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A B S T R A C T

In plants, there are different types of electrical signals involving changes in membrane potentials that could
encode electrical information related to physiological states when plants are stimulated by different environ-
mental conditions. A previous study analyzing traits of the dynamics of whole plant low-voltage electrical
showed, for instance, that some specific frequencies that can be observed on plants growing under undisturbed
conditions disappear after stress-like environments, such as cold, low light and osmotic stimuli. In this paper, we
propose to test different methods of automatic classification in order to identify when different environmental
cues cause specific changes in the electrical signals of plants. In order to verify such hypothesis, we used machine
learning algorithms (Artificial Neural Networks, Convolutional Neural Network, Optimum-Path Forest, k-
Nearest Neighbors and Support Vector Machine) together Interval Arithmetic. The results indicated that Interval
Arithmetic and supervised classifiers are more suitable than deep learning techniques, showing promising results
towards such research area.

1. Introduction

Plants as sessile and modular organisms face the challenge to keep
their stability growing in environments under constant changing (Souza
et al., 2016). Since plants lack a central command to organize the en-
vironmental information gathered in each module (e.g., a branch root
or a leaf), an efficient communication system has evolved in order to
integrate local information (cell-to-cell communication) and to signa-
lize through the plant body (long-distance communication) (Trewavas,
2003; Lüttge, 2012).

Long-distance communication, also referred to as systemic com-
munication, can be triggered by different stimuli, such as biotic ones
(e.g., systemic acquired resistance as a response to pathogens) or by
abiotic stimuli (e.g., water deficit, heat, and salinity). Therefore, the
ultimate goal of these systemic signaling is to activate response me-
chanisms in remote tissues, improving the ability of the whole plant to
prepare its tissues to an upcoming challenge (Gilroy et al., 2014).
Among the signals involved in long-distance communication, ROS (re-
active oxygen species), calcium and electrical signals perform a central
role (Baluska, 2016).

In plants, there are different types of electrical signals, which are

electrical activities involving changes in membrane potential, such as
action potential (AP), variation potential (VP, or slow wave - SW), and
system potential (Davies, 2006; Sukhova et al., 2017). APs are char-
acterized by spike-like changes of the resting membrane potential and,
independent of the stimulus strength, start propagating through the
plant with a defined amplitude and velocity. Like in animals, APs seem
to be all-or-nothing events (Fromm and Spanswick, 1993; Pyatygin
et al., 2008). VPs differ from APs in various ways. VPs do not obey the
all-or-nothing law, they are known as slow wave potentials (SWPs) with
variable shape, amplitude and time frame. Moreover, the signals are
related with the stimulus strength, and last for periods of 10 s up to
30min (Zimmermann and Mithofer, 2013; Vodeneev et al., 2015).
System potentials (SPs), in contrast to APs and VPs, reflect a systemic
self-propagating hyperpolarization of the plasma membrane or depo-
larization of the apoplastic voltage. Like VPs, SPs have a magnitude and
duration that are depended on the stimulus, but they are initiated via
membrane hyperpolarization through the sustained activation of the
proton pump. SPs are dependent on experimental conditions, and then
they may occur under a very specific set of environmental conditions
(Zimmermann and Mithofer, 2013; Choi et al., 2016). Furthermore,
quite often all these signals are mixed altogether, which impairs a
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proper signal analysis (van Bel et al., 2014; Saraiva et al., 2017). Strong
evidences have demonstrated that bioelectrical signals play a central
role in both cell-to-cell and long-distance communication in plants
(Baluska et al., 2006; Zimmermann et al., 2009; van Bel et al., 2014),
also supporting the ability to adjust their phenotypes to different en-
vironmental conditions (Fromm and Lautner, 2007; Gallè et al., 2015;
Rìos-Rojas et al., 2014). For instance, Sukhov et al. (2014) and
Magdalena et al. (2017) have demonstrated the role of electrical signals
in the regulation of photosynthetic responses to different stimuli.

