T RO D U C T I O N

Many bodies of the Solar system do not have enough mass to be in
hydrostatic equilibrium. Such condition allows the bodies to have
an irregular and asymmetrical shape, as it happens with comets
and asteroids. These astronomical objects arouse the interest of
the scientific and civil community due to information they provide
about the beginning of the Solar system, the danger that they may
represent to Earth (Shustov, Naroenkov & Efremova 2017) and
the mining missions that can be performed in these bodies (Abell
et al. 2017). Besides this growing interest in those astronomical
bodies, the number of space missions to those bodies are growing
as well. Some examples of those space missions are shown as follow.

NASA’s mission NEAR-Schoemaker (Prockter et al. 2002),
JAXA’s Hayabusa (Kawaguchi, Fujiwara & Uesugi 2008) and
ESA’s ROSETTA (Roll, Witte & Arnold 2016) visited asteroids 433
Eros, 25143 Itokawa, and comet 67P/Churyumov-Gerasimenko,
respectively, and they are examples of successful missions sent
to irregular bodies. Currently, the missions JAXA’s Hayabusa-2
(Kawaguchi et al. 2008) and NASA’s OSIRES-Rex (Kawaguchi
et al. 2008) aim to explore the asteroids 162173 1999 JU3 and
101995 Bennu, respectively. Some daring manoeuvres were per-
formed in some of the missions quoted and will be repeated in the
others. NEAR-Schoemaker spacecraft was the first one to touch the
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surface of a small body (433 Eros). The Hayabusa spacecraft ac-
complished a touch-down on the surface of 25143 Itokawa. During
this manoeuvre, the spacecraft collected material from the surface
of the asteroid, which was sent to Earth (Kawaguchi et al. 2008).
Hayabusa-2 (Kawaguchi et al. 2008) and OSIRES-Rex (Lauretta
et al. 2017) intend to collect material from their respective aster-
oids. Hayabusa-2 (Kawaguchi et al. 2008) and ROSETTA (Roll
et al. 2016) even use modules for studies in situ.

For the missions to be successful, the spacecrafts must orbit the
targets and collect data using their tools, as mentioned previously.
For this reason, accurate studies on orbital dynamics around irreg-
ular bodies are needed. Therefore, many works have been made
enriching the knowledge concerning the structure of gravitational
potential of irregular bodies. Frouard & Compère (2012) used two
numerical models to study the short and long-term evolution of
the asteroid system 87 Sylvia, they showed the deeply stable zone,
fast and secular chaotic regions of the system. Araujo et al. (2012)
used N-body simulations and calculated stable regions around triple
asteroid 2001 SN263. They found the size and the location of the
stabilities zones within the system. Jiang, Baoyin & Li (2015b)
used the periodic orbits to study the stable region in the potential
field of the primary body of triple asteroid 216 Kleopatra. In this
work, we show the usefulness of one of those methods that allows
us to explore regions around irregular and asymmetric bodies and
determine the size and location of the stable and unstable regions.

In order to explore the dynamical region around an irregularly
shaped body, we adopt the Poincaré surface of section technique.
It brings the possibility of identifying the location and size of the
regular and chaotic regions, as well as providing information about
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Poincaré surfaces of section around a 3D irregular body 2453

resonances, periodic orbits, and quasi-periodic orbits. This tech-
nique has been widely and successfully applied to orbital dynam-
ics. More than half century ago, a significant number of numerical
studies of the restricted three-body problem via Poincaré surface
of section started (Hénon 1965a,b, 1966a, b, 1969; Jefferys 1971).
A more comprehensive research for a specific mass ratio followed
those studies a couple of decades ago (Winter & Murray 1994a,b).
Using the restricted three-body problem for a Sun–Jupiter system,
Winter & Murray (1997a,b) analysed first-order resonances and
libration regions. Winter (2000) applied the Poincaré surface of
section technique to the Earth–Moon system, where stability re-
gions and periodic orbits were found, and the maximum libration
amplitude of the quasi-periodic orbits around a family of periodic
orbits was computed. In all the mentioned works, the Poincaré sur-
face of section technique was applied to the two-dimensional (2D)
problem, the planar, circular restricted three-body problem.

