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1. Introduction

This paper is part of a general program involving the asymptotic stability at typical singularities of
systems represented by the following equation

u̇ = F (u) + sgn(h)G(u) (1)

where u = (u1, u2, . . . , un) ∈ R
n, h : Rn → R and F,G : Rn → R

n are smooth mappings.
We start with some historical facts. Anosov (see [2]) studied the asymptotic stability of systems of

the form

u̇ = Au + sgn(u1)k,

where u = (u1, u2, . . . , un) ∈ R
n, A is an n × n real-valued matrix and k = (k1, k2, . . . , kn) ∈ R

n is a
constant vector. In [23], conditions were established for the asymptotic stability of 3D systems represented
by vector fields having the form (1) where

F (x, y, z) = 1/2(a1 + b1, a2 + b2, x + y),
G(x, y, z) = 1/2(a1 − b1, a2 − b2, x − y),

for selected real numbers a1, a2, b1 and b2.
In this paper, we analyze the bifurcation diagram and the asymptotic stability of the following family

of piecewise smooth vector fields (PSVFs for short):

Zλ(x, y, z) = (ẋ, ẏ, ż) =
1
2

(
(a + c, λ + d, b(y + x2) + x)

+ sgn(z) (a − c, λ − d, b(y + x2) − x)
)

or, equivalently,

Zλ(x, y, z) =
{

Xλ(x, y, z) = (a, λ, b(y + x2)) if z ≥ 0,
Y (x, y, z) = (c, d, x) if z ≤ 0, (2)

with a, b, c, d, λ ∈ R, b · c �= 0 and λ arbitrarily small. Moreover, system (2), with the parameter nearby
λ = 0, represents an important class of PSVFs exhibiting some interesting properties.

The main result of the paper is:
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Theorem 1. Let Zλ given by (2). If a < 0, b < 0, c > 0, d < 0, a + bd > 0 and λ is arbitrarily small,
then:
• Zλ is asymptotically stable at the origin when λ ≥ 0 and
• Zλ is not Lyapunov stable at the origin when λ < 0.

In [9], the asymptotic stability of system (2) is analyzed in the case bc > 0.
The paper is organized as follows: In Sect. 2, we give an overall description of the problem and formalize

some basic concepts on PSVFs. In Sect. 3, some auxiliary results are stated and we pave the way in order
to prove the main results in Sect. 4. In Sect. 5, we establish the equivalence between a whole class of
PSVFs exhibiting certain intrinsic properties and system (2), with λ = 0.

2. Preliminaries

This work fits in a general program for understanding the local qualitative behavior around typical
singularities of PSVFs in dimension n > 2. In [24], a list of future directions concerning this program is
presented. This program (also called the Thom-Smale program) has as a first step the classification of
codimension zero singularities. In [14], a list of such codimension zero 3D singularities and their respective
normal forms is presented.

However, we recommend the perusal of the paper [10] where we improve and complement such a list.
Bifurcation problems of PSVFs also are considered in [14]. But in this pioneer work, the main goal of our
paper, the asymptotic stability, is not carried on. In fact, as long as we know, the paper [9] is the first
one that addresses this topic for the 3D codimension one PSVFs singularities.

The orbit solutions of the system through points on the switching region Σ = {(x, y, z); z = 0},
when they exist, are defined by Filippov’s convention, see [14]. Such systems are widely used to model
phenomena in Electrical and Electronic Engineering, Physics, Economics, Biology among other areas
(examples of applications can be found in [3,4,13,20] and references therein).

The main tool used in this paper is the theory of the contact between a vector field and the boundary
of a manifold, since the traditional methods involving Lyapunov functions do not apply here, see [6–
8,15,19,24].

2.1. Filippov’s convention

Consider K = {(x, y, z) ∈ R
3 |x2 + y2 + z2 < δ} where δ > 0 is arbitrarily small and Σ = {(x, y, z) ∈

K |h(x, y, z) = 0}, where in this paper we consider h(x, y, z) = z. Clearly the switching manifold Σ is the
separating boundary of the regions Σ+ = {(x, y, z) ∈ K | z ≥ 0} and Σ− = {(x, y, z) ∈ K | z ≤ 0}.

Let Xr be the space of Cr-vector fields on K endowed with the Cr-topology with r = ∞ or r > 1
large enough for our purposes. Call Ωr the space of vector fields Zλ : K → R

3 such that

Zλ(x, y, z) =
{

Xλ(x, y, z), for (x, y, z) ∈ Σ+,
Y (x, y, z), for (x, y, z) ∈ Σ−,

where Xλ = (Xλ
1 ,Xλ

2 ,Xλ
3 ) and Y = (Y1, Y2, Y3) are in Xr. We consider Ωr = Xr × Xr endowed with the

product topology and denote any element in Ωr by Zλ = (Xλ, Y ), which we will accept to be multivalued
in points of Σ. The basic results of differential equations, in this context, were stated by Filippov in [14].
Related theories can be found in [3,22,24] and references therein. On Σ, we distinguish the following
regions:
• Crossing region: Σc = {p ∈ Σ |Xλ

3 (p) · Y3(p) > 0}. Moreover, we denote Σc+ = {p ∈ Σ |Xλ
3 (p) >

0, Y3(p) > 0} and Σc− = {p ∈ Σ |Xλ
3 (p) < 0, Y3(p) < 0}.

