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This paper presents a simple feedback methodology that uses second order filters to
control narrowband resonant and non-resonant vibration of a structural system. In par-
ticular, a single degree-of-freedom system is studied throughout the paper. The idea of the
methodology is based on the fact that direct feedback is effective for in-phase vibration
control. Thus, the position, velocity and acceleration are respectively fed back to control
the low, resonant and high frequency vibration of the system. Each of these is passed
through a band pass filter of second order that is inserted to extract and feed back the in-
phase signal component only. This is called narrowband feedback. It is demonstrated with
experiments that narrowband feedback is useful for narrowband control of resonant and
non-resonant vibration.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Active control in the context of feedback control has generally meant active damping control that is aiming to reduce resonant
responses of sound and vibration systems. This conception appears reasonable when the systems are all excited by an ideal
broadband source (e.g., white noise and an impulse) and are further lightly damped. However, not all responses and systems
ought to be controlled are resonant responses nor are necessarily lightly damped. For example, low frequency vibration is per-
sistent in precision machines even if anti-vibration mounts are used [1]. The sound radiation to an acoustic free field is a phe-
nomenon mostly in the high frequency region above the fundamental natural frequency of a moving-coil loudspeaker [2].
Vibration of a rotating or reciprocating machine is often dominated by harmonics of the operating frequency, which can occur at
any frequencies including resonance and non-resonance frequencies [3]. Acoustic fields inside car cabins are indeed very highly
damped [4]. Active control of such non-resonant sound and vibration in a highly damped system has been rarely reported in the
literature. The paper presented here studies this, using a simple single degree-of-freedom (SDOF) vibration system.

There are many feedback methods that have been successful for resonant vibration control. Karnopp et al. [5] proposed direct
velocity feedback in 1970s that feeds a velocity response back to the collocated force actuator through gain. They demonstrated
with a SDOF system that the controller acts as an electrical damper. Balas [6] suggested that this could also be applied to multiple
modal control of a flexible structure as long as the pair of sensor and actuator were truly collocated. Researchers soon realized that
Balas's application tended to go unstable at high frequencies and thus instead proposed positive position feedback (PPF) in 1990s
[7]. Unlike direct feedback (gain control), PPF is narrowband feedback that uses a low pass filter of second order as the controller
so that it works effectively in the tuned frequency region while ineffectively at high frequencies. PPF is particularly suitable for
im).
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controlling the fundamental mode when a strain-type sensor is used. The electrical dynamic absorber (EDA) method was then
proposed as a rather general tool for resonant vibration control, which is also narrowband feedback employing a number of
second order filters [8–11]. Unlike PPF, however, it is a passivity-based controller (PBC) electrically realizing a mechanical dynamic
absorber [9,10]. It is further a robust-PBC that is even more robust than Karnopp's electrical damper [8]. This method is also
applicable to multiple modal control in both collocated and non-collocated control configurations, regardless of the types of
transducers used [10,11]. Many other methods are also available in the control society, such as, classical compensators [12], state-
based optimal methods [13], and intelligent methods like fuzzy control [14]. As such, active damping control for resonant vibration
is a topic that has been extensively studied.

In this paper, a simple feedback methodology is presented for narrowband control of not only resonant but non-resonant
vibration of a SDOF system. The idea is commonly based on the fact that direct feedback is effective for in-phase vibration
control. Thus, the position, velocity and acceleration are respectively fed back to control the low, resonant and high fre-
quency vibration of the system. Each of these is passed through a controller consisting of a band pass filter of second order.
These are called narrowband position, velocity and acceleration feedback, respectively. It is well known that narrowband
velocity feedback is a way of realizing an EDA for resonant vibration control [8]. The main focus of this paper is thus to
investigate narrowband position and acceleration feedback for non-resonant vibration control. It is demonstrated with
experiments that these two methods are respectively related to active stiffness and inertia control. They are thus useful for
controlling the vibration at frequencies well below and well above the resonance frequency, respectively.
2. Theory of systems