However, we are interested in applying the technique to irregular
and non-symmetric bodies, a 3D problem. Scheeres et al. (1996)
used the Poincaré map in order to find a periodic orbit around the
asteroid 4769 Castália, whose gravitational potential is irregular and
3D. In the context of the application of Poincaré surface of section
technique to a single body, Broucke & Elipe (2005) considered a
circular ring to model a gravitational potential and find several fam-
ilies of periodic orbits, as well as dynamic structures around the
ring. Since the ring is a planar object, the problem is also planar.
Another planar case was used in Silva, Winter & Prado (2009). The
authors analysed the region around planar shapes (a square and a tri-
angular plate) via Poincaré surface of section and determined stable
and unstable regions. Najid, Haj Elourabi & Zegoumou (2011) used
the Poincaré surface of section around an inhomogeneous straight
segment. Such segment was set out perpendicular to the rotating
system defined. The gravitational potential generated by this seg-
ment is 2D, since the non-homogenity of the segment density is
a function that makes the gravitational potential symmetric. Liu,
Baoyin & Ma (2011) used the polyhedron model to compute the
gravitational potential of a 3D cube, thus, enabling the mapping
by the Poincaré surface of section at the cube vicinity and periodic
orbits around the cube were found. All the mentioned works treat
2D or 3D cases. However, whenever it was a 3D case, it had sym-
metry, which made it turn into a 2D case as well. Differently from
then, Scheeres et al. (1996) took into account the third dimension
in a non-symmetric system, focusing only on determining periodic
orbits. Stable and unstable regions were not explored at all.

In order to broadly and systematically explore the stable and
chaotic regions around irregular and asymmetric bodies, we use the
Poincaré surface of section technique. Our aim is to show that, even
with more degrees of freedom, the known structures of Poincaré
surfaces of sections are not in general destroyed. In this way, the
technique is not restricted to look for periodic orbits, but also to
allow the mapping of all the dynamic structures around the body.

In the next two sections, we introduce the main tools used in
this work; the mascons model and the Poincaré surface of section
technique. In Section 4, we present and discuss the results for a study
about the asteroid 4179 Toutatis. Stable regions, periodic orbits,
quasi-periodic orbits and chaotic regions around this asteroid are
identified and analysed. In the last section, the final comments and
general observations are presented.

2 SH A P E M O D E L : M A S C O N S

The computation of gravitational potential of irregular and small
bodies composes the foundation for a dynamical study around these

bodies. This physical amount can be represented as an expansion by
harmonic series for any body (MacMillan 1936). The gravitational
potential is better understood and represented, in terms of accuracy,
when its harmonic series have a high number of gravitational co-
efficients. Another method to evaluate the gravitational field, via
the dimensions of the body, is given by Ivory’s approach, which
consists of fitting a triaxial ellipsoid whose dimensions resemble
the body (Laplace 1846; Kellogg 1954).

The polyhedron shape model, a tool that has been developed to
model irregular bodies, has been helping to compute a gravitational
potential closer to a real one. It provides, with a high level of accu-
racy, the shape of an observed body (Neese 2004). The shape given
by this model is usually a polyhedron of triangular faces that fits the
real irregular surface of the body. In order to simplify the computa-
tional procedures, it is recommended to decompose the polyhedron
into other geometric shapes, like tetrahedrons. With these tetrahe-
drons, at least two approaches are possible. The first approach is
called polyhedron model, and it was developed by Werner (1994).
It is based on a volumetric integration of tetrahedrons in order to
obtain the gravitational potential. The other approach was first ap-
plied in Geissler et al. (1996) and then called ‘mascons’ model
(mass concentration) (Werner & Scheeres 1996; Rossi, Marzari &
Farinella 1999). Such model is based on filling the polyhedron vol-
ume with massive points in order to reproduce the mass distribution
of the body. There are, at least, two approaches to distribute these
points inside the polyhedron volume. In the first, the points are
uniformly distributed in a 3D space (Geissler et al. 1996). In the
second, the points are systematically set by using the geometric
features of the tetrahedrons (Venditti 2013).

In this work, we adopted the mascons model (Geissler et al. 1996)
whose main advantage is the control that can be exerted on the
accuracy and the computational speed. The number of mascons is
directly proportional to the accuracy and inversely proportional to
the integration speed.

Our mascon model was built starting from a uniform grid of
points. This grid has dimensions larger than the original polyhe-
dron (Geissler et al. 1996) and is centred at the geometric centre
of the polyhedron. The points of the grid that do not belong to the
volume of the polyhedron are excluded. The limit of the grid is the
polyhedron itself, i.e. the grid has the irregular shape of the body.
The gravitational potential of the body, which allows to integrate
orbits, to evaluate the equilibrium points, and to study other dy-
namical features, is computed via the contribution of the sum of the
massive points.

3 PO I N C A RÉ SU R FAC E O F SE C T I O N
T E C H N I QU E

Having defined the mathematical techniques to compute gravita-
tional potential, the equations of motion can be written. These equa-
tions are defined in the body-fixed frame (Oxyz), given in Scheeres
et al. (1996), a frame with uniform rotation that follows the asteroid
movement (Fig. 1). The xy-plane is called, in this work, rotating
plane.

