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The chaotic portion of phase space of the simplified Fermi-Ulam model is studied under the context of
transport of trajectories in two scenarios: (i) the trajectories are originated from a region distant from the islands
of regular motion and are transported to a region located at a high portion of phase space and (ii) the trajectories
are originated from chaotic regions around the islands of regular motion and are transported to other regions
around islands of regular motion. The transport is investigated in terms of the observables histogram of transport
and survival probability. We show that the histogram curves are scaling invariant and we organize the survival
probability curves in four kinds of behavior, namely (a) transition from exponential decay to power law decay,
(b) transition from exponential decay to stretched exponential decay, (c) transition from an initial fast exponential
decay to a slower exponential decay, and (d) a single exponential decay. We show that, depending on choice of
the regions of origin and destination, the transport process is weakly affected by the stickiness of trajectories
around islands of regular motion.
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I. INTRODUCTION

Escape, transmission, reflection, and recurrence time statis-
tics are some of the approaches employed to study properties
of trajectories in phase space of dynamical systems. Escape
processes are usually studied in the context where a system
presents a natural leak or hole through which a particle
or a wave leaves the system [1–6]. A leak or hole can be
introduced in closed systems in order to study the properties
of trajectories in phase space [7–9] or to simulate loss
in confinement of plasma and measurement devices, e.g.,
antennas and sensors [10–13]. Transport is the process by
which trajectories initially located at a region of origin evolves
to a destination region. The location of regions of origin and
destination is arbitrary and depends on the subject of interest
under study. The properties of transport and escape processes
are dependent on the nature of the system under investigation.

Nonlinear Hamiltonian systems usually present phase space
composed of a coexistence of regular and chaotic trajectories.
Depending on the system, the regions of regular motion
are formed by complex structures of Kolmogorov-Arnold-
Moser (KAM) islands with positive measure [7,14,15]. Other
systems, e.g., the mushroom and stadium billiards [16–23],
also present the so-called marginally unstable periodic orbits.
They form families of orbits that remain trapped forever. The
most simple set of such dynamics corresponds to the situation
where the particle collides perpendicularly between parallel
walls. It is also worth mentioning that under certain condi-
tions the mushroom billiard presents sharply divided phase
space [22,24]. For systems that present phase space with strong
chaotic properties, observables such as Poincaré recurrence
times and survival probability decay exponentially [6,25,26].
Chaotic trajectories evolving in phase space are deeply affected
by the presence of regions of regular motion. Eventually, these
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chaotic trajectories come close enough to a KAM island and
stick to the border of this regular region for long periods of
time [27,28]. As a consequence, in a system with phase space
composed by mixed structure, i.e., regions of chaotic motion
coexisting with regular trajectories, the Poincaré recurrence
times and survival probability present an initial regime of
exponential decay followed by a slower decay described
by power law [8,9] or stretched exponential [29]. These
slower-than-exponential decays are attributed to the temporary
trapping, or stick, of chaotic trajectories near KAM islands or
other periodic regions. Due to stickiness, properties such as
transport [30] and decay of correlations [27,28] are affected
even by small-size islands. When a region [31–34] encloses a
pair of broken separatrices, the lobes formed by manifolds and
homoclinic points form structures in phase space that work
as turnstiles, i.e., places where trajectories arrive and leave
the resonance zones. Zaslavsky [30] used renormalization to
chains of self-similar islands and derived relations between
the exponent of the power-law decay and scaling expo-
nents. Chirikov and Shepelyansky proposed renormalization
arguments at the breakdown of the golden mean torus to
describe the stickiness of trajectories [35] in the standard
map. Moreover, the nonuniform distribution of trajectories in
mixed phase spaces and the stick domains had been studied in
the context of anomalous transport [30,36–38]. Although the
development of the study of transport since the mid-1980s is
notable, several questions are still unanswered. As pointed by
Meiss [33], some of these questions involve the possibility
of using the available flux formulas to calculate the flow
of trajectories through two-dimensional manifolds in three-
dimensional maps [39–41] and the topology of the structures
that replace invariant torus in multidimensional symplectic
maps. Moreover, the cantori remnant of the destruction of tori
work as partial barriers and the flux is locally minimal [39].
So another unanswered question is related to the monotonicity
of asymptotic flux in analytic maps.
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In this work we study the transport of chaotic trajectories
in the Fermi-Ulam model. In particular, we are interested
in understanding and describing the transport dynamics in
two different situations: (a) the scenario where the region
of origin is located distant from regions of regular motion
and (b) situation where the regions of origin are around
islands of regular motion. This investigation contributes to
the understanding of transport in conservative systems and
our findings and tools can be extended to other classes of
dynamical systems such as plasma confinement systems as
well as billiard problems. This paper is organized as follows.
In Sec. II, we present the model, the approach, and the
observables used in the study of transport process. In Sec. III
we discuss the results and in Sec. IV we present the conclusions
of the present study.