Consider the active feedback control of a SDOF vibration system shown in Fig. 1(a), consisting of massms, spring ks and damper
cs. The SDOF system may represents a simple model of a resilient structure or a single vibration mode of a flexible structure. It is
excited by the primary force f ðtÞ and controlled by the force f cðtÞ via the negative feedback controller �CðjωÞ, where t is time,ω is
the angular frequency, and j¼

ffiffiffiffiffiffiffiffi
�1

p
. The systems before and after control can be represented by the two block diagrams shown in

Fig. 1(b), where PðjωÞ indicates the plant, dðtÞ the disturbance signal, and eðtÞ the error signal. The two signals dðtÞ and eðtÞ are
physically the system responses (position, velocity or acceleration) measured by a common vibration sensor before and after
control (i.e., disconnecting and connecting the feedback loop), respectively. Thus they cannot be measured simultaneously.
Throughout this paper, the time dependence of signals is explicitly indicated (e.g., eðtÞ) while their frequency dependence is
abbreviated (e.g., e) for simplicity.

2.1. Direct feedback

The dynamic equation of the SDOF system in Fig. 1(a) can be written as

ms €wðtÞþcs _wðtÞþkswðtÞ ¼ f ðtÞþ f cðtÞ; ð1Þ
where wðtÞ, _wðtÞ and €wðtÞ are the position, velocity and acceleration of the system in time, respectively. Let the control force
be

f cðtÞ ¼ � kwðtÞþc _wðtÞþm €wðtÞ� �
; ð2Þ

where k, c and m are non-negative and are the gains for direct position, velocity and acceleration feedback control,
respectively. Combining Eqs. (1) and (2) gives the controlled system written as

½msþm� €wðtÞþ½csþc� _wðtÞþ½ksþk�wðtÞ ¼ f ðtÞ: ð3Þ
Fig. 1. Active vibration control of a SDOF system PðjωÞ by the control force f cðtÞ with the negative feedback controller �CðjωÞ: (a) Schematic drawing and
(b) the control block diagrams. The responses before and after control are dðtÞ and eðtÞ, respectively.
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It can be seen that the three control gains (m, c and k) act as an added mass, damper and spring, respectively. They may
be called an electrical mass, damper and spring, respectively. It is thus clear that position feedback with k is effective at
frequencies well below the resonance frequency (i.e., in the stiffness-controlled region) as it controls the stiffness [15].
Likewise, velocity feedback with c is effective at frequencies close to the resonance frequency (in the damping-controlled
region); and acceleration feedback with m is effective at frequencies well above the resonance frequency (in the mass-
controlled region). Note that each effective frequency region is also the region where each plant response is in-phase (0°)
with the control force. This confirms the fact that direct feedback is effective for in-phase vibration control. Direct velocity
feedback has been used for some specific applications such as active vibration isolation [1,5], where the plant responses
tend to naturally and rapidly roll-off at high frequencies. In contrast, direct position and acceleration feedback have been
rarely used because of some robustness problems that are addressed later in this paper.

2.2. Narrowband feedback

Rather than using direct feedback that may suffer from robustness problems, we consider narrowband feedback such
that

f c ¼ � kBpðωÞwþcBvðωÞ _wþmBaðωÞ €w� �
; ð4Þ

where w, _w, and €w denote the position, velocity, and acceleration of the system in frequency, respectively. The variables are
interrelated such that _w¼ €w=jω and w¼ €w=ðjωÞ2. The three terms inside the brackets in Eq. (4) correspond to narrowband
position, velocity and acceleration feedback, respectively. Each filter is a band pass filter of second order given by

BiðωÞ ¼ jbiωiω
ω2

i �ω2þ jbiωiω
; ð5Þ

where i¼ p, v, and a; ωi the center frequency; and bi ¼ 2ζi the normalized bandwidth with the damping ratio ζi. This filter
has been introduced to selectively extract and feed back the targeted in-phase signal component only. Thus, it should be
tuned to a low frequency (in the stiffness-controlled region) for position feedback, the resonance frequency (in the
damping-controlled region) for velocity feedback, and a high frequency (in the mass-controlled region) for acceleration
feedback. These tuning rules may be respectively written as