• Sliding region: Σs = {p ∈ Σ |Xλ
3 (p) < 0, Y3(p) > 0}.
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• Escaping region: Σe = {p ∈ Σ |Xλ
3 (p) > 0, Y3(p) < 0}.

When q ∈ Σs, following the Filippov’s convention, the sliding vector field associated with Zλ ∈ Ωr is
the vector field Ẑs

λ tangent to Σs expressed in coordinates as

Ẑs
λ(q) =

1
(Y3 − Xλ

3 )(q)

(
(Xλ

1 Y3 − Y1X
λ
3 )(q), (Xλ

2 Y3 − Y2X
λ
3 )(q), 0

)
. (3)

Associated with (3), there exists the planar normalized sliding vector field

Zs
λ(q) =

(
(Xλ

1 Y3 − Y1X
λ
3 )(q), (Xλ

2 Y3 − Y2X
λ
3 )(q)

)
. (4)

Note that if q ∈ Σs, then Xλ
3 (q) < 0 and Y3(q) > 0. So, (Y3 − Xλ

3 )(q) > 0 and therefore, Ẑs
λ and Zs

λ

are topologically equivalent in Σs, Zs
λ has the same orientation as Ẑs

λ, and it can be Cr-extended to the
closure Σs of Σs.

The points q ∈ Σs such that Zs
λ(q) = 0 are called pseudo-equilibria of Z, and the points p ∈ Σ such

that Xλ
3 (p) · Y3(p) = 0 are called tangential singularities of Zλ (i.e., the trajectory through p is tangent

to Σ).

2.2. Distinguished singularities

In our approach, we deal with two important distinguished tangential singularities: the points where the
contact is either quadratic or cubic, which are called fold and cusp singularities, respectively. When p is a
fold singularity of both smooth vector fields, we say that p is a twofold singularity, and when p is a cusp
singularity for one smooth vector field and a fold singularity for the other one, we say that p is a cusp-fold
singularity, see Fig. 1. In [11,12,17,18], twofold singularities are studied, and in [4,5], applications of such
theory in electrical and control systems, respectively, are exhibited.

In R
3, through a generic cusp singularity emanate two branches of fold singularities, see Fig. 1. In one

side of this branch, it appears visible fold singularities and in the other one invisible fold singularities.
The contact between the smooth vector field Xλ and the switching manifold Σ = h−1(0) is charac-

terized by the expression Xλh(p) =
〈
Xλ(p),∇h(p)

〉
(note that in this paper we have Xλh(p) = Xλ

3 (p))
and (Xλ)ih(p) =

〈
Xλ(p),∇(Xλ)i−1h(p)

〉
, i ≥ 2, where 〈., .〉 is the canonical inner product in R

3. We
emphasize that this notation is useful to characterize the kind of contact between the trajectories of
Xλ and Σ. Moreover, it has nothing to do with the composition of (Xλ)i and h (see the pioneering
text [14], Chapter 2, page 52). So, in a formal language, p is a fold point of Xλ if Xλh(p) = 0 and
(Xλ)2h(p) �= 0. Moreover, p is a cusp point of Xλ if Xλh(p) = (Xλ)2h(p) = 0, (Xλ)3h(p) �= 0 and
{dh(p), d(Xλh)(p), d((Xλ)2h)(p)} is a linearly independent set. Considering the expression (2), the kind
of contact of Xλ, Y with Σ can be characterized in terms of the parameters a, b, c, d and λ. More pre-
cisely, we have Xλh(p) = b(y+x2), (Xλ)2h(p) = 2abx+λb, (Xλ)3h(p) = 2a2b, Y h(p) = x and Y 2h(p) = c.
Therefore, we get that the origin is a twofold singularity for Zλ if bcλ �= 0 and it is a cusp-fold singularity
if λ = 0 and abc �= 0.

We define the sets of tangential singularities SXλ = {p ∈ Σ |Xλ
3 (p) = 0} and SY = {p ∈ Σ |Y3(p) = 0}.

Fig. 1. On the left it appears a cusp-fold singularity and on the right a twofold singularity
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Remark 1. Consider (4). It is easy to see that a twofold or a cusp-fold singularity is an equilibrium point
of the normalized sliding vector field.

Notations

• We denote the flow of a vector field W ∈ Xr by φW (t, p) where t ∈ I with I = I(p,W ) ⊂ R being an
interval depending on p ∈ K and W .

• Given a vector field W defined in A ⊂ K, we denote the backward trajectory φ−
W (A) (respectively,

forward trajectory φ+
W (A)) the set of all negative (respectively, positive) orbits of W through points

of A.
• We denote the boundary of an arbitrary set A ⊂ K by ∂A.