Very recently, Souza et al. (2017) proposed the concept of “plant
electrome” based on the general proposition of “electrome” by De Loof
(De Loof, 2016), describing the totality of the ionic currents in different
scales of plant organization. By measuring low-voltage electrical signal
using eletrophytography (EPG) (Debono, 2013; Souza et al., 2017),
Souza et al. (2017) showed that different environmental stimuli could
change some characteristics of the temporal dynamic of the electrical
signaling, including the level of complexity. It was noticed that some
specific frequencies, which were observed in non-stimulated plants, have
disappeared after stimulation. Moreover, the environmental stimuli
changed the type of color noise of the electrical signals. However, it was
not clear if the different environmental cues (cold, low light, and osmotic
stress) caused distinct effects on the plant signals (Souza et al., 2017).

Therefore, measuring the level of stress in plants is of crucial im-
portance to a better understanding of their working mechanism.
However, automatic plant stress identification by means of machine
learning techniques has been considered recently only. Singh et al.
(2016) presented an overview about machine learning tools and their
applications in the context of biotic and abiotic stress traits classifica-
tion. The main goal of such work is to guide the plant community when
using machine learning techniques in the aforementioned situation.
Two years earlier, Ma et al. (2014b) also considered a similar study, but
in a more general way, and Ma et al. (2014a) employed machine
learning to study stress-responsive transcriptomes in Arabidopsis
thaliana. The experiments highlighted that such tools were able to
outperform standard statistical approaches. Shaik and Ramakrishna
(2014) used machine learning techniques to identify multiple stress
conditions genes for broad resistance in rice, and Behmann et al. (2015)
presented a review of different machine learning techniques applied for
biotic stress identification in precision crop protection.

Chatterjee et al. (2014) established a relationship between the light
stimulus and plant electrical response for different light stimuli in-
tensity considering 19 different plants (17 Zamioculcas zamiifolia and 2
Cucumis sativus plants). The best results were obtained by Nonlinear
Hammerstein-Wiener (NLHW) a good matching over others fitting
methods. Later on, Chatterjee et al. (2015) classified three different
types of stimuli (NaCl, H2SO4 and O3) based on the response of elec-
trical signals of tomatoes and cucumbers. The authors used different
machine learning algorithms (FLDA - Fisher Linear Discriminant Ana-
lysis, QDA - Quadratic Discriminant Analysis, NB - Naive Bayes, and
Mahalanobis Classifier) considering eleven features extracted from the
electrical signal using linear and nonlinear methods. The best result was
around 73.67% of recognition rate.

Chen et al. (2016) applied four classifiers (Template Matching, Ar-
tificial Neural Networks, Support Vector Machines and Deep Belief
Networks) for the recognition of plant stimuli from electrical signals.
The aforementioned work combined a waveform-based feature ex-
tractor and the Principal Component Analysis (PCA) approach, ob-
taining around 96% of recognition rate with Template Matching.

In this paper, we propose to use the concept of plant electrome
(Souza et al., 2017) to automatically identify whether different en-
vironmental cues cause specific changes in the electrical signals of
soybean plants. In order to verify such hypothesis, we considered using
machine learning algorithms and arithmetic intervalar, a branch of
mathematical tools that allows one to extend standard numbers to an
interval representation. Therefore, the main contributions of this paper
are:

• to use the plant electrome data as input for machine learning-based
prediction of plant stress; and

• to employ deep learning techniques for plant stress identification.

The remainder of this paper is organized as follows. Sections 2 and 3
present the theoretical background and methodology used in this paper,
as well as the results obtained using the proposed approach, respec-
tively. Finally, Section 4 states conclusions and future works.

2. Materials and methods

2.1. Data acquisition

All datasets used herein to test the different methods of classifica-
tion are part of the study published by Souza et al. (2017). The data
consist of time series of low-voltage variation ( VΔ in μV ) measured in
soybean plants subjected to different environmental stimuli: cold, low
light and osmotic stress. The protocol of data acquisition was defined by
Saraiva et al. (2017), using a signal amplifier (model MP36, Biopac
Systems, US) inside a grounded Faraday cage. The measurements were
carried out with one reference electrode attached to the grounded
Faraday cage, and two electrodes inserted in the plants operating in a
differential mode, where the instrumental amplifier cuts off the similar
frequencies recorded in both electrodes. The sampling rate was 125 Hz
with a high-pass filter settled to allow pass higher frequencies
(>0.5 Hz), since the objective of that study was investigate the low-
voltage noise that underlies the electrical signals (see more details in
Saraiva et al. (2017)).