ωp5ωs; ð6aÞ

ωv �ωs; ð6bÞ

ωs5ωa; ð6cÞ

where ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ks=ms

p
is the angular natural frequency of the SDOF structural system. Combining Eqs. (1) and (4) gives the

controlled system written as

½msþmBaðωÞ� €wþ½csþcBvðωÞ� _wþ½ksþkBpðωÞ�w¼ f ; ð7Þ

provided that it is stable. The three controllers, mBaðωÞ, cBvðωÞ and kBpðωÞ, act as an added mass, damper and spring within
around the pass bandwidth of each filter, respectively. They may thus be called a narrowband electrical mass, damper and
spring, respectively.

2.3. Passivity analysis

A single-input structural dynamic system such as that given by Eqs. (3) or (7) is said to be passive (i.e., unconditionally
stable) if the driving point power is non-negative such that [16]

Reðw: �f ÞZ0; for all frequenciesð Þ ð8Þ

where f and _w are respectively force and velocity at the driving point, and the superscript � indicates the complex conjugate.
It is trivial to assess the passivity of the system in Eq. (3) as it is a positive definite system by inspection such that
½msþm�40, ½csþc�40 and ½ksþk�40. The direct position, velocity and acceleration feedback controllers are thus PBCs,
electrically realizing mechanical elements.

To assess the passivity of narrowband feedback, both sides of Eq. (7) are multiplied by _w� and then the real parts are
taken. It can be seen that only narrowband velocity feedback satisfies the passivity condition while the other two do not.
The narrowband velocity feedback controller is thus a PBC, electrically realizing a narrowband damper (i.e., an EDA) as is
well known [9]. Since the other two are not PBCs, however, the interpretations of the narrowband spring and mass are not
exactly correct. They are though conceptually convenient and are also reasonable in an approximation sense within around
the pass bandwidth of each filter. It can thus be finally stated that the narrowband position and acceleration feedback
presented in this paper are methods to achieve narrowband stiffness and inertia control, respectively.
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3. Theory of control

3.1. Basic theory

The analyses described in the previous section are valid if and only if the controlled systems are stable. The systems are
further physically and lastingly realizable if and only if they are robust. A design technique for optimal, robust control [8,9]
that has been particularly useful for vibration control is summarized in this subsection. The open loop frequency response
function (FRF) LðjωÞ ¼ PðjωÞCðjωÞ is explicitly described here as it is of paramount importance. For the SDOF system in Fig. 1
(a), the plants for position, velocity and acceleration feedback are respectively given by

PðjωÞ ¼ ðjωcsÞ�1 UAsðωÞ; ð9aÞ

PðjωÞ ¼ c�1
s UAsðωÞ; ð9bÞ

PðjωÞ ¼ ðjωÞc�1
s UAsðωÞ; ð9cÞ

where AsðωÞ ¼ j2ζsωsωðω2
s �ω2þ j2ζsωsωÞ�1 in which ωs the angular natural frequency and ζs the damping ratio. The

corresponding controllers are respectively given by

CðjωÞ ¼ kUBpðωÞ; ð10aÞ

CðjωÞ ¼ cUBvðωÞ; ð10bÞ

CðjωÞ ¼mUBaðωÞ; ð10cÞ

where again BiðωÞ ¼ j2ζiωiωðω2
i �ω2þ j2ζiωiωÞ�1 in which i¼ p, v, and a. Those for direct feedback can be obtained by

setting BiðωÞ ¼ 1. Finally, Eqs. (9) and (10) are combined to form LðjωÞ.
With reference to the block diagram in Fig. 1(b), the control performance can be specified by the reduction ratio