ẍ − 2ωẏ = ω2x + Ux, (1)

ÿ + 2ωẋ = ω2y + Uy, and (2)

z̈ = Uz, (3)
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2454 G. Borderes-Motta and O. C. Winter

Figure 1. Schematic diagram of an orbit around a body fixed at a rotating
frame. x0 marks the initial position and the blue arrow indicates the initial
velocity.

where Ux, Uy, and Uz stands for the partial derivatives of the gravity
potential and ω is the spin velocity of the asteroid. As mentioned
before, the mascons model is used here to compute the gravitational
potential, given by

U = U (x, y, z) = −
N∑

i=0

G m

r2
i

, (4)

where G is the gravitational constant, N is the total number of
mascons, ri is the distance from a mascon to the orbiting particle,
and m is the mass of each mascon, m = M

N
with M being the total

mass of the body.
Conserved quantities, such as the Jacobi constant (Cj), can be

useful to analyse the equations of motion. This constant is explicitly
computed as (Scheeres et al. 1996) follows:

Cj = ω2(x2 + y2) + 2U (x, y, z) − ẋ2 − ẏ2 − ż2. (5)

The equations (1–3) describe the motion of a massless particle and
are numerically integrate via the Burlish–Stoer integrator (Bulirsch
& Stoer 1966). The Poincaré section is set in the plane y = 0 and
the initial conditions are systematically distributed over the x-axis.
It is defined y0 = z0 = ẋ0 = ż0 ≡ 0, ẏ0 > 0 and ẏ0 was computed
for a fixed value of Cj (equation 5). During the integration, the
conditions of the orbit are saved at every instant of time when the
trajectory crosses the section defined by y = 0 with ẏ > 0. The
Newton–Raphson method is used to obtain an error of (10−13) from
that section. The recorded points are plotted on the phase plane
(x, ẋ) creating the Poincaré surface of section.

The method used in this work was built as a planar 2D case,
adding the third dimension (z) to the particle trajectory. The velocity
ż was set at zero in the initial condition, and during the integration,
both the coordinate and the velocity are free to evolve. In order
to analyse the results, the movement projected over the rotating
plane was thought to be uncoupled from the movement on the third
dimension. Then, the influence of z variation of the orbit behaviour
on the rotating plane was studied. In the Poincaré surface of section,
the most internal orbit of a cluster of stability islands is called, in this
paper, central orbit. Each central orbit is represented by one isolated
point in the Poincaré surface of section. These points correspond to
the periodic orbits in the projection over the rotating plane. Thus,
the third dimension varies avoiding the repeatability, as it usually
occurs in periodic orbits.

Hereinafter, we present a study about the dynamics around the
asteroid 4179 Toutatis, which was chosen due to its low spin ve-
locity. Among the asteroids with necessary data for the mascons
approach, the 4179 toutatis has a rotation period of the order of
days, whereas most of the other asteroids have it in hours. This

period enhances the influence of the irregularity of the gravitational
potential over a particle orbit. The asteroid 4179 Toutatis is an NEA
and has already had several close encounters with Earth, which
provided accurate data on the asteroid. A shape model was built
by Ostro et al. (1995) through radar data taken in December 1992.
This shape model represents the asteroid 4179 Toutatis through a
polyhedron with 20 000 vertices and 39 996 faces (Neese 2004). Its
rotational period is 5.376 d (Tast) (Ostro et al. 1995) and the den-
sity is 2.5 g cm−3 (Scheeres et al. 1998). We apply the algorithm
(Section 2) to obtain the mascons, and we consider 21 106 mascon
points that reproduce the gravitational potential of the asteroid.

4 R ESULTS

In our work, the regions around the asteroid 4179 Toutatis are
explored considering a range of Cj values from 1.20 to 3.0 ×
10−7 km2 s−2, with 0.15 × 10−7 km2 s−2 of interval between them.
The unit of Cj as 10−7 km2 s−2 is adopted by simplicity.

Using 75 different initial conditions for each Cj, we simulate the
trajectory generated by each condition. The trajectories integration
are stopped after 1000 intersections between the trajectory and the
plane y = 0. Those conditions are distributed along the x-axis from
2.6 to 10 km with steps of 0.1 km. These simulations produce the
first view of the Poincaré surface of section, then, if it is necessary
to complete this surface of section, new conditions are simulated.

An illustrative sample of Poincaré surfaces of section is shown
in Fig. 2. Three Families of periodic orbits (projections of a central
orbit) were selected to be a representative sample of our results to
be analysed in detail. These structures are central orbits and quasi-
periodic orbits that librate around the central orbits. The Families
are presented in crescent order of complexity. The islands associated
to Family 1 are indicated in purple, to Family 2 in orange, and to
Family 3 in red.

