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Abstract In this paper, a sigma-point Kalman filter formulation for attitude estimation is
derived using the modified Rodrigues parameters and real data of attitude sensors. The
unscented Kalman filter algorithm is used for attitude estimation and the gyro-based model
is considered for attitude propagation. In this study, the attitude of satellite is estimated using
real data supplied by gyros, Earth sensors and Sun sensors that are on board of the CBERS-2
(China Brazil Earth Resources Satellite). The results show that even with a sparse set of
measures, the UKF with MRP shows results similar to those obtained when directly uses the
Euler angles.
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1 Introduction

In problems that involve spacecraft attitude estimation, the quaternion has shown wide appli-
cations because it is free from singularity with a bilinear kinematic equation. However, the
redundant property of the quaternion renders the singularity of the covariance matrix and
requires to normalize the estimated quaternion. The usual approach to satisfying the con-
straint is to estimate an error quaternion at each measurement update and then form the true
quaternion estimate from the composition of the estimated error quaternionwith the predicted
quaternion based on the state transition matrix. We assume that small errors allow for the first
three components of the quaternion to be estimated independently of the fourth component,
which essentially amounts to a linearization using small angle assumptions. This technique
is characterized by way of three-dimensional parameterization. Concerning these parame-
terizations, the modified Rodrigues parameters (MRP) have drawn ever-increasing attention
because of their simplicity and high efficiency. The UKF is a more robust estimation method
and in several studies proved to be more efficient when compared with the extended Kalman
filter. In this paper, we analyze the UKF behavior when MRP are used to parameterize the
attitude. In addition, the results will be evaluated when the estimated data are subjected to
real data which are not aware of the nature of the errors that are present in the measurements.
The attitude estimated by the UKFwithMRPwill be compared with results obtained directly
by Euler angles to highlight the main advantages of using such an approach.

2 Attitude representation based on the modified Rodrigues parameters

The MRPs are defined in terms of the quaternions q = [� q4]T as Crassidis and Markley
(2003)

p = �

1 + q4
= e tan

(ϕ

4

)
, (1)

where e is the principal rotation axis, ϕ the principal rotation angle, � the vector part of the
quaternion and q4 the scalar part of the quaternion, defined by

� = [q1 q2 q3] = e sin (ϕ/2) . (2)

q4 = cos (ϕ/2) .

The magnitude of p is given by |p|. Then, |p| → ∞ when ϕ → 2π , meaning that MRP are
singular at 2π . Since we only use a three-component representation for the attitude errors,
the singularity is never encountered in practice. The updates are performed using quaternion
multiplication, leading to a natural way of maintaining the normalization constraint.

In this work, an error quaternion defined by MRP will be considered and is given by
Crassidis et al. (2007)

δp = f
δ�

a + δq4
(3)

with δq ≡ [δ�T δq4]T , a is a parameter from 0 to 1, and f = 2(a + 1) is a scalar factor.
The inverse conversion of δp to δq is given by

δq4 = −a‖δp‖2 + f
√

f 2 + (1 − a2)‖δp‖2
f 2 + ‖δp‖2

δ� = f −1(a + δq4)δp.

(4)
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3 The measurement system of the satellite

In problems of attitude, estimation is required to get results with high precision. In these
cases, data fusion is required to process the information collected from different sensors.
In this work measurements supplied by gyroscopes, Earth sensors and solar sensors will be
considered. These sensors are on board CBERS-2 satellite.

3.1 The measurement equation for gyros

The rate-integration gyros (RIGs) are used to measure the angular velocities of the roll, pitch
and yaw axes of the satellite. The mathematical model of the measured components of the
angular velocity of the satellite are given by Silva et al. (2015):

ωi = g − εi − η, (5)

where g(t) is the output vector of the gyroscope, εi are components of bias of the gyroscope
in axes x , y, z, and η represents a Gaussian white noise process covering all the remaining
unmodeled effects.