SðjωÞ ¼ e=d in which e and d are respectively the frequency domain representations of eðtÞ and dðtÞ that have been already
defined in Section 2. This can be more conveniently written in decibel as

RRðdBÞ ¼ 20log10 SðjωÞ
�� ��; ð11Þ

where SðjωÞ ¼ ½1þLðjωÞ��1 is also the sensitivity function. According to the Nyquist robustness criterion, the control system
is then stable and robustwith a degree of lo if and only if its open loop FRF locus does not enclose or cross the circle of radius
lo centered at the instability point ð�1; 0Þ. Thus, the robustness constraint for a stable controller can be written as

RRðdBÞr20 log10l
�1
o ; for all frequenciesð Þ ð12Þ

where 0o loo1 and the limiting value on the right hand side is the maximum allowable control spillover
RRmax ¼ 20 log10l

�1
o . The task here is thus to find the controller in Eq. (10) that minimizes Eq. (11) within the control

bandwidth of interest, subject to Eq. (12).
Fig. 2. Open loop FRFs for direct position (dashed line), velocity (solid), and acceleration (dash-dotted) feedback applied to the same SDOF plant of
arbitrary coefficients. The arrows indicate the directions of increasing frequency.
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3.2. Robustness analysis

According to the passivity analysis in Section 2.3, the three direct feedback controllers are all PBCs. They are thus in
theory unconditionally stable such that, regardless of the control gains used, their open loop FRF loci will never cut through
the negative real axis of the complex plane, i.e., �1801o∠LðjωÞo1801 for all frequencies. However, not all of them are
robust in physical realizations. This is illustrated in Fig. 2 that shows the individual open loop FRFs for the three methods
[17]. It can be seen that direct velocity feedback is robust while the other two are not because their loci can be close to the
instability point ð�1; 0Þ for a large gain. If these non-robust methods are attempted in practice, they are liable to go
unstable. Typical causes to instability in a practical system are the time delay in the feedback loop, un-modeled dynamics,
and uncertainties particularly at very low and very high frequencies [1,8].
Fig. 3. Open loop FRF LðjωÞ in Nyquist plot and the corresponding reduction ratio function RRðdBÞ ¼ 20log10 SðjωÞ
�� �� against r ¼ω=ωi in logarithmic scale,

applied to the same SDOF system: Narrowband (a) position, (b) velocity and (c) acceleration feedback control. The data used are ζs ¼ 0:05; g¼ 20; lo ¼ 1=2;
b is from Eq. (15) with η¼ 30 in (a) and (c) while this is from the Ref. [8] in (b). The arrows on each locus show the direction of increasing frequency starting
from a single arrow. The reduction ratios are RRmin ¼ �20 log10ð1þgÞ and RRmax ¼ 20 log10l

�1
o .
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The passivity analysis has also shown that the narrowband velocity controller is a PBC while the other two are not. It is
interesting to examine if the other two can be nevertheless made to be “robust” (i.e., useful). To examine this, Fig. 3
illustrates the Nyquist plot of the open loop FRF and the corresponding reduction ratio function according to the control
method: narrowband (a) position, (b) velocity and (c) acceleration feedback. Note that r¼ω=ωi in the frequency axis so that
r¼ 1 occurs at the tuned frequency: ωp, ωv and ωa.

The Nyquist plots in Fig. 3 demonstrate that narrowband velocity feedback in (b) is unconditionally stable while the
other two are not. The shape of the reduction ratio function in (b) is well known [8,9]; there is a notch at the target
frequency with two spillover shoulders around it. The shapes are quite different in (a) and (c). It can be seen in (a) that the
notch occurs at ω¼ωp ahead of the peak at ω¼ωs. The trend is opposite in (c) where the peak occurs ahead of the notch.
Fig. 3(a, c) illustrates that it is possible to have a deep notch (i.e., a large reduction) while limiting the height of the peak (i.e.,
a small spillover). From the analysis with Figs. 2 and 3, it can be stated that a PBC does not guarantee robustness. A PBC can
be non-robust while a non-PBC can be robust.