2.2. Datasets

The datasets described in the previous section were cropped to
contain features per sample (signals obtained from the plants). Besides
the large number of features, the signal is not so homogenous, therefore
applying classical machine learning methods in the raw data is not
advisable. To overcome this weakness, we applied some concepts of
Arithmetic Intervalar to map raw data into lower-dimensional feature
space.

In our work we consider four different datasets, as follows:

• cold: 67 signals obtained from plants in ideal conditions (without
stress) and 76 signals obtained after cold stress.

• low light: 152 signals obtained in ideal conditions (without stress)
and 118 signals after low light stress.

• osmotic: 123 signals obtained in ideal conditions (without stress)
and 145 signals after osmotic stress.

• all: 342 signals obtained in ideal conditions (without stress), 76
signals after cold stress, 118 signals after low light stress, and 145
signals obtained after osmotic stress.1

Some examples of the signals from each class are depicted in Fig. 1.

2.3. Theoretical background

In this section, we present a brief theoretical background related to
the machine learning and feature mapping techniques based on Interval
Arithmetic used in this work.

2.3.1. Interval Arithmetic
The Interval Arithmetic (IA) was proposed by Moore in the 1960’s,

being the main idea to represent values as a range model instead of

1 This dataset is a merge of the cold, low light and osmotic datasets. The main idea of
this dataset is to verify whether the methods are able to differentiate the stress type or
not.

D.R. Pereira et al. Computers and Electronics in Agriculture 145 (2018) 35–42

36



single numbers. In such representation, an interval I is denoted by an
non-empty real-valued range I I[ , ]l u , such that each interval encodes a
subset of real numbers that satisfy the following condition:

= ∈ ⩽ ⩽I x I x I{ | }.l uR (1)

As in the traditional arithmetic, the IA background defines a set of
relations and operations (comparison, join, sum, and multiply) over the
intervals (Moore, 1966; Moore and Yang, 1959; Moore, 1960, 1962,
1979). However, the Interval Arithmetic is more powerful than tradi-
tional arithmetic, since any real number x can be represented by the
singular interval x x[ , ]. The Interval Arithmetic is a useful apparatus to
provide representations of error bounds and uncertainty. This property
is extremely interesting when working with the variations present in
the EEG signals obtained from plants.

2.3.2. Machine learning techniques
2.3.2.1. Optimum-Path Forest. The Optimum-Path Forest (OPF)
classifier models the problem of pattern recognition as a graph
partition task, in which a predefined set of samples from each class
(prototypes) compete for a minimal path-cost attribution to the rest of
the samples. Such process results in a collection of optimum-path trees
rooted at the prototype nodes, building an optimum-path forest
considering from all training samples. Test samples are classified
through incrementally evaluating the optimum paths from the

prototypes, as though they were part of the forest, and assigning the
labels of the most strongly connected roots. An OPF classifier can be
designed as long as we use a smooth path-cost function (Falcão et al.,
2004). Although there are two different versions of the supervised OPF
classifier (Papa et al., 2009, 2017), in this paper we make use of the
former and most widely used approach proposed by Papa et al. (2009)
and further enhanced by Papa et al. (2012). The OPF classifier has been
used in a number of applications in the last years, and particularly for
leaf-based aquatic weed recognition (Pereira et al., 2012).

2.3.2.2. Multilayer perceptron. An Artificial Neural Network with
Multilayer Perceptons (ANN) is a feedforward neural network
composed of several neuron layers aiming to solve multi-class
problems (Haykin, 1999). The input to each layer is a weighted sum
of the output from the previous layer, and the number of neurons in the
first layer is equal to the number of features of the input, while the
number of neurons in the last layer is equal to the number of classes.
Such approaches can learn highly non-linear models that map inputs to
their corresponding outputs.