There is a line of points with ẋ = 0 in Fig. 2, Cj = 2.10 and
2.25. These points indicate initial conditions whose trajectories had
collided with the asteroid before the first complete orbital cycle in
the rotating frame. The Poincaré surface of section for Cj = 1.20
shows a line of points with ẋ = 0 corresponding to unstable initial
conditions whose trajectories have been ejected from the frame.
The ejection condition is reached when the particle is farther than
250 km from the center of the asteroid. The larger is the Cj value,
the smaller is the chaotic region on the Poincaré surface of section.

In Jiang et al. (2016), two Poincaré surfaces of section are built
in the potential of the asteroid 216 Kleopatra to show the chaotic
behaviours of the orbits in large scale. This behaviour is similar to
the chaotic region seen in the present Poincaré surfaces of sections,
despite of the irregular body and the dynamic region being different
from the present case.

The zero-velocity surfaces can be useful to understand this be-
haviour. These surfaces create forbidden regions when it is pro-
jected over the xy-plane. For Cj = 1.20, the forbidden region is
open (Fig. 3a). It allows large chaotic regions. On the other hand,
for Cj > 2.003, the forbidden region is closed (Fig. 3b). It confines
the movement, increasing the stability regions. This behaviour can
be seen in more details in Winter & Murray (1994a) and Murray &
Dermott (1999).

In this section, each selected Family will be studied. The effect of
non-symmetry of the gravitational potential on the structures from
the Poincaré surface of section is analysed as well.

These periodic orbits were found and followed through the
Poincaré surface of section for different values of Jacob con-
stant. Note that there are other approaches for doing that, like the
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Poincaré surfaces of section around a 3D irregular body 2455

Figure 2. Poincaré surfaces of section for Cj = 1.20, 2.10, and 2.25. There
were set initial conditions with x0 ≥ 2.6 km. Up to a thousand points per
initial condition are generate for each plot. The curves associated to Family
1 are indicated in purple, Family 2 are indicated in orange, and Family 3 are
indicated in red.

continuation method as largely adopted in the literature (Yu, Baoyin
& Jiang 2015; Ni, Jiang & Baoyin 2016).

4.1 Family 1

Family 1 is the most present one on the Poincaré surfaces of section
for the studied values of Cj. Fig. 4 shows a sample of central orbits
of Family 1 projected on the rotating frame and the inertial frame.
These orbits are almost circular in both, the rotating frame (Fig. 4a)
and the inertial frame (Fig. 4b). The central orbits are closer to the
asteroid as the values of Cj increases.

Fig. 5 shows the projections of the central orbits over the xz-and
yz-planes. The variation amplitude in the z-axis is much smaller
than the variation of the amplitude in the rotating frame. For higher
values of Cj, the libration ranges of the central orbits in the z-axis
are decreasing.

In the 3D rotating space, the central orbits have the shape of the
contour of a hyperbolic paraboloid surface in the rotating frame
(Fig. 6).

In order to illustrate the quasi-periodic orbits, in Fig. 7 is pre-
sented the libration of a large quasi-periodic orbit around a central

Figure 3. Illustrative cases of zero-velocity curves indicating the forbidden
region (in blue). To the case (a) Cj = 2.003 and the case (b) Cj = 2.004.

orbit of the Family 1 with Cj = 2.25. The libration conserve original
structure of the central orbit. Figs 7(b) and (c) show the libration of a
large quasi-periodic orbit in xz- and yz-plane, respectively. They are
asymmetric in relation to the rotating plane and the behaviour is the
same for the other families studied in this work. This characteristic
will be analysed in Section 4.4.

In Fig. 8, the temporal evolution of the semimajor axis, ec-
centricity, and inclination of a central orbit of Family 1 is pre-
sented. The semimajor axis and eccentricity have the same main
frequency of variation (whose period is ∼0.586 Tast). The orbital
inclination presents two main frequencies of periods ∼0.267Tast and
∼1.469Tast.

The periods of the central orbits of Family 1, which are projected
in the rotating plane in function of Jacobi constant, are shown in
Fig. 9. The period decreases as the value of Cj is increased. This
period evolution is continuous between 0.17 and 0.58 Tast and is not
connected to a resonance, even crossing values commensurable with
the asteroid period (Fig. 9). As the central orbits are not in a given
resonance and the eccentricity are very low, Family 1 is classified
as of the first kind (Poincaré 1899). Other classification adopted by
Jiang, Yu & Baoyin (2015a) and Jiang & Baoyin (2016) classifies pe-
riodic orbits using the position, the geometrical, and the topological
characteristics.
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2456 G. Borderes-Motta and O. C. Winter

Figure 4. Sample of central orbits of Family 1: (a) in the rotating frame
(xy); (b) in the inertial frame (xy). The orbits completed just one cycle in the
rotating frame. The colours correspond to the indicated values of Cj.

