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Abstract The possibility of isolating bovine mesenchymal
multipotent stromal cells (MSCs) from fetal adnexa is an in-
teresting prospect due to the potential use of these cells in
biotechnological applications. However, little is known about
the properties of these progenitor cells in bovine species.
Wharton’s jelly (WJ) MSC cells were obtained from the um-
bilical cord of bovine fetuses at three different stages of preg-
nancy and divided into groups 1, 2 and 3 according to gesta-
tional trimester. Cell morphology, from the three stages of
pregnancy, typically appeared fibroblast-like spindle-shaped,
presenting the same viability and number. Moreover, the pro-
liferative ability of T-cells in response to a mitogenic stimulus
was suppressed when WIMSC cells were added to the culture.
Multilineage properties were confirmed by their ability to
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undergo adipogenic, osteogenic/chondrogenic and neurogenic
differentiation. Mesenchymal phenotyping, CD105+, CD29+,
CD73+ and CD90+ cell markers were detected in all three
cell groups, yet these markers were considered more
expressed in MSCs of group 2 (p < 0.005). Expression of cy-
tokines /L2, IL6RR, INFAC, INFBI, IFNG, TNF and LTBR
were downregulated, whereas /L1F10 expression was upreg-
ulated in all tested WIMSCs. The present study demonstrated
that WIMSCs harvested from the bovine umbilical cord at
different gestational stages showed proliferative capacity,
immune privilege and stemness potential.

Keywords Stem cells - Umbilical cord -
Immunomodulation - Bovine

Introduction

Wharton’s jelly (WJ) is the primitive mucous, connective tis-
sue of the umbilical cord, lying between the amniotic epithe-
lium and umbilical vessels (Troyer and Weiss 2008;
Taghizadeh et al. 2011). First described by Thomas Wharton
in 1656, this structure is composed mainly of proteoglycans
and collagen (Cremonesi et al. 2011; Corrao et al. 2013). In
2006, in order to pursue standardization, the Mesenchymal
and Tissue Stem Cell Committee (ISCT) proposed that: mes-
enchymal cells must be designed as multipotent mesenchymal
stromal cells (MSC); be adherent to plastic culture ware; show
specific surface antigen expression; and multipotent differen-
tiation potential (Dominici et al. 2008; Calloni et al. 2014;
Iacono and Merlo 2015).

The MSC population in WJ of the umbilical cord (UC)
present properties that make it of interest (Pham et al. 2016).
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For example, these cells are easy to harvest by non-invasive
procedures, provide large number of cells without risk to the
donor and can be expanded, genetically manipulated and dif-
ferentiated in vitro (Troyer and Weiss 2008; Cremonesi et al.
2011; Corrao et al. 2013; Calloni et al. 2014). The immuno-
genicity of WIMSC has been proposed but is still not clear at
present, although immunossupressive effects of bone marrow
MSC have been extensively studied and tested in several an-
imal species (Weiss et al. 2008; De Miguel et al. 2012;
Mukonoweshuro et al. 2014). Several studies have described
WIMSC properties harvested from pregnant women at birth
(Prasanna et al. 2010). Nonetheless, WIMSC from bovines
(Cardoso et al. 2012) and from buffaloes have been reported
only recently (Singh et al. 2013). However, bovine MSCs
derived from umbilical cord blood (UCBMSCs), amniotic
fluid (AFMSCs) and bone marrow (BMMSCs) have been
described (Lu et al. 2011; Raoufi et al. 2011; Corradetti et al.
2013; Cortes et al. 2013). Despite the importance of bovine
species as a model for in vitro studies because bovine preg-
nancy lasts 280 days, as in human beings, there is a lack of
information about WIMSCs isolated during cow pregnancy.
In contrast to MSCs from different sources, the characteriza-
tion of bovine MSCs is far from being completely understood,
and contradictory information emerges from the literature.

The aim of this study was to isolate and propagate bovine
WIMCS cells collected from umbilical cords at three trimes-
ters of pregnancy. Additionally, comparisons were made re-
garding cell viability, T-cell inhibition, telomerase activity, cell
proliferation, phenotype, multipotency and immunomodulato-
ry gene expression. This study highlights a possible potential
source of multipotent MSCs and may support their therapeutic
and biotechnological use in large animals.