It is also interesting to note that the two types of notches, in Fig. 3(a) and (c) and in Fig. 3(b), can be represented by
conventional notch filters [18] as detailed in the Appendix. This implies that each reduction in Fig. 3 achieved by a feedback
method can also be achieved by a feedforward method using a notch filter [19], and more importantly vice versa. Thus a
narrowband feedback method presented in this paper may instead be applied whenever a feedforward method using a
notch filter is inapplicable or ineffective in practice. In general, a feedback method performs more reliably against un-
modeled dynamics and uncertainty, and is simpler in structure as no measurement is required on the primary sources.
3.3. Controller design

The design rules for narrowband velocity feedback have been presented elsewhere [8,9]. Those for narrowband position
and acceleration feedback are described here using the plants given by Eqs. (9a) and (9c) and the controllers given by Eqs.
(10a) and (10c). Since the minimum reduction ratio occurs at the target frequency ðω¼ωiÞ as illustrated in Fig. 3(a) and (c),
applying Eq. (11) gives

RRmin ¼ �20 log10ð1þgÞ; ð13Þ

where the normalized controller gain is g¼ k=ks for position feedback or g ¼m=ms for acceleration feedback. Since the
control bandwidth xc is defined as the half-power bandwidth as illustrated in Fig. 3(a) and (c), applying SðjrÞ

�� ��¼ 1=
ffiffiffi
2

p
gives

[8]

xc ¼ gb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2g�1�g�2

q
; ð14Þ

where the controller bandwidth is b¼ bp or b¼ ba. This is also xc ¼ rc2�rc1 in which rc1;c2 ¼ ð1=2Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2c þ4

p
8xcÞ. Since the

maximum control spillover occurs at the plant natural frequency ðω¼ωsÞ, applying Eq. (12) gives the constraint for ðgbÞ
Fig. 4. Active vibration control of a moving-coil loudspeaker using an accelerometer.
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written as

gbr2ζs UηUð1� loÞ; ð15Þ
where η¼ωs=ωp or η¼ωa=ωs, and always η41 and 0o loo1.

Therefore, the task here is to minimize Eq. (13) while maximizing Eq. (14), subject to Eq. (15). It can be seen that “the
product of gain and bandwidth ðgbÞ” of the control filter plays an important role: its amount is pre-determined by Eq. (15)
and post-determines xc in Eq. (14). Eqs. (14) and (15) indicate that, under a given degree of robustness lo, the control
bandwidth xc related to ðgbÞ can be improved if the structure is more highly damped (i.e., a greater ζs) and if the target
frequency (ωp or ωa) is farther away from the plant natural frequency ωs (i.e., a greater η). The former suggests that
narrowband position and acceleration feedback are more effective in highly than lightly damped systems. The latter, which
Fig. 5. Measured (solid lines) and identified (dashed) plant responses in Bode (amplitude: [V/V], phase: [degrees]) and Nyquist plots: (a) Position,
(b) velocity, and (c) acceleration feedback.
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suggests that they are also more effective at very low and very high frequencies, should though be practiced in caution since
the model may become no longer reliable in these frequency regions because of un-modeled dynamics and uncertainty. Eqs.
(13) and (14) then indicate that the amount of reduction can be improved without trading the control bandwidth, by way of
increasing g and at the same time decreasing b to keep their product ðgbÞ unchanged. It is thus in principle even possible to
completely nullify the vibration at the target frequency.
4. Experiments