2.3. The first return map

In this section, we consider the dynamics given by the interaction of the smooth vector fields Xλ and Y
out of the sliding region Σs,e. Our purpose is to define a first return map on this region, involving the
flows of Xλ and Y .

Consider p ∈ Σc+ and suppose that there exists t1(p), the positive return time of the trajectory of X
passing through p.

We put φXλ(t1(p), p) = p1 ∈ Σ. Let t2(p1) be the positive return time of trajectory of Y passing
through p1 ∈ Σ. Note that we want p1 ∈ Σc−. Observe that the domain of the first return map is an open
subset U ⊂ Σc+ such that φXλ(t1(p), U) ⊂ Σc−, t1(p) > 0 and t2(p) > 0.

The first return map associated with Zλ = (Xλ, Y ) is defined by the composition ϕZλ
(p) =

φY (t2(p1), φXλ(t1(p), p)).
The next result provides the explicit expression of such map:

Lemma 1. Considering the PSVF given in (2), the expression of the first return map ϕZλ
: U ⊂ Σc+ →

Σc+ is given by

ϕZλ
(x, y) =

(
2ax + Δ1

4a
, y +

d(2ax + Δ1)
2ac

+
λ(−6ax − Δ1)

4a2

)
, (5)

where Δ1 = 3λ − √
9λ2 + 36aλx − 12a2(x2 + 4y).

Proof. Let be p = (x, y, 0) ∈ Σc+ = {(x, y, 0);Xλh(x, y, 0) > 0, Y h(x, y, 0) > 0} = {(x, y, 0); b(y + x2) >

0, x > 0}. The flows of Xλ and Y are given by
(
at + x, λt + y, b

(
a2t3

3 + at2x + λt2

2 + tx2 + ty
))

and

(ct + x, dt + y, c/2t2 + xt), respectively. Solving φXλ(t1(p), p) ∈ Σc− and φY (t2(p1), p1) ∈ Σc+, we obtain
the expressions of the positive return times t1(p) = −6ax−Δ1

4a2 and t2(p1) = 2ax+Δ1
2ac . Composing the flows,

i.e., computating φY (t2(p1), φXλ(t1(p), p)), we get the explicit expression of first return map. �

Note that we can extend smoothly ϕZλ
to the boundary of Σc. In this way, the unique fixed point of

ϕZλ
, in a neighborhood of the origin, is the origin. Let Δ2 = (ad)2 − adcλ. When λ �= 0, the eigenvalues

of DϕZλ
at the origin are

ξλ
± =

2ad − cλ ± 2
√

Δ2

cλ
, (6)

the eigenvectors associated with ξλ
+ and ξλ

−, respectively, are vλ
± = (ωλ

±, 1), where ωλ
± = ac

ad±√
Δ2

and the
eigenspaces associated with ξλ

±, respectively, are tangent to the straight lines

Sλ
± =

{
(x, y, 0) ∈ Σ|x =

ac

ad ± √
Δ2

y

}
. (7)
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Σc−

Σc+Σe

Σs
Σ

Σc−
Σc+

Σe

Σs

Σ

(a) (b)

Fig. 2. The two possible local dynamics of Z0 with hypothesis H1 and H2

3. Auxiliary results

3.1. The case λ = 0

Consider (2), with λ = 0. In this case, Z0 presents a cusp-fold singularity at the origin, since abc �= 0,
see Sect. 2.2. Note that SX0 = {(x, y, 0) ∈ Σ | y = −x2} and SY = {(x, y, 0) ∈ Σ |x = 0} are the sets
of tangential singularities of X0 and Y , respectively. At this moment, we stress that the notation X0

represents the smooth vector field Xλ with λ = 0.

3.1.1. Local dynamics of the normalized sliding vector field. From (4), the normalized sliding vector field
is given by

Zs
0 = (ax − bc(y + x2),−db(y + x2)).

So, the eigenvalues of Zs
0 are λ0

1 = a and λ0
2 = −db and the eigenspaces associated with λ0

1 and λ0
2,

respectively, are

E0
1 = {(x, y, 0) ∈ Σ | y = 0} and E0

2 =
{

(x, y, 0) ∈ Σ | y =
(a + bd)x

bc

}
. (8)

In order to get Z0 asymptotically stable at the cusp-fold singularity, some extra hypotheses must be
imposed on the parameters:

Hypothesis 1. (H1): c > 0, i.e., the fold point generated by the vector field Y must be invisible.

Hypothesis 2. (H2): λ0
1 = a < 0 and −λ0

2 = bd > 0, i.e., the origin must be asymptotically stable for Zs
0 .

Note that, since a < 0 and c > 0, the flow of X0 goes from the right to the left and the flow of Y goes
from the left to the right with respect to the x−axis. Following H1 and H2, the phase portraits of Z0, in
Σs, are given by one of the following illustrations, in Fig. 2.