Materials and methods

Isolation of WJMSC from bovine umbilical cord
at different stages of pregnancy

Bovine UC were harvested at a slaughterhouse from pregnant
Nelore cows (n = 18). The bovine pregnancy was divided into
three trimesters, as done in humans and gestational periods
were estimated by measuring the crown rump length of the
fetuses. The first trimester corresponded from 0 to 93 days
(n=6 UC; groupl ; Fig. 1a), the second trimester from 94 to
187 days of pregnancy (n=6 UC; group 2; Fig. 1b) and a
further 6 umbilical cords were from the third trimester, with
the 188-term of pregnancy corresponding to group 3 (Fig. 1c¢).
UCs were collected according to the Animal Care Committee
at the University of Sdo Paulo State, Brazil and were con-
served at room temperature in sterile phosphate-buffered
saline (PBS) supplemented with a penicillin/streptomycin
solution containing penicillin 100 pg/ml, streptomycin
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10 pg/ml and amphotericin B 250 pg/ml (Sigma-Aldrich,
St Louis, MO, USA) until use (within 3 h). Bovine umbil-
ical segments were sectioned longitudinally to expose the
W1 after 3 h. Some incisions were made on the matrix and
UC fragments were transferred to 25-cm?” tissue culture
flasks (TPP®, Zollstr, SW, Brazil). The initial culture and
cell expansion were performed as described previously
(Cardoso et al. 2012). Images were taken to observe cell
morphology for each group at passage 6 (P6) (Fig. 1d-f),
harvested and expanded until they reached subconfluence
and then analyzed for their capacity for colony-forming,
viability, T-cell proliferation, telomerase activity, phenotype
and differentiation as well as for immunomodulatory
transcripts.

Cell viability, T-cell proliferation, telomerase activity
and cell expansion

Assays for cell viability, T-cell proliferation and telomerase
activity were performed according to a previous study
(Cardoso et al. 2012). Briefly, cell viability analysis was per-
formed using the In Vitro Toxicology Assay® Kit, MTT-based
assay (TOXI-1 Kit; Sigma-Aldrich) following the manufac-
turer’s instructions. In order to evaluate T-cell proliferation,
culture and stimulation were performed according to a previ-
ous study (Cardoso et al. 2012). Lymphoproliferation was
evaluated as counts per minute by a Matrix9600 beta counter
(Packard Instrument, Meridien, CT, USA). The ConA was
used at 5 pg/ml and PMA and ionomycin at concentrations
of 50 ng/ml and 1 pg/ml, respectively (Sigma-Aldrich). A
TRAPeze® Telomerase Detection Kit (Millipore, CA, USA)
was used to assess the telomerase activity in all groups
(Cardoso et al. 2012). The samples were considered positive
when the optical density (OD) was >0.2 and negative when
OD was <0.2. All reported values are means of triplicate
samples.

Doubling time for passages 1-10 was performed following
the procedure described previously (Corradetti et al. 2013).
Data representative of three independent experiments were
recorded.

In vitro multilineage differentiation assay

The differentiation potential of bovine-derived WIMSC cells
was examined using cells at passage number 6 (P6) in all cell
groups according to a previous study (Cardoso et al. 2012;
Silva et al. 2016). For all procedures 2 x 10° cells/ml were
submitted to osteogenic, chondrogenic, adipogenic and neu-
rogenic differentiation according to the manufacturer’s in-
structions (STEMPRO® differentiation medium; Invitrogen).
The neurogenic differentiation was adapted from previous
studies (Oda et al. 2013). For osteogenic/chondrogenic differ-
entiation, 2 ml of STEMPRO® osteogenic/chondrogenic
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Fig. 1 Bovine umbilical cords
analyzed in this study. a 0-93 days
corresponding to group 1; b 94—
187 days corresponding to group 2;
¢ 188-term of pregnancy
corresponding to group 3, bar

500 um. d Ex vivo cultured cell
obtained from Wharton’s jelly zone
corresponded to group 1, e group 2
and f group 3. After P6, spindle-
shaped fibroblast-like appearance
can be observed under phase
contrast microscopy. Bar 40 um

differentiation medium was added to undifferentiated cultures
comprising osteogenic and chondrogenic commercial in-
ducers (STEMPRO®). After 15 days of differentiation, cells
were fixed with 4 % paraformaldehyde (Sigma-Aldrich). For
osteogenic differentiation, Alizarin Red staining (Sigma-
Aldrich) was performed (Yang et al. 2015); and for
chondrogenic differentiation 0.5 % toluidine blue solution
was added (Cardoso et al. 2012).