4.1. Experimental setup

A moving-coil loudspeaker was used to represent the SDOF system shown in Fig. 1. It is a Peerless HDS 6.50 0 loudspeaker
with an aluminum cone, fixed into a cabinet with the exterior dimensions of 300 mm�300 mm�300 mm. It has a moving
mass of 20 g, a suspension compliance of 804.8 μm/N, a mechanical Q factor of 3.3, an effective cone diameter of 13.1 cm,
and DC resistance of 6.2Ω. The experimental setup is shown in Fig. 4 together with a schematic diagram of the control loop.
An accelerometer (PCB 352C22, 0.5 g) was attached to the center of the loudspeaker cone. It was then connected to a signal
conditioner (PCB 480B10) with built-in integration circuits, enabling to selectively give the acceleration, velocity or position
signal. A power amplifier (Crowns XLi 2500) was used to drive the loudspeaker via a resistor of 100Ω (10 W) in series. The
resistor was inserted so that the amplifier would behave as a current amplifier and consequently the loudspeaker system
would behave more similar to an ideal SDOF system. Each of the narrowband feedback controllers in Eq. (10) was indivi-
dually implemented in a DSP prototyping machine (dSPACE 1103) running at a sampling frequency of 32 kHz. The impulse
invariant method was then used to obtain the discrete form for each controller [11]. Impact tests were finally conducted
with a hammer (PCB 086C04) to measure the dynamic responses of the loudspeaker before and after control (i.e., dis-
connecting and connecting the loop) so as to assess the control performance.

The plant in Fig. 4 is the path between the input (denoted by x) to the power amplifier and the output (denoted by y)
from the signal conditioner while the loop is disconnected. The signal conditioner was operated in three different settings:
bypass, single- and double-integration to give the acceleration, velocity and position signal, respectively. Thus, there were
Table 1
Parameters of the plants and the narrowband feedback controllers.

Feedback Parameters

Natural freq. ωs=ð2πÞ Damping ratio ζs Gain k, c or m Bandwidth bi Tuned freq. ωi=ð2πÞ Min. reduction ratio

Position 61 0.19 110 0.02 24 Hz �25 dB
Velocity 61 0.19 12 1 61 Hz �21 dB
Acceleration 61 0.19 600 0.02 150 Hz �27 dB

Fig. 6. Open loop FRFs for the narrowband position (dashed line), velocity (solid), and acceleration (dash-doted) feedback. The circle (dotted) of radius
lo ¼ 0:5 indicates the robustness boundary limit giving a maximum control spillover of 6 dB.
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three different plants. The input and output signals were simultaneously monitored by a frequency analyzer (not shown) to
produce the FRF of each plant. The measured (solid lines) FRFs of the three plants are shown in Fig. 5, where the Bode and
Nyquist plots are shown for each plant. They were individually measured so that each FRF could contain any non-ideal
artifacts of each operational setting within the practical signal conditioner. Also shown for comparison are the simulated
FRFs (dashed) from the ideal SDOF models in Eq. (9). The natural frequency was 61 Hz and the damping ratio was 0.19, as
Fig. 7. Impact test results before (dash-dot lines) and after (solid) control for narrowband (a) position, (b) velocity, and (c) acceleration feedback.
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given in Table 1. The symbols ‘ο’ are additionally indicated in the range ∠GðjωÞ
�� ��r151 to emphasize the region around the

in-phase frequency, where the degree of 15° was arbitrarily chosen. The measured and simulated responses agree well in
general, except those at very low frequencies below about 20 Hz due largely to a high pass filter built-in to the power
amplifier used.

4.2. Design and tests

In practice, it is often more convenient and accurate to design the controller based on measured data rather than a model such
as that given by Eq. (9). A data-based graphical loop shaping technique was thus used to design each controller based on the
measured plant response (solid lines) shown in Fig. 5. There are three parameters to determine of each control filter and the
procedure is as follows: (i) choose the target frequencyωi from those around the in-phase frequency according to Eq. (6), (ii) tune
the gain (m, c or k) and the bandwidth bi to maximize the performance in Eq. (11) subject to the robustness in Eq. (12). Either of
the gain and the bandwidth can be chosen first and the other is then tuned. They then switch the order and redo the process. This
is performed in a graphical way by repeatedly plotting the open loop FRF locus in the complex plane until a desirable shape is
obtained. Knowledge of the model-based design rules given by Eqs. (13)–(15) can expedite the process. Fig. 6 shows the final
desirable open loop FRFs designed for narrowband position, velocity and acceleration feedback control. It can be seen that each
design allows a maximum control spillover of 6 dB (the dotted circle). The parameters of each control filter determined are also
tabulated in Table 1.