However, just at Case (a) of Fig. 2, the asymptotic stability is expected. In fact, in Case (b), it is
easy to check that the smooth vector fields X0 are not Lyapunov stable at the origin. So we consider the
following hypothesis:

Hypothesis 3. (H3): b < 0, i.e., the cusp singularity generated by the vector field X0 must be of the same
topological type as described in Fig. 2, Case (a).

By consequence of H2 and H3, we conclude that d < 0.

Lemma 2. The eigenspace E0
1 associated with λ0

1 is tangent to the curve SX0 , in Σ, at the origin.

Proof. Straightforward according to (8). �
Hypothesis 4. (H4): −a < bd ⇒ 0 < a + bd., i.e., E0

2 is stronger than E0
1 because |λ1| < |λ2|.

Remark 2. As an immediate consequence of H4, we get (bc)/(a + bd) < 0 and E0
2 ∩ Σs = ∅, see Fig. 3.

In particular, this implies that the sliding region Σs is Zs
0 -invariant.
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Σc− Σc+

Σe
ΣsΣ

E0
1

E0
2

Fig. 3. Local dynamic of Zs
0

3.1.2. Local dynamics of the first return map. Now, in order to determine the dynamics of the forward
trajectories of Z0, we consider the expression of the first return map, given in (5), with λ = 0. We get

ϕZ0(x, y) =

(
ax − √−3a2(x2 + 4y)

2a
, y +

d(ax − √−3a2(x2 + 4y)
ac

)

.

Given a point p ∈ R
3, it is easy to see that the forward trajectory φ+

Z0
(p) of Z passing through p intersects

Σs ∪ Σc+. In what follows, we prove that φ+
Z0

(p) ∩ Σs �= ∅.

Lemma 3. The image of the curve y = −x2, with x > 0, by ϕZ0 is the curve y = −x2

4 + 2d
c x with x > 0,

i.e.,

ϕZ0({y = −x2, with x > 0}) =
{

y = −x2

4
+ 2

d

c
x, with x > 0

}
.

Proof. Consider p0 = (u,−u2, 0), with u > 0. The trajectory of X0 through p0 intersects Σ at p1 =
(−2u,−u2, 0) after a time t1 = −3u/a. The trajectory of Y through p1 intersects Σ at p2 = (2u, 4du/c −
u2, 0) after a time t2 = 4u/c. Considering the change of variables x = 2u, after a time t = t1+t2 = (4a−3c)u

ac ,
the curve y = −x2 returns to Σ at the curve y = −x2

4 + 2d
c x. �

Lemma 4. The image of the curve x = 0, with y < 0, by ϕZ0 is the curve y = −x2

3 +2d
c x with x > 0, i.e.,

ϕZ0({x = 0, with y < 0}) =
{

y = −x2

3
+ 2

d

c
x, with x > 0

}
.

Proof. The proof is analogous to that one presented in the previous lemma, considering the change of
variables x =

√−3y0. �

Lemma 5. The image of the set Σc+ by ϕZ0 remains between the curves y = −x2

3 +2d
c x and y = −x2

4 +2d
c x,

with x > 0, i.e.,

ϕZ0(Σ
c+) ⊂

{
(x, y, 0) ∈ Σ | − x2

3
+ 2

d

c
x < y < −x2

4
+ 2

d

c
x, with x > 0

}
.

Proof. Given a point p0 = (x0, y0, 0) ∈ Σc+ (where x0 > 0 and y0 < 0), the trajectory of X0 by p0

intersects Σ at p1 ∈ Σc− and the trajectory of Y by p1 intersects Σ at p2, where p2 is situated between
the curves y = −x2

3 + 2d
c x and y = −x2

4 + 2d
c x which correspond to the images of the curves x = 0, with

y < 0 and y = −x2, with x > 0, respectively. �
Lemma 6. Given p0 = (x0, y0, 0) ∈ Σc+, call p1 = (x1, y1, 0) = ϕZ0(p0) and pn = (xn, yn, 0) = ϕn

Z0
(p0),

when it is well defined. Then x1 > x0 and xn → ∞ when n → ∞.

Proof. Given p0 = (x0, y0, 0) ∈ Σc+, a straightforward calculus shows that x1 = x0
2 +

√
3
√

−(x2
0+4y0)

2 where
p1 = (x1, y1, 0) = ϕZ0(p0). Since p0 ∈ Σc+ we conclude that y0 ≤ −x2

0 < −x2
0/3. So,

y0 < −x2
0/3 ⇒ −4x2

0 − 12y0 > 0 ⇒ (−3(x2
0 + 4y0)) > x2

0

⇒
√

−3(x2
0+4y0)

2 > x0
2 ⇒ x1 > x0.
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Σc− Σc−

Σc+ Σc+
Σe Σe

Σs Σs

Case λ < 0 Case λ > 0

Fig. 4. The local dynamic of Zλ, with hypotheses H1 and H3

A recursive analysis shows that xn+1 > xn. In fact, repeating the previous argument

xn+1 =
xn +

√−3(x2
n + 4yn)

2
> 2xn ⇒ xn+1

xn
> 2.