The adipogenic differentiation followed the described pro-
tocol (Cardoso et al. 2012; Silva et al. 2016). In order to verify
adipocytes, Oil Red staining was performed (Cardoso et al.
2012). The differentiation of bovine-derived WIMSC cells
into neural-like cells followed the procedure described previ-
ously, with some modifications (Cardoso et al. 2012; Oda

et al. 2013; Silva et al. 2016). The neuronal differentiation
was confirmed by immunofluorescence for GFAP and nestin
cell markers, as described previously (Cardoso et al. 2012).
From each experiment, samples from cell differentiation and
undifferentiated cells were harvested for multilineage gene
transcription among the three studied groups as described
below.

Flow cytometry

Briefly, 2 x 10° cells at P6 were harvested, washed in PBS and
incubated for 18 h at 4 °C with monoclonal antibodies: CD34
(hematopoietic precursor cells and MSCs); CD45 (anti-bone
marrow lymphoid cells); CD90 (anti-THy1 antigen); CD105
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Table 1  Specifications of (Bos taurus) cattle gene name, description and location searched by microarray

Gene symbol/ID Description Location

Positive markers of MSCs
ENG 615.844 Endoglin (CD105) Chromosome 11, AC_000.168.1
ITGBI 281.876 Integrin, beta 1 (CD29) Chromosome 13 AC_000.170.1
NTSE 281.363 S'nucleosidase ecto (CD73) Chromosome 9, AC_000.166.1
THYI 614.712 Thy-1 cells surface antigen (CD90) Chromosome 15, AC_ 000.171.1
CD34 281.051 Hematopoietic progenitor cell antigen (CD34) Chromosome 16, AC_000.954.1
PTPRC 407.152 Protein tyrosine phosphatase, receptor type C (CD45) Chromosome 16, AC_000.173.1
JSP.1 407.173 Major histocompatibility complex class I (MHCI) Chromosome 23, AC_ 000.180.1
DSB 618.722 Major histocompatibility complex class II, antigen DS Chromosome 23, AC_000.180.1

Immune-related genes

beta (MHC II)

Chromosome 8, AC_000.165.1
Chromosome 8, AC_000.165.1
Chromosome 5, AC_000.162.1
Chromosome 17, AC_000.174.1
Chromosome 5, AC_000.162.1
Chromosome 11, AC_000.168.1
Chromosome 23, AC_000.180.1
Chromosome 5, AC_000.162.1

IFNAC 281.236 Interferon alpha C (INF-alpha C)

INFBI 281.845 Interferon, beta 1, fibroblast

IFNG 281.237 Interferon, gamma

1L2 280.822 Interleukin 2

IL6R 507.359 Interleukin 6 receptor

ILIF10 615.702 Interleukin 1, family member 10

TNF 280.943 Tumor necrosis factor (TNF alpha)

LTBR 280.845 Lymphotoxin beta receptor (TNF superfamily member 3)
Positive markers of MSCs multipotency

LEP 280.836 Leptin

FABP4 281.759 Fatty acid binding protein 4, adipocyte

PPARD 353.106 Perixome proliferator-activated receptor delta

COLIAI 282.187 Collagen type 1, alpha 1

SOX9 353.115 SRY (sex determining region Y)-box 10

GFAP 281.189 Glial fibrillary acidic protein

NES 522.383 Nestin

OMD 280.885 Osteomodulin

POST 281.960 Osteoblast specific factor

OSTF1 281.961 Osteoclast stimulating factor 1

Chromosome 4, AC_000.161.1
Chromosome 14, AC 000.171.1
Chromosme 23, AC_ 000.180.1
Chromosome 19, AC 000.176.1
Chromosome 5, AC_000.162.1
Chromosome 19,AC 000.176.1
Chromosome 3, AC_000.160.1
Chromosome 8, AC_000.0149.1
Chromosome 12, AC 000.034.1
Chromosome 8, AC_000.0610.1