3.2 The measurement model for infrared Earth sensors (IRES)

In this work, only two Earth sensors are used, with one measuring the roll angle and the other
measuring the pitch angle. The measurement equations for the Earth sensors are given as
Silva et al. (2015)

φH = φ + νφ

θH = θ + νθ
, (6)

where νφ and νθ represent the Gaussian white noise related to small remaining effects of
misalignment during installation and/or assembly of sensors.

3.3 The measurement model for digital Sun sensor (DSS)

The digital Sun sensors do not provide direct measurements, but coupled angle of pitch (αθ )

and yaw (αψ). The measurement equations for the sun sensor are established as follows
(Silva et al. 2015):

αψ = tg−1
( − Sy
Sx cos 60◦ + Sz cos 150◦

)
+ ναψ , (7)

when | Sx cos 60◦ + Sz cos 150◦ | ≥ cos 60◦.

αθ = 24◦ − tg−1
(
Sx
Sz

)
+ ναθ , (8)

when
∣∣∣ 24◦ − tg−1

(
Sx
Sz

)∣∣∣ < 60◦. The Sx , Sy and Sz are the components of the unit vector

associated with the sun vector in the satellite system. The Gaussian white noise is represented
by ναψ and ναθ and represent small effect remnants ofmisalignment during installation and/or
by sensor assembly.
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4 Unscented Kalman filter formulation

In this section, the necessary steps to the formulation UKF will be presented when the MRP
are considered to parameterize the attitude during the estimation process.

The first step:

Thefilter is initializedwith the state vector information x̂+
k = [

q+
k β+

k

]T
and the covariance

matrices P̂, R̂ and Q̂ at the initial time k = 0.
The second step:
Before propagating from time step k to k + 1, it is necessary to compute the following set

of sigma points (Julier and Uhlmann 2004):

χk(0) = x̂+
k

χk(i) = x̂+
k ±

√
(n + λ)[P+

k + Q+
k ]

i
,

(9)

with
√

(n + λ)[P+
k + Q+

k ]
i
the ith column of the matrix square root of (n + λ)[P+

k + Q+
k ].

From Eq. (9), a new state vector composed of δp̂ is defined which represents the attitude
error quaternion, and β̂ representing the gyro bias. The state vectorwill be definedbyCrassidis
and Markley (2003)

χk(0) = x̂+
k ≡ [δp̂+

k β̂+
k ]T

χk(i) ≡
[
χ

δp
k (i) χ

β
k (i)

]T
i = 0, 1, . . . , 12.

(10)

From Eq. (4) and from the new state vector, given by Eq. (10), the sigma point matrix
of error quaternion associated with MRP is obtained for i = 1, 2, . . . , 12, i.e., δq+

k (i) ≡
[δ�+T

k (i) δq+
4k(i)]T . In this way, we can define the quaternion sigma point from

q̂+
k (0) = q̂+

k

q̂+
k (i) = δq+

k (i) ⊗ q̂+
k i = 0, 1, . . . , 12.

(11)

The third step:
To propagate from time step k to k + 1, the state vector composed of attitude described

by MPR, it is necessary to propagate the q̂+
k (i), δq+

k (i) and finally the χ
δp
k (i). The q̂−

k (i)
propagation is given by

q̂−
k+1(i) = �(ω̂+

k )q̂+
k i = 0, 1, . . . , 12, (12)

with the transition matrix�(ω̂+
k ) = cos

(
0.5‖ω̂+

k ‖�t
)
I4+sin

(
0.5‖ω̂+

k ‖�t
)
�(ω̂+

k )/‖ω̂+
k ‖,

where � is the 4 × 4 antisymmetric matrix (Lefferts et al. 1982) and ω̂+
k (i) = ω̃k − χ

β
k (i).

The δq−
k (i) propagation is obtained by

δq−
k+1(i) = q̂−

k+1(i) ⊗ [q̂−
k+1(0)]−1 i = 0, 1, . . . , 12. (13)

The last step is to propagate the sigma points related to attitude, χδp
k , and gyro bias χ

β
k+1,

by

χ
δp
k+1(0) = 0

χ
δp
k+1(i) = f

[
δ�−

k+1(i)/(a + δq−
4k+1(i))

]
i = 1, 2, . . . , 12

χ
β
k+1( j) = χ

β
k ( j) j = 0, 1, . . . , 12.