Since xn+1
xn

> 1, from a test of convergence of sequences, we get xn → ∞. �

Proposition 1. For all p ∈ K, it happens φ+
Z0

(p) ∩ Σs �= ∅.

Proof. As we observed above, given a point p ∈ K, it is easy to see that φ+
Z0

(p) ∩ [Σs ∪ Σc+] �= ∅. So, it
is enough to prove that ϕn0

Z0
(Σc+) ⊂ Σs for some n0 > 0. By Lemmas 3, 4 and 5 we obtain that

ϕZ0(Σc+) ⊂
{

(x, y, 0) ∈ Σ | x2

3
+ 2

d

c
x ≤ y ≤ −x2

4
+ 2

d

c
x, with x > 0

}
.

By Lemma 6, there exists n0 > 0 such that pn0 = (xn0 , yn0 , 0) = ϕn0
Z0

(p) satisfies yn0 + x2
n0

≥ 0, since
yn0−1 > −64d2

9c2 by Lemma 5. Therefore pn0 ∈ Σs. �

3.2. The case λ �= 0

When λ �= 0, we consider the normal form (2), presenting a twofold singularity at the origin, since bc �= 0,
see Sect. 2.2. The local dynamics for Zλ is given in Fig. 4. The tangential sets SXλ and SY remain the
same as the ones established in Sect. 3.1.

In fact, in previous works, there were considered the asymptotic stability of PSVFs that present a
twofold singularity at origin. More precisely, in [23] it was proved the asymptotic stability of PSVFs
presenting a twofold singularity in the case where the first return map is of elliptical type, i.e., has non-
real eigenvalues. In [17], it was proved that PSVFs presenting a twofold singularity with real eigenvalues of
first return map are not Lyapunov stable (similarly when λ < 0), but the basin of attraction is exhibited.
Nevertheless, in the present work, by means of a variation on the parameter λ it is possible to observe
changes on the eigenvectors of the sliding vector fields and on the stabilities of the first return maps and
sliding vector fields. Roughly speaking, the variation of λ produces a variation on the stability of the
twofold singularity.

3.2.1. Local dynamics of the normalized sliding vector fields. According to (4), the normalized sliding
vector field is given by

Zs
λ = (ax − bc(y + x2), λx − db(y + x2)). (9)
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Σc− Σc−

Σc+ Σc+

ΣeΣe

Σs Σs

Case λ < 0 Case λ > 0
Eλ

1 Eλ
1Eλ

2

Eλ
2

Fig. 5. The local dynamics of Zs
λ with hypothesis H1–H4

Σc−

Σc+Σe

Σs

Fig. 6. Dynamics of ϕZλ
and Zs

λ, under the hypothesis H1–H4 with λ > 0

Let Δ3 = (a + bd)2 − 4bcλ. The eigenvalues of DZs
λ(0, 0) are λλ

1 = a−bd−√
Δ3

2 and λλ
2 = a−bd+

√
Δ3

2 , and
the eigenspaces associated with λλ

1 and λλ
2 , respectively, are

Eλ
1 =

{
(x, y, 0) ∈ Σ | y = 2λ

a+bd−√
Δ3

x
}

Eλ
2 =

{
(x, y, 0) ∈ Σ | y = 2λ

a+bd+
√

Δ3
x
}

.

(10)

Under the hypotheses H1–H4, we get that λλ
1,2 are negative and Eλ

1 is stronger than Eλ
2 . Besides, we

obtain the following results:

Lemma 7. The eigenspace Eλ
1 ⊂ Σc and

(a) Eλ
2 ⊂ [Σs ∪ Σe] when λ > 0;

(b) Eλ
2 ⊂ Σc when λ < 0, see Fig. 5.

Proof. It is straightforward according to (10). �

Note that in case λ < 0, the sliding vector fields have a transient behavior in Σs, and as a consequence,
all the orbits in Σs will be iterated by the first return map, whereas in case λ > 0, Zs

λ is asymptotically
stable at the origin.

3.2.2. Local dynamics of the first return map. Now, in order to determine the dynamics of the positive
trajectories of Zλ, we consider the first return map ϕZλ

of Zλ, whose expression is given in (5).

Lemma 8. Under the hypothesis H1–H4, the origin is a hyperbolic saddle fixed point for ϕZλ
and

(a) Sλ
± ⊂ Σc when λ > 0 and

(b) Sλ
+ ⊂ Σc, Sλ

− ⊂ [Σe ∪ Σs] when λ < 0.

Besides, Sλ
+ (resp. Sλ

−) is an expansive (resp. contractive) direction.