(anti-endoglin); CD29 (anti-integrin (31) all diluted at 1:50;
CD73 (anti-nucleotidase) diluted at 1:25 (Sigma-Aldrich).
Next, cells were washed three times with PBS plus 0.1 %
Triton X-100 and 1:50 dilution of the secondary antibody,
represented by goat anti-mouse labeled to FITC (Sigma-
Aldrich), was added to 100 pl of cell suspension and incubat-
ed at 37 °C for 30 min. The cell suspension was washed as
previously described and after the final wash, cells were fixed
with 4 % paraformaldehyde. Data were captured with the
Attune™ acoustic focusing cytometer system (Applied
Biosystems, Foster City, CA, USA). The equipmental settings
were defined as an initial threshold: 2.500 events/s, BL1A
filter (488 nm emission) 300 voltage, SSC (scatter complexi-
ty) 250 V and FSC (forward scatter) 220 V. After the first
acquisition, a dot plot graph was obtained and a global com-
pensation was performed to exclude unspecific signals and
cell debris (>10° cells were excluded). Only one fluorophore
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was used in this analysis, so these parameters could be applied
in all analyses. The data were expressed in histograms.

Microarray analysis

Total RNA was isolated from all groups, corresponding to
WIMSCs (5 x 10° cells) in triplicate after trypsinization, ac-
cording to the Qiagen RNeasy System™ (Qiagen, Hilden,
Germany) manufacturer’s guide. The total RNA was treated

Fig. 2 Cell viability, inhibition of T-cell proliferation and telomerase P>
activity. a Viability of WIMSC cells measured by MTT based assay at
2, 6 and 10P. Data are expressed as mean + standard deviation (SD) of
values obtained from four different experiments. b Ability of bovine
WIMSC:s cells to inhibit T-cell proliferation in response to mitogens at
6P, P <0.005 obtained from four different experiments. ¢ Telomerase
repeat amplification results obtained from four different experiments.
Bars represent all groups at 2P, 6P and 10P
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with DNAse and reverse transcribed into cDNA using a re-
verse transcriptase (Superscript III; Life Technologies,
Carlsbad, CA, USA). The Axiom® Genome-Wide BOS 1
Array was used for transcriptome analysis (Affymetrix,
Santa Clara, CA, USA). This commercial array was designed
to maximize genetic coverage of commercially important cat-
tle breeds, including Bos taurus, Bos indicus and dairy and
beef cattle breeds. The array covers more than 640,000 vali-
dated transcript markers representing the genetic diversity of
approximately 3 million from the Affymetrix Bovine
Genomic Database. After hybridization, the gene chips were
washed and stained with SA-PE and read using an Affymetrix
Gene Chip fluidic station and scanner. Analyzed genes, cor-
responding to positive markers of MSCs, immune-related
genes and MSCs multipotency, are detailed in Table 1. The
average expression was calculated and log,-transformed for
each gene by Affymetrix Microarray Suite 5.0.

Statistical analysis

All statistical analyses were performed using the SAS 9.1.2
software package (SAS Institute). Data are presented as mean
+ SD. Three replicates for each experiment were performed
and the results represent these replicates. We executed one-
way analysis of variance (ANOVA) for multiple comparisons
or two-tailed Student’s ¢ test, whenever applicable by
GraphPad Prism 6.05. A level of P <0.005 was accepted as
significant.

Results
Isolation and characterization of WJMSCs

WIMSCs were cultured individually only during the first pas-
sage. After P1, all WIMSCs from each group were transferred
to a unique culture flask and proceeded as lineages. The for-
mation of fibroblast-like cells was observed around the second
day and in vitro cell expansion was performed until 10 con-
secutive passages for all groups (Fig. 1d—f).