The discrete form of each control filter was then implemented as shown in Fig. 4. Impact tests were finally conducted on
the diaphragm of the loudspeaker before and after control. The hammer impact signal (denoted by u in Fig. 4) and the signal
conditioner output signal (denoted by y) were simultaneously monitored by a frequency analyzer (not shown) to produce
the FRF of each case. The impact test results obtained from the uncontrolled (dash–dot) and controlled (solid) systems are
compared in Fig. 7. Note that each uncontrolled and the corresponding controlled response respectively correspond to the
disturbance signal dðtÞ and the error signal eðtÞ in Fig. 1, with the hammer impact signal being f ðtÞ. It is demonstrated in
Fig. 7(a) and (c) that narrowband position and acceleration feedback are effective for controlling non-resonant vibration in
the low and high frequency regions, respectively. The spillover at the natural frequency in each case is also evident. Fig. 7
(b) also demonstrates the effectiveness of narrowband velocity feedback for resonant vibration control. The maximum
reductions achieved are tabulated in Table 1. It should be finally emphasized that the three effective narrowband control
systems constructed are all robust with the maximum control spillover of 6 dB as can be seen in Figs. 6 and 7.
5. Conclusions

A narrowband feedback methodology has been presented for narrowband vibration control of a SDOF system. More
specifically, narrowband position, velocity and acceleration feedback methods have been applied for narrowband stiffness,
damping and inertia control in the low, resonant, and high frequency regions, respectively. Since narrowband damping
control is well known, this paper has investigated the other two. It has been analytically shown that narrowband stiffness
and inertia control are more effective in highly than lightly damped systems. It has been further shown that it is even
possible in principle to completely nullify the vibration at the target frequency. Experimental work has also been presented
to demonstrate that narrowband feedback is effective as well as robust for narrowband control of resonant and non-
resonant vibration. Each control performance obtained is similar to that by a feedforward method using a notch filter, but is
in fact by a feedback method using a second order filter.
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Appendix A. Two notch filters

In relation to Fig. 3, the two notch filters of interest are

S2ðsÞ ¼ ½1þgðαωssÞðs2þαωssþω2
s Þ�1��1; ðA1Þ

S4ðsÞ ¼ ½1þgαβωsωvs2ðs2þαωssþω2
s Þ�1ðs2þβωvsþω2

v Þ�1��1; ðA2Þ
where the coefficients are all positive, s¼ jω is Laplace operator, and the subscripts 2 and 4 indicate the orders. S2ðsÞ in bi-
quadratic form represents the notches in Fig. 3(a) and (c) while S4ðsÞ represents the notch with two shoulders in (b). It is
important to note that these notch filters can be constructed by feedback methods [8]. In fact, S2ðsÞ is the sensitivity function
SðsÞ ¼ ð1þPðsÞCðsÞÞ�1 of the feedback control system shown in Fig. 1 when a direct velocity feedback controller CðsÞ ¼ c is
applied to a SDOF plant PðsÞ ¼ ð1=csÞαωssðs2þαωssþω2

s Þ (the natural frequency ωs, the gain 1=cs, and the bandwidth α) so
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that g¼ c=cs. Likewise, S4ðsÞ is the sensitivity function when a narrowband velocity feedback controller
CðsÞ ¼ cβωvsðs2þβωvsþω2

v Þ (the center frequency ωv, the gain c, and the bandwidth β) is applied to the same plant. Each of
the notch filters can be characterized in terms of the center frequency, the depth and the stop bandwidth. They respectively
correspond to the tuned frequency, the minimum reduction ratio and the control bandwidth in feedback control terms, as
described in the main text of this paper.
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