II. TRANSPORT PHENOMENA

In this work we study the transport process of chaotic
trajectories in the simplified Fermi-Ulam model. This model
consists of a pair of massive walls that confine a particle. One
of the walls oscillates in time, t ′, according to the expression
x(t ′) = ε cos(ωt ′ + φ0) and transfers energy and momentum
to the particle at each collision. The symbol ε represents the
amplitude of motion of the moving wall, ω is the frequency, and
φ0 denotes an initial phase. The other wall is fixed at position
x = l and works as a returning mechanism that brings the
particle back to the moving wall. The collisions are elastic and
the particle moves freely between the walls. Defining the set
of dimensionless variables X = x/l, t = ωt ′, and V = v/ωl,
φ = t + φ0, we have that the velocity of particle and phase
of moving wall after each collision with the moving wall is
given by

T :

{
φn+1 = (φn + 2/Vn) mod 2π

Vn+1 = |Vn − 2ε sin φn+1|
, (1)

where ε = ε/ l is the dimensionless parameter and the absolute
value bars prevent the particle to live out the confinement.
It is important to mention that ε controls a transition
from integrable, when ε = 0, to nonintegrable, when ε �= 0.
Figure 1 illustrates the phase space of Fermi-Ulam model
for three different values of the control parameter, namely
ε = 10−4,10−3,10−2.

Transport is a process by which trajectories initially located
at a predefined region, or window, of phase space evolve to
other predefined window of phase space. The study of transport
we focus on here consists iof the investigation of the following
observables: (i) normalized histograms of transport and (ii)
survival probability. Let us describe each of these observables
separately.

Once defined a window of origin, Wo, and a window of
destination, Wd , the window Wo is filled with a set of M

initial conditions (ICs). Then a numerical code evaluates the
trajectory of each IC inside Wo using the map (1) until one of
the following conditions is satisfied: (i) the trajectory of this IC
reaches the destination window Wd or (ii) the trajectory evolves
a maximum number of iterations, nmax, without reaching Wd .
Then the evaluation of this trajectory is interrupted and the

iteration of other IC starts. This procedure repeats until the
ensemble of M ICs is totally exhausted.

The histogram H (n) is the number of trajectories reaching
the destination window at iteration n. Numerically, H (n) is
evaluated according to the following procedure. An array H

with nmax + 1 elements is created. Before starting the iterative
process of the ICs, H is set to zero for all components, from
i = 0 until i = nmax. Then the iterative procedure of the ICs
starts. If the trajectory of an IC reaches Wd at iteration i, then
the component i of H is increased by unity and the trajectory
of other IC is started. At the end of M ICs, the array H (n)
has the distribution of the number of transported trajectories
at each value of n. Because H (n) depends on the size M of the
ensemble of ICs inside Wo, it defines the quantity

h(n) = H (n)

M
, (2)

which is the normalized histogram of transport.
To define the survival probability, let us describe N (n) as the

amount of trajectories that do not reach Wd until the iteration
n. At the beginning of simulation, we have N (0) = M , since
all trajectories (ICs) are inside Wo. Eventually, as described
above, during the iterative process, a trajectory reaches Wd

and the numerical evaluation of it is terminated. If it happens
at iteration i, then the quantity N (n) decreases by unity for
i � n � nmax and the trajectory of other IC starts. So, as
the numerical simulation evolves, the number of remaining
trajectories gradually decreases. Consequently, at the end of
simulation we have that the quantity N (n) is a decreasing
function. The survival probability, P (n), is the normalized
quantity defined by

P (n) = N (n)

M
. (3)

The large the M , the smother the curve P (n).

III. RESULTS AND DISCUSSION

In this section we present the results of transport of chaotic
trajectories considering two scenarios. In Sec. III A we present
the results obtained regarding the window of origin, Wo, as a
region in the chaotic sea located distant from the structures of
regular motion in the phase space of the Fermi-Ulam model.
The destination window, Wd , is defined as a region of chaotic
sea located in phase space in terms of the average position of
the lowest-energy-spanning curve of the Fermi-Ulam model.
In Sec. III B we present the results of the transport process
where Wo and Wd are narrow portions of chaotic sea around
islands of regular motion.