Proof. It follows by the expressions (6) and (7), of the eigenvalues and the eigenspaces of DϕZλ
(0),

respectively. �

By Lemma 8, when λ > 0, we get that given p ∈ Σc+ there exists n0 ∈ N such that ϕn0
Zλ

(p) ∈ Σs.
And Lemma 7, under the hypothesis H1–H4, provides that Zs

λ is asymptotically stable at the origin. See
Fig. 6, when the dotted lines in Σc+ represent the iterated of ϕZλ

and the line in Σs the dynamic of Zs
λ.

In this case, we get that Zλ is asymptotically stable at the origin, under the hypothesis H1–H4.
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Σc−

Σc+Σe

Σs

(a) (b)

p0

pλ
1

pλ
2

pλ
3

r

sV +

V −

Fig. 7. In a, we have the local dynamic of ϕZλ
(dotted line) and Zs

λ (in Σs). In b are presented the straight lines r and s,

the points p0, pλ
1 , pλ

2 and pλ
3 and the regions V + and V −

When λ < 0, Lemma 7 provides that the trajectories of the sliding vector field Zs
λ have a transient

behavior in Σs. In fact, in this case, we shall prove that Zλ is not Lyapunov stable at the origin (which
corresponds to a twofold singularity).

Lemma 9. Given p0 = (x0,−x2
0, 0) (under the curve y = −x2), with x0 > 0, we get

ϕZλ
(x0,−x2

0, 0) =
(

2x0 +
3λ

2a
,−x2

0 − 3λ(λ + 2ax0)
2a2

+
d(3λ + 4ax0)

ac
, 0

)
.

Proof. Straightforward. �

We denote ϕZλ
(p0) = pλ

1 = (xλ
1 , yλ

1 , 0), which can be situated at Σc+ and in this case, by Lemma 8,
and its distance to the origin increases when compared to p0. Otherwise, pλ

1 can be situated at Σs, and in
this case, the trajectory by this point slides to the parabola y = −x2. The intersection point will be called
pλ
2 = (xλ

2 , yλ
2 , 0) = (xλ

2 ,−(xλ
2 )2, 0). As the origin is an attractor for Zs

λ, we have to discuss the behavior
of the mapping ϕZλ

at the origin.
Denote by d(p, 0) the euclidian distance between the point p to the origin.

Lemma 10. Under the hypotheses H1–H4 with λ < 0 and with the previous notation,

d(pλ
2 , 0) > d(p0, 0).

Proof. From (9), the straight line

r : (x(α), y(α), 0) = (x0,−x2
0, 0) + α(ax0, λx0, 0) with α ∈ R,

is tangent to the trajectory of Zs
λ by p0 = (x0,−x2

0, 0).
Note that r splits Σs into two regions, denoted by V + and V −. Consider the vertical straight line

s : p = pλ
1 + β(0, 1, 0), with β ∈ R, see Fig. 7. We get that r ∩ s = pλ

3 , where pλ
3 = (xλ

3 , yλ
3 , 0) =(

xλ
1 ,−x2

0 + λ
a

(
3λ
2a + x0

)
, 0

)
. Observe that yλ

1 < yλ
3 . Therefore pλ

1 and, consequently pλ
2 , are situated at

the region V − described in Fig. 7. So, d(pλ
2 , 0) > d(p0, 0). �

Lemma 11. Zλ is not Lyapunov stable at the origin for λ < 0.

Proof. From Lemma 7, we get that Zs
λ has a transient behavior, i.e., Σc+ is an attractor set for Zs

λ, and
by Lemma 8, we conclude that all points in Σc+ converge to Σs. So, in order to analyze the stability of Zλ

at the origin, it is sufficient to study the intersection of the trajectories of Zλ with ∂Σs. By Lemma 10,
we obtain that the distance between the origin and a point in Σs increases along the time. Therefore, we
conclude that Zλ is not Lyapunov stable at the origin for this case. �

Remark 3. As consequence of Lemmas 2, 7 and 8, we get that Z0 has codimension of at least two, because
the eigenspaces of the normalized sliding vector field and the first return map are tangent to SX0 .
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4. Proof of Theorem 1

4.1. Case λ = 0

When λ = 0, by Proposition 1, the trajectories of all points in R
3 intersect Σs. By hypotheses H2 and

H4, the ω-limit set of all trajectories in Σs is the origin. So, Z0 is asymptotically stable at the origin.

4.2. Case λ > 0

When λ > 0, by Item (a) of Lemma 8 the trajectories of all points in K intersect Σs. Moreover, the origin
is a hyperbolic attractor for Zs

λ and by Lemma 7 we get Eλ
1 ⊂ Σc and Eλ

2 ⊂ Σs, for x > 0. Therefore,
the positive orbits of Zλ follows the orbits of Zs

λ. So, Zλ is asymptotically stable at the origin.

4.3. Case λ < 0

When λ < 0, the result is an immediate consequence of Lemma 11.