The culture conditions were able to promote good cell vi-
ability, >80 % after 10 P for all groups; induced inhibition of
T-cell proliferation; telomerase activity at satisfactory levels
(Fig. 2a—c, respectively). The percentage of living cells was
maintained approximately constant when the passage number
remained at a constant level of 10 (Fig. 2a). The addition of
WIMSC cells to blood monocytes stimulated with ConA or
PMA/ionomycin inhibited their proliferation less than 20 % in
comparison to no addition of WIMSC cells, whereas 80 % of
proliferation for all groups was observed (P < 0.005). In addi-
tion, the activity of telomerase was verified and in all groups
after 6P the same activity could be observed (Fig. 2c). The
doubling time was measured, calculated and drawn as a graph,
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where a consistent increasing rate of growth at P6 was ob-
served for each group, respectively (Figs. 3a—c and 4).

Multilineage differentiation and phenotypic
characterization

Pluripotency was confirmed by the ability of WIMSCs cells to
differentiate into osteocytes, adipocytes, chondrocytes and
neuron-like cells. Undifferentiated cells were included in all
analyses (Fig. 3a, e, i, corresponding to groups 1, 2 and 3,
respectively). Osteogenic differentiation was detected by the
matrix calcification shown by Alizarin Red staining (Fig. 3b,
f, j, corresponding to groups 1, 2 and 3, respectively). After
induction, adipogenic differentiation with a high number of
very small lipid vacuoles that stained positively using Oil Red
solution was visualized in groups 1, 2 and 3 (Fig. 3¢, g, |,
respectively). Chondrogenic differentiation was confirmed
by blue deposits representing glycosaminoglycans (Fig. 3d,
h, m, corresponding to groups 1, 2 and 3, respectively). The
neurogenic induction was confirmed by positive staining for
GFAP and nestin neuro markers in group 1 (Fig. 5b, c), group
2 (Fig. Se, f) and group 3 (Fig. 5h, i). Undifferentiated cells
were also included in groups 1, 2 and 3 as control (Fig. 5a,
d, g, respectively).

The phenotype of WIMSCs obtained from three groups was
characterized using flow cytometry (FC) analysis (Figs. 6, 7
and 8 corresponding to groups 1, 2 and 3, respectively). All
WIMSCs revealed negative results for CD45 and CD34 sur-
face markers at FC analysis in groups 1, 2 and 3 (Figs. 6a, b,
7a, b and 8a, b, respectively). However, positive results for
CD105, CD29, CD73 and CD90 surface markers were record-
ed at the same rate of 10* cells for all groups (Figs. 6, 7, 8). In
group 1 (Fig. 6¢), CD105-positive cells were considered at a
lower rate (45 %) when compared to group 2 (81 %; Fig. 7c).
However, in groups 2 and 3 (Figs. 7e, f, and 8e, f, respectively),
CD73 (92 % and 78 %; P < 0.005) and CD90 (96 % and 79 %)
were more highly expressed, respectively (P < 0.005). In com-
parison, group 2 revealed superior expression of positive
markers of MSCs in this study (Fig. 7a—f).

Gene expression profile

Genes described as being involved in MSCs characterization
revealed consistent results with flow cytometric analysis.
High transcription levels for MSCs markers THY/ (CD90),
NTSE (CD73), ITGBI (CD29), ENG (CD105) and low levels
for CD34 and PTPRC (CD45) were found among WIMSCs

Fig. 3 Doubling time over 10 passages during cell culture from group 1 P>
(a), 2 (b) and 3 (c). X-axis is represented by number of cell passage and Y-
axis by days of culture. Data are expressed as mean + standard deviation
(SD of values obtained from four different experiments). *P < 0.05
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Fig. 4 Photomicrographs representative of the morphological Red staining (group 4 ¢, group 4 g and group 4 1; arrows) and
appearance. For each differentiation protocol, undifferentiated cells chondrogenic differentiation after Toluidine blue staining (group 4 d,
were kept as controls for group 1 (a), 2 (e) and 3 (i). Osteogenic group 4 h and group 4 m; arrows) and differentiation of bovine-derived

differentiation was confirmed after Alizarin Red staining (group 4 b, WIMSC:s cells at P6
group 4 f and group 4 j; arrows), adipogenic differentiation after Oil