A. Windows of origin distant from regions of regular motion

Let us describe how the windows of origin and destination,
Wo and Wd , are defined. The phase space of the Fermi-Ulam
model presents a region of global chaos that surrounds islands
of regular motion. These islands are observed at high and
intermediate portions of the chaotic region. For values of
velocity below the intermediate region of the chaotic sea there
are no regions of regular motion since the periodic points are
unstable [42]. In order to define a window of origin distant from
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the regular motion structures, we defined Wo as the portion of
chaotic sea located at V = 10−3 and φ ∈ [0,π ).

To define the destination window we need to first discuss
how the location of the invariant spanning curve of lowest
energy was obtained. We started defining an array of size 104

where each component corresponds to a narrow stripe in phase
space as a result of the division of the interval of phase [0,2π )
in 104 parts of same measure, and we attributed the initial
value zero for all components of this array. Then we used
an initial condition located in the chaotic sea and iterated the
map (1). With the value of the phase after each iteration we
determined the stripe where the point of the trajectory was
located. If the value of velocity was greater than the value
stored at the corresponding stripe of phase, then we replaced
the previous value by the current value of velocity. Otherwise,
the vector remains unchanged. By performing this procedure
after each iteration for a long-enough simulation, we obtain
a good approximation for the location of the lowest-energy-
spanning curve. The greater the number of iterations, the better
the approximation. The size of the chaotic sea and, therefore,
the location of the spanning curve of lowest energy depends
on ε. So we obtained the approximated spanning curves of
lowest energy for 19 values of parameter ε in the interval
[10−4,10−2]. These approximations to the spanning curves
were obtained after we iterated 1012 times the map (1) for
each ε. Because the value of velocity in an invariant spanning
curve is not a constant, we evaluated the average velocity
〈V 〉inv. Then we defined Wd at the high portion of the chaotic
sea as the region of phase space above the line Vc = c〈V 〉inv

and below the invariant curve of lowest energy. We use the
fixed value c = 0.75, although other values of c can also be

used. In Ref. [43] the authors discussed the transport process
in a time-dependent potential well. They showed that the value
of Vc changes the time until the particle reaches such a value
but the universal properties are unchanged for different values
of c.

Once Wo and Wd are established, the next step consists
of determining the ICs in Wo. So we defined an ensemble of
M = 108 ICs with velocity V0 = 10−3 and initial phases φ0

randomly chosen in the interval φ ∈ [0,π ).
In this section we examine the properties of transport of

chaotic trajectories studying the observables histogram of
transport and survival probability presented in Sec. II. In
both cases we used nmax = 107. So let us start the discussion
presenting the results related to the histograms.

Figure 2 displays the histogram h(n) for five different values
of parameter ε, as shown in the legend. For each curve we
observe that h(n) is an increasing function for small-enough
n. This is expected because after the initial iterations most of
the trajectories are still at the low portion of the phase space
and few trajectories reach Wd . But while iterations proceed,
more and more trajectories acquire net energy gain and reach
the destination window (V > Vc). Moreover, we observe in
Fig. 2 that each h(n) curve reaches a maximum value and after
that becomes a decreasing function. This decay is expected
because the bigger the number of iterations, the smaller the
fraction of remaining trajectories in simulations.

Let us designate hmax as the maximum value of each h(n)
curve and np as the value of n for which h(np) = hmax. So np

represents the crossover from the growth regime to the decay
regime of the normalized histogram h(n). As we observe in
Fig. 2, the quantities hmax and np depend on ε. Specifically,

FIG. 1. Phase space of Fermi-Ulam model for (a) ε = 10−4, (b) ε = 10−3, and (c) ε = 10−2.
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when we increase the parameter ε the maximum hmax increases
while the value of np decreases.

Near np the curves of h(n) are described by a quadratic
function with a good approximation. So, with the parameters
of quadratic fits we obtained the coordinates (np,hmax) of the
transition from the growth to decay regimes for each h(n)
curve. Figure 3(a) illustrates the log-log plot of the crossover
np as function of ε. The best fit to the numerical data furnishes
np ∝ εγ with negative exponent γ = −1.00 ± 0.03. We show
in Fig. 3(b) the plot of hmax for several values of parameter ε in
log-log scales. The best fit to the numerical data provides that
hmax ∝ εζ with ζ = 0.99 ± 0.05. The signals of exponents γ

and ζ are in agreement with our discussion in the previous
paragraph.