4.2 Family 2

Family 2 is identified by a pair of stable islands for values of Cj from
2.19 to 2.30. These islands are around two points in the Poincaré
surfaces of section, and these two points represent the central orbit
of Family 2. Fig. 10 shows the evolution of this family using the
largest pair of islands, a medium pair of islands, and a pair of
dots from a sample of different values of Cj. For large values of
Cj, the islands come closer to each other and the amplitude of the
variation(size of the islands) decreases. This behaviour is reflected in
the orbital eccentricity of the trajectories. In Fig. 10, an asymmetry
is identified. Such asymmetry is created by the non-symmetry of
the gravitational potential. This behaviour persists even when the
effect of the third dimension is neglected.

For values of Cj lower than 2.19 and higher than 2.30, this Family
does not exist. For Cj < 2.19, the structure should be in a region
whose trajectories collide with the asteroid.

In Fig. 11, the trajectory of the central orbit with Cj = 2.25 in
the rotating frame is presented. The black points are equally spaced
in time and the colours indicate the modulus of the velocity in the
inertial frame. The higher velocities coincide with the moment in the
trajectories whose particle is closer to the asteroid, characterizing
the three pericentres. On the other hand, regions with lower velocity
and away from the asteroid characterize the three apocentres.

Figure 5. Sample of central orbits of Family 1: (a) projection of the tra-
jectories in xz-plane; (b) projection of the trajectories in yz-plane, both are
presented in the rotating frame. The orbits completed many cycles in the
rotating frame. The colours correspond to the indicated values of Cj.

Figure 6. The central orbit with Cj = 2.25. The shape is similar to the
edges of a hyperbolic paraboloid. The trajectory completed many cycles in
the rotating frame.

In Fig. 12, the evolution of a representative sample of central
orbits in function of Cj is presented. As far as the value of Cj is
increased, the eccentricity decreases.

In Fig. 13, the projections of central orbits in xz- and yz-planes
in the rotating frame are presented. The amplitude variation in the
third dimension is much smaller than the amplitude variation in the
other two dimensions. Furthermore, all variations decrease when
the value of Cj is increased.

The evolution of the semimajor axis, the eccentricity, and the
inclination of the central orbit of Family 2 with Cj = 2.25 are pre-
sented in Fig. 14. It is possible to identify the same main frequency
(whose period is ∼1.028 Tast) in both the semimajor axis and the
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Poincaré surfaces of section around a 3D irregular body 2457

Figure 7. Projections of the central orbit (red) and a large quasi-periodic
orbit (blue) of Family 1 (a) in the xy-plane; (b) in the xz-plane; (c) in the
yz-plane. The Jacobi constant for these orbits is 2.25.

eccentricity. The inclination has two main frequencies. The fre-
quency with the largest period (∼17.79 Tast) is better seen in Fig. 15.

The projection of the central orbit is a periodic orbit. The pe-
riod of this periodic orbit for different values of Cj is computed,
then a curve of the evolution of that period is built (Fig. 16).
The periods computed are close to the rotational period of the

Figure 8. Temporal evolution of the semimajor axis, eccentricity and in-
clination of Family 1 central orbit with Cj = 2.25. The red lines indicate a
complete projected orbit period in the rotating frame.

Figure 9. Evolution of the orbital period for Family 1 central orbits when
projected in the rotating frame as a function of the Jacobi constant.

asteroid. In Figs 11 and 12, each complete cycle in the rotating
frame corresponds approximately to three complete cycles in the
inertial frame. Therefore, Family 2 is associated to the 3:1 resonance
(particle orbit:asteroid rotation).

The largest quasi-periodic orbit is used to define the width of the
region where the structure of the trajectories is similar to the central
orbit (Fig. 17). Higher values of Cj present central orbits with lower
eccentricity and smaller libration amplitude.

Scheeres et al. (1998, see their fig. 13b) found a periodic orbit
similar to a central orbit of Family 2. When using the Poincaré
surface of section, we are showing that it is possible to find not only
the whole Family but also the width of the libration regions.

4.3 Family 3

Family 3 is in the Poincaré surface of section with lower values of
Cj among the values studied here. In Fig. 18, the evolution of the
family’s structure on the Poincaré surfaces of section is presented
with a sample of the largest island, a medium island and the point
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2458 G. Borderes-Motta and O. C. Winter

Figure 10. The evolution of Family 2 in Poincaré surfaces of section. A sample of the largest stability islands, a pair of intermediary islands and the dots
inside that represent the central orbit showing the structure for different values of Cj. The colours correspond to the indicated values of Cj.