(14)
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The predicted mean of the state vector and the predicted covariance are given by

x̂−
k+1 = 1

n + λ

{
λχk+1(0) + 1

2

2n∑
i=1

χk+1(i)

}
,

P−
k+1 = 1

n + λ

{
λ

[
χk+1(0) − x̂−

k+1

] [
χk+1(0) − x̂−

k+1

]T

+1

2

2n∑
i=1

[
χk+1(i) − x̂−

k+1

] [
χk+1(i) − x̂−

k+1

]T
}

+ Qk .

(15)

The fourth step:
From the propagated q̂−

k+1(i), it is possible to calculate the mean observation and covari-
ance related to observations, respectively, by Crassidis and Markley (2003)

ŷ−
k+1 = 1

n + λ

{
λYk+1(0) + 1

2

2n∑
i=1

Yk+1i

}

Pyy
k+1 = 1

n + λ

{
λ

[
Yk+1(0) − ŷ−

k+1

] [
Yk+1(0) − ŷ−

k+1

]T

+1

2

2n∑
i=1

[
Yk+1(i) − ŷ−

k+1

] [
Yk+1(i) − ŷ−

k+1

]T
}

+ Rk+1,

(16)

with Yk+1(i) = h[q̂−
k+1(i), k], h is the function that represents the sensors model and Rk

represents the measurement error covariance matrix.
Finally, the update of the state vector and the covariance is given, respectively, by the

following formulation (Garcia et al. 2012):

x̂+
k+1 = x̂−

k+1 + Kk+1[yk+1 − ŷ−
k+1],

P̂+
k+1 = P̂−

k+1 − Kk+1P
yy
k+1K

T
k+1,

(17)

where the Kalman gain, Kk+1, is given by

Kk+1 = Pxy
k+1(P

yy
k+1)

−1

Pxy
k+1 = 1

n + λ

{
λ

[
χk+1(0) − x̂−

k+1

] [
Yk+1(0) − ŷ−

k+1

]T

+1

2

2n∑
i=1

[
χk+1(i) − x̂−

k+1

] [
Yk+1(i) − ŷ−

k+1

]T
}

.

(18)

Note that x̂+
k+1 ≡ [δp̂+T

k+1 β̂+T
k+1]T . Before the next propagation, it is necessary to update

δq+
k+1 and q+

k+1 from Eq. (4) and (11), respectively. Lastly, δp̂+
k+1(0) is taken as zero and

starts the next iteration.

5 Results

The aim of this work is to evaluate the behavior of the UKF algorithm adapted to use the
MRP when real data of attitude sensors feed the estimator. The data sets are related to the
sensors that are on board the CBERS-2 satellite. They are: infrared Earth sensor, digital Sun
sensor and gyroscope. For analysis, a set of 54measurements from 13 h 46min 25 s until 13 h
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Fig. 1 Representation of real measurements supplied by digital Sun sensors from CBERS-2

Fig. 2 Representation of real measurements supplied by infrared Earth sensors from CBERS-2

Fig. 3 Representation of real measurements supplied by gyroscope from CBERS-2

55 min 27 s was used, with an interval of measures of 10 s on average. The measurements
of the sensors DSS, IRES and gyroscope used in this paper are shown in Figs. 1, 2, 3, 4
and 5.
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Fig. 4 Representation of real measurements supplied by the gyroscope from CBERS-2

Fig. 5 Representation of real measurements supplied by the gyroscope from CBERS-2

Table 1 Components of the state vector x̂+
0

φ (deg) θ (deg) ψ (deg) εx (deg/h) εx (deg/h) εx (deg/h)

0.0 0.0 0.0 5.76 4.87 2.68

Table 2 Diagonal components of the covariance matrix P̂+
0

σφ (deg) σθ (deg) σψ (deg) σεx (deg/h) σεy (deg/h) σεz (deg/h)