2.3.2.3. k-Nearest neighbors. The k-nearest neighbors (k-NN) is a simple
but effective technique that works pretty well in many different
applications (Coomans and Massart, 1982; Hall et al., 2008). In
contrast to the OPF, the k-NN uses all training samples as prototypes,

Fig. 1. Exemples of some signals obtained from the plants: (a) ideal condition, (b) after cold stress, (c) after low light, and (d) after osmotic stress.
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and requires the input parameter k that establishes the number of
neighbors that contribute to the classification of a given sample. For
such purpose, a given test sample is labeled with the most frequent
label in its k-neighborhood. Notice that for =k 1, the testing sample is
assigned to the class of its closest training sample.

2.3.2.4. Support Vector Machines. The Support Vector Machines (SVM)
approach based on the principle of structural risk minimization
(Vapnik, 1999; Schölkopf and Smola, 2002; Cortes and Vapnik,
1995), aiming at establishing an optimal discriminative function
among two classes of patterns while accomplishing the trade-off
between generalization and overfitting. The standard SVM training
algorithm constructs the optimal hyperplane separating a two-class
feature space (Vapnik, 1999). However, some problems may require a
more robust approach. In order to extend from linear to nonlinear
classification, the kernel trick is used (Schölkopf and Smola, 2002),
where kernel functions nonlinearly map input data into higher-
dimensional feature spaces in a computationally-efficient manner.

2.3.2.5. Convolutional Neural Networks. Convolutional Neural
Networks (CNN) are a special type of artificial neural networks that
have been extensively used for unsupervised feature learning (Lecun
et al., 1998). The main idea is to employ several layers of pooling and
convolution operators in order to automatically extract features from
input data that are invariant to some geometric operations (e.g.,
rotations and translations).

2.4. Methodology

In this work, we considered two distinct methodologies to learn
features from the signal extracted from the plants: (i) the first one,
hereinafter called approach A, is based on Interval Arithmetic (IA), and
(ii) the second approach (approach B) is based on Visual Rhythm and
CNNs. After extracting features, they are used to feed supervised ma-
chine learning techniques in order to classify whether the plant has

been affected by stress or not. Fig. 2 illustrates the aforementioned
pipeline. The next sections describe in details the aforementioned ap-
proaches.

2.4.1. Approach A
As depicted in Fig. 2, approach A aims at decomposing the signal

into an intervalar representation based on the theory presented in
Section 2.3.1. Roughly speaking, the mapping process is straightfor-
ward and window-based. Let = …S s s s{ , , , }n1 2 be the discrete re-
presentation of the signal extracted from the soybean, where si stands
for an energy acquisition at time step i. Additionally, let s be the
window size, such that the whole signal S is equally divided into

= ⌊ ⌋m n s/ bins = …b k m, 1,2, ,k .
The ideia of the intervalar representation is to represent each bin bk

as a triplet =T min avg max[ , , ]k k k k , where mink and maxk stand for the
minimum and the maximum values present in bk, and avgk denotes for
the average value of the numbers in bk. Therefore, the signal S is finally
represented as a set of m triplets

′ = …S min avg max min avg max min avg max{[ , , ],[ , , ], ,[ , , ]},m m m1 1 1 2 2 2

which is further used to feed the supervised machine learning techni-
ques. Fig. 3 illustrates the aforementioned procedure.

The proposed approach reduces considerably the number of features
that describe the signal, which affects the computational cost as well.
We performed tests with four different window sizes, say that
1000,5000,15,000 and 25,000, being the window size as of 15,000 the one
that obtained the best results. Therefore, all experiments were con-
ducted using such configuration. In this context, the number of features
were reduced from to 15 ( =75,000/15,000 5 buckets, being each one
represented by a triplet).

2.4.2. Approach B
The second approach aims at encoding the signal as an image by

using the so-called Visual Rhythm (Almeida et al., 2015), which basi-
cally stacks the signal into rows in order to generate the image.