Figure 11. The central orbit of Family 2 in rotating frame for Jacobi
constant 2.25. The colours indicate the velocity in the inertial frame. The
orbit is divided in 23 parts with equal time steps and the points are numbered
to show the trajectory sequence.

that corresponds to the central orbit. These structures with different
values of Cj were chosen in order to be a representative sample.
When the value of Cj is increased, the width of the island becomes
larger, but the island for the highest value of Cj(in red) breaks this
behaviour. This phenomenon is due to the chaotic region where this
island is placed. The chaos destroys the islands that are larger than
the island in Fig. 18 with Cj = 1.43.

Fig. 19 shows the trajectory of the central orbit of Family 3 with
Cj = 1.33. The arrows give a sequential direction of the trajectory,
and the points are plotted with equal time step. There are two
regions with higher velocity and closer to the asteroid, indicating the
pericentres of the orbit. The opposite situation, i.e. lower velocities
and farther from the asteroid, indicates the apocentres. A difference
between Family 3 and the other families is that there are moments
whose trajectories become retrograde in the rotating frame. It is due
to the high orbital eccentricity. The variation of the orbital velocity
is wide enough to be faster than the rotating velocity of the asteroid
when it is close to the pericentre and slower when it is close to
the apocentre. Fig. 20 shows a sample of the central orbits in the
rotating frame and in the inertial frame. It is possible to note the
existence of the two pericentres and the two apocentres.

As in the other families, the amplitude of the variation in the
z-axis is much smaller than the variation in the other axes. This

Figure 12. Central orbits from Family 2: (a) rotating frame, xy-plane; (b)
inertial frame, xy-plane. The orbits completed just one cycle in the rotating
frame. The colours correspond to the indicated values of Cj.

amplitude decreases when the value of Cj is increased (Fig. 21).
The variation of the structure and of the amplitude of the trajectory
in xz- and yz-planes are the smallest among the studied families.
It is due to the fact that Family 3 is restricted to a small range of
values of Cj.
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Poincaré surfaces of section around a 3D irregular body 2459

Figure 13. Central orbits from Family 2: (a) projection of the trajectories
in xz-plane; (b) projection of the trajectories in yz-plane, both are presented
in the rotating frame. The orbits completed many cycles at rotating frame.
The colours correspond to different values of Cj.

Figure 14. The evolution of the semimajor axis, eccentricity and inclination
of Family 2 central orbit with Cj = 2.25. The red lines correspond to a
complete orbit period in the rotating frame.

Figure 15. Evolution of the orbital inclination of Family 2 central orbit
with Cj = 2.25.

Figure 16. Evolution of the orbital period for Family 2 central orbits when
projected in the rotating frame as a function of the Jacobi constant.

Fig. 22 shows the evolution of semimajor axis, eccentricity, and
inclination of the central orbit with Cj = 1.28. The period of the
main frequency of the semimajor axis and of the eccentricity is
∼1.52 Tast, and the main frequency with the higher period from the
inclination can be seen in Fig. 23, which is ∼47.07 Tast.

The period variation of the central orbits for different values of
Cj is shown in Fig. 24, where the central orbit period is close to
three rotational periods of the asteroid. Given that, a cycle in the
rotating frame (∼3Tast) corresponds to two cycles in the inertial
frame (Figs 19 and 20). It indicates a connection between Family 3
and the resonance 2:3(particle orbit:asteroid rotation).

A sample of the largest quasi-periodic orbits around the central
orbits for different values of Cj is presented in Fig. 25. These largest
quasi-periodic orbits are the limit in which the orbits preserve the
structure of the central orbit.

4.4 The 3D effect

Since we are dealing with a 3D system, the analysis of the Poincaré
surfaces of section alone is not enough to fully understand the
dynamics. In this section, we introduce an analysis of the Poincaré
surfaces of section combined with the amplitude of variation of
the z component of the trajectories. We generated plots that show,
for each initial value of x (x0), the upper and lower limits of the z
component among the points of Poincaré surfaces of section.

Thefollowing are presented: a representative sample of the
Poincaré surfaces of section and their limits of variation in the
third dimension. Fig. 26 shows the Poincaré surface of section for
Cj = 3.00(top) and the limits of variation in the third dimension
for each initial condition in the x-axis(bottom). For this value of
the Jacobi constant, the forbidden region is closed (Fig. 3b). The
initial conditions x0 ≥ 9.2 km are not integrated because they are
inside the forbidden region. On the other hand, the initial conditions
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2460 G. Borderes-Motta and O. C. Winter

Figure 17. The largest quasi-periodic orbit (blue) and the central orbit (red) of Family 2 in the rotating frame for different values of Cj.