0.5 0.5 0.5 1.0 1.0 1.0

It is known that the use of real data imposes certain difficulties, such as not being able to
compare the result with the expected value (real value). To validate the results of this study,
the results obtained in Garcia et al. (2012) will be used as reference. Table 1, 2, 3 and 4 shows
the input data sets used in the estimator.
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Table 3 Diagonal components of the covariance matrix Q̂+
0

σφ (deg) σθ (deg) σψ (deg) σεx (deg/h) σεy (deg/h) σεz (deg/h)

0.05 0.05 0.05 0.01 0.01 0.005

Table 4 Diagonal components
of the covariance matrix R̂+

0
σαθ (deg) σαψ (deg) σφH (deg) σφH (deg)

0.1 0.1 0.01 0.01

Fig. 6 Roll estimated by representations of attitude MRP and Euler angles

Fig. 7 Pitch estimated by representations of attitude MRP and Euler angles

It is observed in Figs. 6 and 7 that during the period considered, attitude behavior estimated
by the UKF with MRP is in agreement with the reference (Euler angles). The average of the
estimated values for roll and pitch in both parameterizations were around −0.47◦ −0.45◦.
For the yaw angle, Fig. 8, the estimate suffers a nonrandom variation, and the behavior is
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Fig. 8 Yaw estimated by representations of attitude MRP and Euler angles

Fig. 9 Bias of gyro estimated in the x axis by representations of the attitude MRP and Euler angles

noticed in both parameterizations [behavior expected in other cases, Garcia et al. (2011)].
The average estimated yaw with MRP and Euler was −1.49◦ and −1.51◦, respectively.

Figures 9, 10 and 11 indicate that the data set considered is not enough to observe con-
vergence in bias. Yet, the results of bias components on the axis x , y and z are similar to
those obtained when compared with the reference (Euler angles). The average of the estimate
of each component of the bias in x , y and z considering MRP was 5.57◦, 4.9◦ and 2.32◦,
respectively. In Figs. 12, 13 and 14, it is observed that, despite that the bias did not reach the
state of convergence, the error in estimating the bias decreases in this period.

The Table 5 shows the CPU time spent for processing the measurements of the sensors by
UKF in the different approaches used to estimate the attitude. 100 iterations for each approach
was performed for a more reliable result. It may be noted that, although the processing
time consumed by MRP exceeded the Euler, this increase is not directly proportional to the
number of operations that are performed in MRP. The spent CPU via MRP is not 2 times the
corresponding in Euler angles also well suited for real time processing while preserving the
advantage of being a free attitude representation singularity and less prone to divergence due
to non-linearities.
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Fig. 10 Bias of gyro estimated in the y axis by representations of the attitude MRP and Euler angles

Fig. 11 Bias of gyro estimated in the z axis by representations of the attitude MRP and Euler angles

6 Final comments

Real measurements generally bring unforeseen problems in simulations, requiring robust
implementations of the estimation algorithms. This work was faced with low sampling and
other difficulties of diverse and unknown sources, such as misalignments, drifts, systematic
errors and unforeseen noise. Taking into account these difficulties, the purpose of this study
was to analyze the UKF behavior when the MRP was used to parameterize the satellite
attitude when real data are considered in the estimation process. The results showed that
although the processing time MRP might be higher than that obtained when considering
directly the Euler angles in the estimation process, the results with MRP are close to those
obtained by reference. In problems involving estimation in real time, the filter processing
time and parameterization of attitude chosen are of great importance. In this respect, the
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Fig. 12 Covariance estimated for bias in the x axis by representations of attitude MRP and Euler angles

Fig. 13 Covariance estimated for bias in the y axis by representations of attitude MRP and Euler angles

Fig. 14 Covariance estimated for bias in the z axis by representations of attitude MRP and Euler angles
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Table 5 Estimated time of
processing of measures of
attitude sensors by MRP and
Euler angles

MRP Euler angles

Time(s) 14.62 13.25

biggest advantage of choice for MRP is that their equations avoid singularities present in the
direct use of Euler angles.
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