Fig. 2. Proposed pipeline for automatic plant stress identification.

Fig. 3. Approach A used for interval-based signal representation.
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Therefore, each signal needs to be normalized into [0,1] for further
being resized into a gray-scale squared matrix. Finally, one obtains a

×273 273 image, were each signal value denotes a pixel in this image.
Some examples of images mapped using this methodology are pre-
sented in Fig. 4. Clearly, one can observe the different patterns encoded
by the images with respect to different stress conditions.

Later on, the images generated using the aforementioned pipeline
are then employed to feed an CNN technique. In this work, we per-
formed tests with two different classical architectures, as follows:

• ImageNet: composed of 5 convolution layers, 5 pooling layers and 2
normalization layers. It is also constituted by 5 ReLU layers among
the convolution ones, 2 inner product layers, 2 dropout layers, 1
softmax loss layer and 1 accuracy layer for testing purposes.

• Cifar-10: a quick version is used, composed of 3 convolution layers
and 3 pooling layers. It is also constituted by 3 ReLU layers among
the convolution ones, 2 inner product layers, 1 softmax loss layer
and 1 accuracy layer for testing intentions.

However, as the Cifar-10 model obtained the best results (sig-
nificantly better than ImageNet), all experiments using CNN were
realized using this configuration.

2.5. Statistical evaluation

In regard to the comparison assessment, we used an accuracy
measure proposed by Papa et al. (2009), which is similar to the Kappa
index (Cohen, 1960), but being more restrictive. If there are two
classes, for example, with very different sizes and a classifier always
assigns the label of the largest class, its accuracy will fall drastically due
to the high error rate on the smallest class. The accuracy is measured by
taking into account the classes may have different sizes in the test set.
Also, we experiments were executed in 20 runs with different training
and test sets for the further statistical evaluation by means of the Wil-
coxon signed-rank test with significance of 0.05 (Wilcoxon, 1945).

2.6. Setting-up machine learning techniques

We considered the LibSVM library (Chang and Lin, 2011) for the
implementation of SVM classifier. The hyperparameters C and σ were
determined via a 5-fold cross-validation grid-search in the range

−[2 ,2 ]15 15 with steps of 2, for each input parameter.
With respect to the ML classifier, we used the Fast Artificial Neural

Network (FANN) library with two hidden layers consisting of eight
neurons each (Nissen, 2003). The network was trained using the
backpropagation algorithm (Haykin, 1999) with 70,000 epochs and the
desired error as of −10 4. The learning rate was set to 0.1.

In regard to k-NN technique, we defined k as the best value of a grid-
search within the range ⎢

⎣
⎥
⎦[1, ]z

5 with steps of two, where z is the number

of training samples. Finally, with respect to OPF, we used the LibOPF
library.2

3. Results

In this section, we present the experimental results concerning the
task of automatic identifying stress-like patterns before and after stress
environment (i.e., cold, low light and osmotic). As aforementioned, we
applied five different supervised classification algorithms: ANN, CNN,
OPF, k-NN and SVM. Additionally, we considered the IA mapping ex-
periment (procedure A) for ANN, OPF, k-NN, and SVM classifiers.

The main goal is to find an algorithm that can be successfully ap-
plied to learn a pattern even when trained on small datasets. Therefore,
we partitioned the original dataset into training sets of increasing sizes,
ranging from 10% to 90% of the original dataset. For each dataset, we
executed each algorithm 20 times using a holdout configuration. Fig. 5
presents the results considering the “cold”, “low light”, “osmotic”, and
“all” datasets, respectively.

One can observe that good performances were obtained in the four
datasets by all methods, except ANN that achieved the worst results in
“cold” and “low light” datasets. As expected, all techniques were able to
improve their results upon larger training sets, mainly CNNs, which are
complex models and usually need a considerable amount of data for
leaning (see Fig. 5d). Since “all” dataset comprises all stress-like pat-
terns (i.e., it seems to pose a greater challenge), CNNs obtained the
worst results over small training sets.