Figure 18. The evolution of Family 3 in Poincaré surfaces of section. A sample of the largest stability islands, intermediary islands and the dots that represent
the central orbit showing the structure for different values of Cj. The colours correspond to the indicated values of Cj.
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Poincaré surfaces of section around a 3D irregular body 2461

Figure 19. The central orbit from the Family 3 in rotating frame for Jacobi
constant 1.33. The colours indicate the velocity in the inertial frame. The
orbit is divided in 20 parts with equal time steps, and the points are num-
bered to show the trajectory sequence. To assist in the understanding of the
trajectory, arrows are showing the direction of the orbit.

Figure 20. Central orbits from Family 3: (a) rotating frame, xy-plane; (b)
inertial frame, xy-plane. The orbits completed just one cycle in the rotating
frame. The colours correspond to the indicated values of Cj.

Figure 21. The central orbits from Family 3: (a) projection of the trajec-
tories in xz-plane; (b) projection of the trajectories in yz-plane, both are
presented in the rotating frame. The orbits completed many cycles at the
rotating frame. The colours correspond to different values of Cj.

Figure 22. The evolution of the semimajor axis, eccentricity and inclination
of Family 3 central orbit with Cj = 1.28. The red line corresponds to a
complete projected orbit period in the rotating frame.
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2462 G. Borderes-Motta and O. C. Winter

Figure 23. Evolution of the orbital inclination of Family 3 central orbit
with Cj = 1.28.

Figure 24. Evolution of the orbital period for Family 3 central orbits when
projected in the rotating frame as a function of the Jacobi constant.

with 8.0 ≤ x0 < 9.2 km collide with the asteroid or are ejected.
The limits of the variation in the third dimension are much lower
than the amplitude of the trajectory in the xy-plane. When the initial
condition is set closer to the central orbit of Family 1, the limit of
variation in z is closer to zero. In x0 = 3.7 km, there is a break in the
smoothness of the amplitude variation curve in the third dimension.
In the Poincaré surface of section, this initial condition (indicated
in red) does not reflect any distinct behaviour of its neighbourhood,
but when we integrate the trajectory for a longer time, it became
visibly chaotic.

Fig. 27 shows the Poincaré surface of section and the limits of
the variation in the third dimension for Cj = 2.25. For this value
of Cj, the forbidden region is still closed (Fig. 3b), but smaller
than the regions for higher values of Cj. In Fig. 27, the region
whose initial conditions have the trajectories interrupted by the
collision of the orbiting particle with the asteroid is marked in grey.
Close to the central orbit, the limits in the third dimension tend to
zero, as in the previous case. Some different structures are found
there. In x0 = 5.6 km, the points indicated in blue in the Poincaré
surface of section correspond to the upper limit ∼1.18 km and the
lower limit ∼−1.10 km in the third dimension. These limits are
outside the graph because they are much higher than the other
values. Just a discontinuity is seen in the graph, which corresponds
to a chaotic trajectory in the Poincaré surface of section. Therefore,
the chaotic trajectory leads to a significant orbital variation in the
third dimension, and vice versa. In this Poincaré surface of section
with the value Cj = 2.25 there is a central orbit of the Family 2. In
x0 = 6.4 is a quasi-periodic orbit that is librating around the central
orbit of Family 2, indicated in red. Note that the structure does not
have a variation in the behaviour of the limit in the third dimension,
since it is not chaotic.

Fig. 28 shows the Poincaré surface of section for Cj = 2.10 and
the respective limits of the variation in the third dimension. For this

value of Cj, the forbidden region is still closed. The Poincaré surface
of section presents stable and unstable regions in equal proportion.
There are structures with two central orbits. Between x0 = 12.4 and
14.1 km, the limits of the z variation are very close to zero compared
to the others in the graph and such behaviour is similar to one in
Fig. 26. This region corresponds to a stable region of quasi-periodic
orbits around the central orbit of Family 1. Other stable regions
can be found by the evolution of the limits in the third dimension
and correspond to quasi-periodic orbits. The quasi-periodic orbits
are indicated in black in the Poincaré surface of section. Peaks
in x0 = 8.5 and 14.2 km correspond to chaotic trajectories in the
Poincaré surface of section. The results for x0 = 8.5 km are indi-
cated in dark blue, and the results for x0 = 14.2 km are indicated
in red. From x0 = 12.0 to 12.4 km, there is an unstable region (or-
ange) confined between two stable regions. And between x0 = 9.1
and 10.9 km, there is an unstable region with higher limits of vari-
ations in the third dimension. In this region, each initial condition
is indicated in different colours (yellow, green, and blue). There
is a chaotic structure confined within this region. This structure
presents a continuous behaviour in the Poincaré surface of section,
and in the limits of variation in the third dimension. In the Poincaré
surface of section, at least one trajectory crosses from the unstable
region to stable region. This phenomenon is just apparent, actu-
ally due to the third dimension. In the Poincaré surface of section
of 2D systems, this does not occur. The 2D case accepts just one
solution of x and ẋ by the Picard–Lindelöf theorem. Therefore,
there is not a crossing between the two solutions for different ini-
tial conditions in a 2D case. Here, we study a 3D case projected
in a 2D phase space. There is just one solution for x, z, ẋ, and ż,
but infinite number of solutions for x and ẋ with different values
of z and ż.