Fig. 5 Photomicrographs representative of the morphological group 3 h) and Nestin (group 1 ¢; group 2 f and group 3 i) cell markers
appearance of neuro-like cells after neurogenic induction visible under (scale bar 20 pm). Undifferentiated cells were kept as controls for groups
immunofluorescence microscopy positive GFAP (group 1 b; group 2 e; 1 (a), 2 (d) and 3 (g)
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(Fig. 9a—c). When stimulated to differentiate towards  Discussion

adipogenic, chondrogenic and neurogenic lineages, WIMSCs
showed substantial transcriptional expression of LEP, FABP4,
PPARD, COLIAI, SOX9, GFAP and NES for all WIMSCs
(Fig. 9a—). The WIMSCs potential to undergo chondrogene-
sis showed a higher pattern of COLIAI gene expression at
group 2 in comparison to groups 1 and 3 (Fig. 9b). From the
factors measured in this study, /L2, IL6R, INFAC, INFBI,
INFG, TNF and LTB, considered pro-inflammatory cytokines,
were genetically downregulated in all WIMSCs tested
(Fig. 9ac; P < 0.005). However, IL1F10 was noticeably upreg-
ulated, in microarray analysis (Fig. 9a). The lack of JSP./ and
DSB (MHCI and II) expression could be observed in this study
amongst WIMSCs from all groups (Fig. 9a-—).

Extra gestational tissues have been widely suggested as
ideal sources of mesenchymal cells due to their non-
invasive harvest and most of the time being discarded
biological material (Troyer and Weiss 2008; Iacono and
Merlo 2015). Currently, limited reports are available re-
garding the isolation and characterization of Wharton’s
jelly-derived MSCs in farm animal species (Carlin et al.
2006; Corradetti et al. 2008; Cardoso et al. 2012; Singh
et al. 2013). WIMSCs demonstrated, at all gestational
periods, satisfactory telomerase activity, viability and
MSCs surface markers according to previous studies
(Cardoso et al. 2012). In spite of the fact that non-
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bovine monoclonal antibodies were used here, several
reports have described cross-reaction between animals
and human MSCs epitopes (Godoy et al. 2014).
Moreover, THYI (CD90), NT5E (CD73), ITGBI
(CD29) and ENG (CD105) transcripts were confirmed
by flow cytometric analysis, confirming the stem cell
potential of WIMSCs in this study.

Studies on the isolation and characterization of MSCs
from fetal adnexa in humans are advancing rapidly (Troyer
and Weiss 2008; Weiss et al. 2008; Corrao et al. 2013;
Gottipamula et al. 2013). Some authors have reported that
MSC:s isolated from human umbilical cord matrix, precisely
from Wharton’s jelly, could be used for therapy of some
diseases such as amyotrophic lateral sclerosis and
Parkinson’s disease, even in cancer treatment (Troyer and
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Weiss 2008; Corrao et al. 2013). However, studies in animal
models are still in their infancy. MSCs have been isolated
from umbilical cord matrix of cattle, pigs, goats, horses and
dogs (Uranio et al. 2011; Cremonesi et al. 2008; Cardoso
et al. 2012). The bovine model could have a critical role in
studying fetal adnexa MSC sources, mainly through the sim-
ilarity to human gestational time. Our study aimed specifi-
cally to isolate, expand in vitro, and characterize WIMSCs
harvested at different gestational stages. Previous studies
have reported the isolation of WIMSCs from bovine umbil-
ical cord at birth, successfully growing them in culture with-
out fetal calf serum showing pluripotency capacity (Cardoso
et al. 2012; Silva et al. 2016). Moreover, a recent study
demonstrated that bovine MSCs isolated from amniotic fluid
and adipose tissue could be an alternative for nuclear
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transfer (Silva et al. 2016). In both studies, the size of bo-
vine MSC-derived WJ cells was found to be smaller when
compared to human studies (Taghizadeh et al. 2011;
Gottipamula et al. 2013; Pham et al. 2016) and ruminant
MSCs were derived from different fetal adnexa sources
(Cardoso et al. 2012; Corradetti et al. 2013; Cortes et al.
2013; Raoufi et al. 2011; Somal et al. 2016). This finding
must be investigated in future studies.