Table 1 presents the average results using 90% of the datasets for
training purposes, being the most accurate techniques in bold according
to the Wilcoxon statistical test. One can observe that SVM obtained the
best results for all datasets, followed by k-NN that obtained statistically
similar results in the “cold” and “osmotic” datasets. OPF classifier
achieved good accuracies for three datasets, and CNN also obtained
good results for “cold” and “low light” datasets, although it obtained
the worst results for the “osmotic” dataset. Roughly speaking, one can
observe that AI combined with supervised classifiers can provide better
results than deep learning techniques. The recognition rates showed
one can obtain promising results concerning the task of automatically
identifying stress-like patterns.

Fig. 6 depicts the confusion matrices using 90% of the datasets for
training purposes with SVM classifier. As one can observe, the signs of
plants after cold stress have a peculiar pattern that is easier to differ-
entiate than others stress conditions since it obtained better results.
Additionally, the “low light” and “osmotic” datasets presented similar
results. The experiment with “all” dataset showed that is possible to
detect patterns among different stress signals. However, one can ob-
serve a confusion between “low light” and “no stress” conditions
(Fig. 6d), which may deteriorate the final classifier’s accuracy.

Fig. 4. Some examples of signals mapped into images under: (a) ideal conditions, (b) after cold stress, (c) after low light stress, and (d) after osmotic stress. The images were equalized for
the sake of visualization purposes.

2 https://github.com/jppbsi/LibOPF.
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4. Discussion

Different environmental cues, biotic or abiotic, trigger electro-
physiological responses in plants, which are basically an ion imbalance
across plasma membranes leading to a voltage transient (Maffei and
Bossi, 2006; Huber and Bauerle, 2016). While VPs and SPs are mostly
triggered by invasive injurious stimuli, such as wounding, APs are eli-
cited as responses to non-invasive stimuli including irradiation,
moisture, and temperature (Fromm and Lautner, 2007; Rìos-Rojas
et al., 2014; Sukhov et al., 2017). Herein, the data analysed were pre-
venient from plants subjected to three abiotic stimuli (cold, osmotic,
and low light) that affected the temporal dynamic of the low-voltage
signals (Souza et al., 2017). The measured signals are supposed to be
the resultant of all electrical activity of the cells around the electrodes,
likely emerging from the superposition of cells APs propagated via
plasmodesmata linking neighbouring cells (Volkov, 2012; Zimmermann
and Mithofer, 2013). According to Debono (2013), such microvolted
activity represents the resulting macroscopic currents locally sustained

by plant receptor-channels acting through the different membrane
compartments of synchronized protoneural networks, which was
named “plant electrome” by Souza et al. (2017).

The previous spectral analysis (Souza et al., 2017) showed that
before stimuli the runs exhibited three ranges of dominant frequencies
(0.3–1.5, 3.8–5.7, and 9.3–11.1 Hz) and, after stimuli, only the lower
frequencies remained. The β exponents calculated from power spec-
trum density function indicated that all time series showed long-range
temporal correlation. However, β values from non-stimulated plants
were lower, suggesting that the electrical signalling after plant stimu-
lation showed more persistence (for ≠β 0 and ≠β 2), enabling long
distance signalling (Souza et al., 2017). Besides some changes in the
type of noise (reddened to black) and in the spectral analysis, it was
observed an interesting appearance of “bursts of spikes” up to 500μV
(considering the baseline signal around 10μV) mostly in the runs
scored after stimuli. The distribution of these higher voltage variations
was different regarding the specific stimuli. While the spikes observed
under low temperature showed an exponential distribution, under low
light and, mainly, under osmotic stimulus they followed a power law,
indicating that the spikes have no characteristic size (Souza et al.,
2017). Those bursts of spikes were supposed as resulting from a self-
organized collective behaviour among groups of cells Saraiva et al.
(2017). The complex nature of these microvolted potential and their
coherent responses to environmental cues suggests that +H electrogenic
pumps, and others ionic receptors channels (e.g. +Ca2 and +K1 ), are
involved in such responses (Debono, 2013). Following a membrane
electrical event, secondary messengers are initiated, leading to a
downstream signalling cascade that induce many different metabolic
changes, likely mediated by calcium waves and ROS (Maffei et al.,
2007; Gilroy et al., 2014; Choi et al., 2016). Evidences have indicated

Fig. 5. Effect of different training set sizes for classification purposes over: (a) “cold”, (b) “low light”, (c) “osmotic”, and (d) “all” datasets.