In Fig. 29, the Poincaré surface of section for Cj = 1.80 and the
respective limits of the movement in third dimension are presented.
For this value of Cj, the forbidden region is opened (Fig. 3b). The
stable trajectories are indicated in black. The unstable trajectories
are indicated in different colours in a range from red to blue dis-
tributed from the lowest to highest values of x0. The unstable region
for this value of Cj is larger than the unstable regions of higher
values of Cj. From the limits of the variation in the third dimension,
it is possible to identify the unstable and the stable regions that are
clearly separated. The stable region starts from x0 = 4.7 km, where
the limits of the variation in the third dimension are much lower
than in the region before x0 = 4.7 km. The red squares indicate the
initial conditions whose particles have collided with the asteroid
before the trajectory completes 1000 points in the Poincaré surface
of section. Comparing the section and the z limits of the variation,
it is possible to find chaotic trajectories that produce points in the
Poincaré surface of section over the stable region, in the same way
that it happened in the Poincaré surface of section for Cj = 2.10
(Fig. 28).

In Fig. 30, the Poincaré surface of section for Cj = 1.20 and its
respective limits of variation in the third dimension are presented.
For this value of Cj, the forbidden region is widely opened. In
the variation within z limits, there is no separation between stable
and unstable regions but a mix of both. For values higher than
x0 = 6.7 km, all trajectories are ejected. The red squares indicate
the initial conditions of these ejections.

5 FI NA L C O M M E N T S

We have shown that the Poincaré surface of section technique is
applicable to a three-dimension dynamical system of a particle
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Poincaré surfaces of section around a 3D irregular body 2463

Figure 25. The largest quasi-periodic orbit (blue) and the central orbit (red) of Family 3 in the rotating frame for different values of Cj.

Figure 26. Poincaré surface of section for Cj = 3.00 and the limits of the variation in the z-axis for each initial condition. A cluster of stability islands for just
one initial condition is indicated in red in the surface of section.
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2464 G. Borderes-Motta and O. C. Winter

Figure 27. Poincaré surface of section for Cj = 2.25 and the limits of the variation in the z-axis for each initial condition. A chaotic trajectory is indicated in
blue in the surface of section and a pair of islands in red.

Figure 28. Poincaré surface of section for Cj = 2.10 and the limits of the variation in the z-axis for each initial condition. The chaotic structures are indicated
in different colours for each initial condition.

orbiting an irregular body whose gravitational potential is asym-
metric. We applied this technique for the asteroid 4179 Toutatis,
in order to study stable and unstable regions close to the asteroid.
Three families of periodic orbits (projections of central orbits in the
rotating plane) were selected for a detailed analyzes. The first one
is a periodic orbits family of first kind, with a very low eccentricity.
The other families are of second kind. The second one is a family
associated to the resonance 3:1. The last one is a family associ-
ated to the resonance 2:3. These three families are a sample of the

similarity between a usual two-dimension systems and our approach
in the three-dimension case.

In the evolution of the three periodic orbit families considered,
we did not identify any kind of bifurcation as those found in the
results of Ni et al. (2016).

We analyse the behaviour of a representative set of Poincaré sur-
faces of section combined with the variation in the third dimension.
Different structures than the structures of usual two-dimension sys-
tems were pointed out in the Poincaré surface of section. We found
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Poincaré surfaces of section around a 3D irregular body 2465

Figure 29. Poincaré surface of section for Cj = 1.80 and the limits of the variation in the z-axis for each initial condition. The chaotic structures are indicated
in different colours for each initial condition. Trajectories that collided with the asteroid are indicated by the red squares.

Figure 30. Poincaré surface of section for Cj = 1.20 and the limits of the variation in the z-axis for each initial condition. The chaotic structures are indicated
in different colours for each initial condition. Trajectories that ejected from the system are indicated by the red squares.

a correlation between the section and the variation in the third di-
mension. Together with the variation in the third dimension, it is
possible to identify stable and unstable regions. It is also possible
to identify central orbits and libration regions around these orbits.

Despite of the three-dimension irregularity of the gravitational
potential considered, we have shown that the Poincaré surface of
section allows the identification and location of stable and unstable
regions, similarly to what has been done adopting other approaches
(Frouard & Compère 2012; Araujo et al. 2012; Jiang et al. 2015b).
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