5. The mild equivalence

In this section, we prove that all PSVFs presenting a cusp-fold singularity p, with some intrinsic properties,
are topologically equivalent to (2), with λ = 0. First of all, let us announce the relation of equivalence
that we are considering. Our intention with this kind of equivalence is to provide a simple characterization
of generic (typical) singularities. For more details, see [9,16,21].

As stated in [9], the topological type of Z ∈ Ωr at p ∈ Σ is characterized by all oriented orbits passing
through or tending to p (in positive or negative time).

Definition 1. We say that Z = (X,Y ), Z̃ = (X̃, Ỹ ) ∈ Ωr presenting switching manifolds Σ and Σ̃,
respectively, are mild equivalent if the following conditions are satisfied:

(i) X |Σ+ is topologically equivalent to X̃ |Σ̃+
,

(ii) Y |Σ− is topologically equivalent to Ỹ |Σ̃−
and

(iii) There is a homeomorphism ξ : Σ → Σ̃ such that the topological types of Z at p ∈ Σ and of Z̃ at
p̃ = ξ(p) ∈ Σ̃ are equivalent (coincide).

From this definition, the concept of mild structural stability in Ωr is naturally obtained.

Now, we write the homeomorphism that provides this equivalence.

Proposition 2. Let Z = (X, Y ) ∈ Ωr such that X has a cusp singularity at p, Y has an invisible fold
singularity at p, the sliding vector field Z

s
has an attractor node at p, a branch of the weak manifold and

the strong manifold associated with the node of Z
s
are all placed in Σc, and a branch of the weak manifold

is placed in Σs. Then, Z is mild equivalent to Z given by (2), with λ = 0.

Proof. Let ξ(p) = 0. See Fig. 8. Since X has a cusp at p, there exists on Σ a branch SXi
(resp. SXv

) of
invisible (resp. visible) fold points of X starting at p. The same holds for X. By arc length parametrization,
consider the identification ξ(SXi

∩ V ) = SXi
∩ V (resp. ξ(SXv

∩ V ) = SXv
∩ V ).

Also, since Y has a fold at p, there exist on Σ branches SY − and SY +
of invisible fold points of Y

starting at p. W.l.g. consider that SY − (resp. SY +
) is the branch that belongs to the boundary of Σ

e
(resp.
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Fig. 8. The homeomorphism that provides the mild equivalence

Σs). The same holds for Y . By arc length parametrization, consider the identification ξ(SY −∩V ) = SY−∩V

(resp. ξ(SY +
∩ V ) = SY+ ∩ V ).

Consider U
s

(resp. U
w
) the strong (resp. weak) manifold associated with the node of the sliding

vector field Z
s
. The same for Zs. By arc length parametrization, consider the identification ξ(U

s ∩Σ
c+ ∩

V ) = Us ∩ Σc+ ∩ V (resp. ξ(U
s ∩ Σ

c− ∩ V ) = Us ∩ Σc− ∩ V , ξ(U
w ∩ Σ

c− ∩ V ) = Uw ∩ Σc− ∩ V and
ξ(U

w ∩ Σ
s ∩ V ) = Uw ∩ Σs ∩ V ).

Let V i, i = 1, . . . , 8, be the part of the curve V ∩ Σ between qi and qi+1 where q1 = SY − ∩ V , q2 =

U
s∩Σ

c+∩V , q3 = SXv
∩V , q4 = U

w∩Σ
s∩V , q5 = SY +

∩V, q6 = U
s∩Σ

c−∩V , q7 = U
w∩Σ

e∩V , q8 = SXi
∩V

and q9 = q1.
Consider the same for V and Z = (X,Y ). Since p (resp. the origin) is a node for Z

s
(resp. Zs) and by

the position of the invariant stable manifolds, the negative trajectory of Z
s

(resp. Zs) by a point q of SY −
(resp. q of SY−) meets V 1 at a point r (resp. V1 at a point r). By arc length parametrization, identify the

arcs of trajectory q̂ r and q̂ r. So, ξ(A1) = A1 where A1 is the region of Σ bounded by V1∪(U
s∩Σ

c+

)∪SY −

and A1 is the analogous for Z = (X,Y ). The positive trajectory of Z
s

(resp. Zs) by a point q of SY −
(resp. q of SY−) meets SXi

at a point s (resp. SXi
at a point s). By arc length parametrization, identify

the arcs of trajectory q̂ s and q̂ s. So, ξ(A8) = A8 where A8 is the region of Σ bounded by V8 ∪SXi
∪SY −

and A8 is the analogous for Z = (X,Y ). The positive trajectory of Z
s

(resp. Zs) by a point s of SXi

(resp. s of SXi
) converges to p (resp. the origin 0). By arc length parametrization, identify the arcs of

trajectory ŝ p and ŝ 0. So, ξ(A7) = A7 where A7 is the region of Σ bounded by V7 ∪ (U
w ∩ Σ

c−
) ∪ SXi

and A7 is the analogous for Z = (X,Y ). Repeat this argumentation and ξ(Aj) = Aj for j = 2, . . . , 6. In
this way, ξ(Σ) = Σ and the topological types of Z at 0 and of Z at p are equivalent (coincide).