The in vitro differentiation results support the findings al-
ready reported for bovine MSC (Lu et al. 2011; Raoufi et al.
2011; Corradetti et al. 2013; Cortes et al. 2013). All WIMSCs
show high plasticity, being able to differentiate into multiple
germ layers, mesoderm and ectoderm. This is in agreement

with all studies regarding bovine MSC and other species
(Cremonesi et al. 2008; Uranio et al. 2011; Oda et al. 2013).
WIMSCs, when stimulated to differentiate toward adipogenic
lineage, expressed high levels of the LEP gene that is regarded
as an intermediate and late marker of adipocyte differentiation,
which may lead to a distinct differentiation characteristic of
stem cells in all gestational periods. The WIMSCs potential to
undergo osteogenesis/chondrogenesis showed a higher pat-
tern of expression of OMD, POST, OSTFI and COLIAI in
all groups. As demonstrated previously, WIMSCs have a
proven ability to undergo astrocyte differentiation, confirmed
by GFAP expression already demonstrated for other species
(Oda et al. 2013). Taking these results together, it seems that

@ Springer
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Positive markers of MSCs multipotency

all gestational periods have provided WIMSCs with stemness
attributed to MSCs according to the International Society for
Cellular Therapy (Dominici et al. 2008).

Since MSCs are trapped within the Wharton’s jelly
between days 4 and 12 of embryonic development and
reside there for the whole gestation, they can be harvest-
ed after the birth of the newborn and during pregnancy

@ Springer

(Taghizadeh et al. 2011). Therefore, WIMSCs that
formed during the earliest ontogenic period result in a
significant expansion potential compared to bone marrow
mesenchymal cells (Troyer and Weiss 2008).

There is considerable controversy in the literature re-
garding the immunogenicity of human MSCs (Weiss
et al. 2008; De Miguel et al. 2012; Mukonoweshuro
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et al. 2014) and a lack of information about bovine
MSCs. However, porcine umbilical cord-derived stem
cells did not induce a considerable immune response
in vivo but stimulation with interferon gamma or injec-
tion in an inflamed region resulted in immunogenicity
(Poncelet et al. 2007). Inflammatory situations prevail
during any injury and MSCs could be exposed to such
stimuli in many clinical conditions. Not only neighboring
cells but also environmental factors like systemic or local
inflammation can influence the immune behavior of
MSCs (Poncelet et al. 2007). In fact, recent reports indi-
cate the role of inflammatory cytokines in affecting func-
tions of mouse MSCs (Mukonoweshuro et al. 2014).

From the factors measured in this study, /L2, IL6R,
INFAC, INFBI, INFG, TNF and LTBR, considered pro-
inflammatory cytokines, were genetically downregulated
in all the bMSCs tested. IL10 cytokyne is produced by
both myeloid and lymphoid cells. However, it is a good
immune suppressor, although some stimulatory effects
have been described. Therefore, IL10 cytokine is recog-
nized by its effect on T-cells, macrophages and monocytes
in suppressing inflammation processes (Prasanna et al.
2010; Mukonoweshuro et al. 2014). However, when
ILIF10 is expressed it will downregulate JSP./ (MHC 1)
as revealed in WIMSCs cultures. These findings are in
accordance with what has been described in human
MSCs (Weiss et al. 2008). The results described previous-
ly revealed that MSC possess immunosuppressive proper-
ties; however, they might not be immunoprivileged (De
Miguel et al. 2012). The lack of DSB and low JSP.I ex-
pression observed in this study is thought to be, in part,
responsible for their WIMSC immunoprivileged status,
which would mean allogeneic bovine MSC could be used
without the risk of immune rejection, a scenario that is
attractive for tissue comparative studies.

These findings demonstrated the complexity of studying
the immunological properties of WIMSCs in vitro, as well
as the difficulty of distinguishing between optimal gestational
stages in order to collect Wharton’s jelly cells with optimal
stemness properties. Finally, WIMSCs collected from bovine
umbilical cord at all gestational periods showed similar
stemness properties.
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