Table 1
Average recognition rates considering 90% of the samples for training purposes.

Datasets

Cold Low light Osmotic “all”

ANN ±53.33 0.00 ±58.57 1.75 ±53.57 0.00 ±63.11 2.02
CNN ±85.33 9.07 ±73.57 9.71 ±49.63 6.22 ±53.33 2.19
OPF ±84.00 5.33 ±77.86 6.14 ±67.86 6.39 ±65.23 3.21
k-NN ±90 67 5 33. . ±74.29 5.25 ±81 43 5 25. . ±71 22 0 65. .
SVM ±90 67 5 33. . ±80 71 7 35. . ±80 97 5 80. . ±70 98 1 01. .
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that electrical signalling regulates a fundamental physiological process,
the well-known photosynthesis. Although the mechanisms of photo-
synthetic activation are still unclear, two different mechanisms have
been proposed for the fast inactivation of photosynthesis. The first is
calcium dependent, in which the increase of +Ca2 cytosolic can in-
activate the Calvin-Benson cycle; and the second supposes that elec-
trical activity changes the intra- and extracellular pH, decreasing the
cytoplasmic pH by inactivation of H+-ATPase, which reduces the
photochemical yields (Sukhov, 2016).

Accordingly, our hypothesis is that the low voltage variations af-
fected by different abiotic stimuli could be representative of the elec-
trophysiological state of the plants as affected by specific stimulus al-
lowing an algorithmic classification. In this work, we introduced two
different methods for the automatic classification of plant stress based
on the plant electrome. The first approach makes use of Interval
Arithmetic to reduce the dimensionality of the input signal, and the
second one employs deep learning for unsupervised feature learning.
Chen et al. (2016) have studied the efficiency of some deep learning
methods, such as ANN and SVM, comparing with template matching
method to classify APs. In that study, after the elimination of some
artifacts present in the raw signals, they extracted 19 features from the
AP’s signals, including time-domain, frequency-domain, statistics

characteristics, and nonlinear features. Then, by reducing the di-
mensionality with PCA, the different classifiers were tested against non-
AP signals. Although the best performance have been reached with
template matching algorithm (96.0% accuracy), ANN and SVM reached
a maximum accuracy of 84.1% and 75.8%, respectively, which is pretty
close to our best results (Table 1). However, differently from Chen et al.
(2016) study, our classification algorithms were applied to, basically,
continuous time series of raw data of low voltage variation, showing
very complex dynamics (Saraiva et al., 2017; Souza et al., 2017).
Chatterjee et al. (2015) have explored strategies for the classification of
raw non-stationary plant electrical signal after different environmental
stimuli (mV) by univariate and bivariate feature-based classification
using five different discriminant analysis classifiers. The classification
has reached a best average accuracy of 70% using variance and skew-
ness as feature pairs, and an accuracy of 73.67% using variance and IQR
as feature pairs in a diagquadratic classifier. Thus, as far as we know,
this is the first time that microvolted runs are classified by machine
learning techniques.

5. Conclusions

The proposed approaches herein achieved surprisingly good

Fig. 6. Confusion matrices considering 90% for training purposes and SVM classifier over: (a) “cold”, (b) “low light”, (c) “osmotic”, and (d) “all” datasets.
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classification performance on a relatively small set of training data, thus
confirming the existence of a clear pattern captured by the plant elec-
trome to identify potential plant stress condition. The experiments also
suggested that Interval Arithmetic and supervised classifiers are more
suitable than deep learning. Such achievement is very important since
the plant stress could be identified before the plant has demonstrated
physical injuries, such as leaf fall, and decreased productivity, among
other factors. Our future works will be guided to develop better models
that can distinguish all three stressful conditions at the same time.
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