Reduce, if necessary, the neighborhood V (resp. V ) in such a way that φY (V 5 ∪ V 6 ∪ V 7 ∪ V 8) =
V 1∪V 2∪V 3∪V 4 (resp. φY (V5∪V6∪V7∪V8) = V1∪V2∪V3∪V4). So, given a point q ∈ (A5∪A6∪A7∪A8)
(resp. q ∈ (A5 ∪ A6 ∪ A7 ∪ A8)), the positive trajectory of Y by q (resp. Y by q) meets A1 ∪ A2 ∪ A3 ∪ A4

(resp. A1 ∪ A2 ∪ A3 ∪ A4) at a point r (resp. r). By arc length parametrization, identify the arcs of
trajectory q̂ r and q̂ r. So, ξ(Σ−) = Σ−.

Now, let us construct the homeomorphism in Σ+. Since ξ(SXv
) = SXv

, given q ∈ SXv
(resp. q ∈ SXv

)

the trajectory of X by q (resp. X by q) meets either Σ
c−

or V (resp. Σc− or V ) for positive time at r
(resp. r) and meets V (resp. V ) for negative time at s (resp. s). By arc length parametrization, identify
the arcs of trajectory r̂ q and r̂ q (resp. q̂ s and q̂ s). Let HX (resp. HX) be given by HX = φX(SXv

)∩Σ
c−

(resp. HX = φX(SXv
) ∩ Σc−), q10 = HX ∩ V (resp. q10 = HX ∩ V ) and A9 (resp. A9) the region of Σ

c−

(resp. Σc−) bounded by HX ∩ SXi
∩ L where L (resp. HX ∩ SXi

∩ L where L) is the part of the arc
V 8 between q10 and q9 = q1 (resp. V8 between q10 and q9 = q1). Given a point q ∈ A9 (resp. q ∈ A9),
the negative trajectory of X by q (resp. X by q) meets A1 ∪ A2 ∪ A8 (resp. A1 ∪ A2 ∪ A8) at a point
r (resp. r). By arc length parametrization, identify the arcs of trajectory q̂ r and q̂ r. Given a point
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q ∈ (A3 ∪ A4 ∪ A5 ∪ A6 ∪ (A7\A9)) (resp. q ∈ (A3 ∪ A4 ∪ A5 ∪ A6 ∪ (A7\A9))), the negative trajectory of
X by q (resp. X by q) meets V (resp. A1∪) at a point s (resp. s). By arc length parametrization, identify
the arcs of trajectory q̂ s and q̂ s. So, ξ(Σ+) = Σ+.

This finishes the proof, and we conclude that Z and Z are mild equivalent. �

6. Asymptotic stability in a perturbed relay system

In this section, we illustrate Theorem 1 through a model found in the theory of nonlinear oscillations.
We point out that such model was discussed in detail in [1,2], under another point of view. Consider the
relay system expressed as z′′′ = α sgn(z) where α ∈ R. This system can be rewritten as

Z(x, y, z) =
{

X(x, y, z) = (y,−α, x) if z ≥ 0,
Y (x, y, z) = (y, α, x) if z ≤ 0. (11)

Consider the perturbation of (11) given by

Z(x, y, z) =
{

X(x, y, z) =
(
y − αλ

a2 ,−α, x
)

if z ≥ 0,
Y (x, y, z) =

(
y + c, α, x + 1

αy2
)

if z ≤ 0.
(12)

where 1/α and αλ/a2 are small enough such that (11) and (12) are sufficiently Cr-close. First, let us
apply the following change of variables on X:

(u, v, w) =
(−a2

α

(
x +

1
2α

y2

)
,−

√
2

a

α
y, z

)
.

So, we get

X(u, v, w) = (u̇, v̇, ẇ) =
(

−a2

α

(
ẋ + 2

2αyẏ
)
,−√

2 a
α ẏ, ż

)

=
(
λ,

√
2a, −α

a2

(
u + 1

2v2
))

.

Now let us apply the following change of variables on X(u, v, w):

(U, V,W ) =
(

1√
2
v, u,

−ba2

α
w

)
.

So, we get

X(U, V,W ) = (U̇ , V̇ , Ẇ ) =
(

1√
2
v̇, u̇,

−ba2

α
ẇ

)
= (a, λ, b(V + U2)). (13)

In a similar way, let us apply the following change of variables on Y :

(U, V,W ) =
(

x +
1
2α

y2,
d

α
y, z

)
.

So, we get

Y (U, V,W ) = (U̇ , V̇ , Ẇ ) =
(

ẋ +
2
2α

yẏ,
d

α
ẏ, ż

)
= (c, d, U). (14)

By (13) and (14), we get that Z(U, V,W ) = (X(U, V,W ), Y (U, V,W )) is a small perturbation of the relay
system (11) which is in the normal form (2). So, its stability can be obtained from Theorem 1.
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