With this information we can formally present the scaling
description of h(n). The numerical data suggest that the nor-
malized histogram is described by the following homogeneous
function

h(n,ε) = lh(lan,lbε),

where l is a scaling factor and a and b are scaling exponents.
Choosing l = ε−1/b, the above expression becomes

h(n,ε) = ε−1/bf (ε−a/bn),

where f (ε−a/bn) = h(ε−a/bn,1). For n ≈ np we have h ≈
hmax and, therefore, hmax ∝ ε−1/b. With this result and from the
discussion about the numerical results, we have that the critical
exponent ζ and the scaling exponent b are related by ζ = −1/b

and, therefore, b = −1.01 ± 0.05. Moreover, for n ≈ np we
obtain from the above expression that np ∝ εa/b. Therefore
the critical exponent γ and the scaling exponents a and b

are related by γ = a/b. With this relation and the value of b

we obtain the scaling exponent a = 1.01 ± 0.08. Performing
the variable transformations h → h/ε−1/b and n → nε−a/b

we obtain the collapse of h curves of Fig. 2 into a single and
universal curve, as illustrated in Fig. 4.

Let us now address the survival probability P (n) as function
of n. Figure 5 illustrates the survival probability curves for five
values of ε. Figure 5(a) is a log-linear plot of P (n) versus n

for small values of n, where we observe an exponential decay.
Figure 5(b) is a log-log plot of the survival probability. The

10
0

10
2

10
4

10
6

n

10
−8

10
−6

10
−4

10
−2

h

ε=10
−4

ε=5×10
−4

ε=10
−3

ε=6×10
−3

ε=10
−2

(a)

FIG. 2. Histograms of transport for different values of parameter ε.
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FIG. 3. (a) The crossover np as a function of ε and (b) the
maximum value of each histogram versus ε.

power-law decay observed for large values of n is consistent
with the existence of sticky domains in the phase space. These
sticky domains are regions located around islands of regular
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FIG. 5. (a) Log-linear plot of survival probability as function of
n illustrates the exponential decay observed for small values of n.
(b) Log-log plot of survival probability illustrates power-law decays
for big values of n.

motion and near invariant curves, where chaotic trajectories
are eventually trapped for a long time. As a consequence, the
survival probability presents a decay slower than exponential,
typically a power law or a stretched exponential [8,9,29].

We define nc as the value of n which characterizes the
changeover from the exponential decay to the power-law
decay. We observe that the value of nc decreases when ε

increases. Performing fits to the numerical data in the regimes
n 
 nc and n � nc and using direct algebra, we obtain the
value of nc for each curve. Figure 6(a) shows a log-log plot
of nc versus ε. The best fit to the data furnishes nc ∝ εβ

with β = −1.00 ± 0.06. Performing the scale transformation
n −→ n/εβ in the curves of Fig. 5, we obtain the universal
behavior of the initial decay of the survival probability, as
depicted in Fig. 6(b).

It is known that the position of the lowest-energy invariant
spanning curve in phase space of the Fermi-Ulam model obeys
the relation 〈V 〉inv ∝ ε1/2 [44,45]. Because Vc is proportional
to 〈V 〉inv, then Vc ∝ ε1/2. As discussed before, the crossover
np that characterizes the change from the growth to the decay

10−4 10−3 10−2

ε
10

3

10
4

10
5

10
6

n c

Numerical data
Best fit

n
c

∝ε β

β = −1.00 ± 0.06

(a)

10−3 10−1 101 103

n/ε β

10−7

10−5

10−3

10−1

P
ε=10−4

ε=7×10−4

ε=10−3

ε=5×10−3

ε=10−2

β=−1.00±0.06

(b)

FIG. 6. (a) Log-log plot of crossover value nc of survival
probability as function of ε. (b) Collapse of survival probability curves
in a single curve after a rescaling.

regime of h curves and the crossover nc that marks the
transition from exponential to power-law decay of the survival
probability curves are, respectively, related to ε by np ∝ εγ and
nc ∝ εβ , where γ ≈ β ≈ −1. Comparing the values of np and
nc, Figs. 3(a) and 6(a), we observe that nc is near two order of
magnitude greater than np. It means that maximum transport
rate occurs before the transition from exponential to power
law decay. Moreover, we observed that the maximum value
of the histogram curves depends on ε according to hmax ∝ εζ

with ζ ≈ 1. Therefore we have that hmax ∝ V 2
c and np ∝ V −2

c .
Because of these two results, we conclude that hmax ∝ ε1 and
np ∝ ε−1, as confirmed numerically.

B. Windows of origin and destination around
regions of regular motion

In this section we describe transport processes of chaotic
trajectories from windows of origin Wo located around islands
of regular motion associated to period-1 fixed points to
destination windows Wd located around other islands of
regular motion as we describe now.
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TABLE I. Parameters that define the windows of origin and
destination for (a) ε = 10−3 and (b) ε = 10−4.

m μ e α

(a)
5 2.2 1–1.2 × 10−6 2.1π × 10−4

6 1.9 1–9 × 10−7 2.5π × 10−4

9 1.3 1–2.2 × 10−7 2.2π × 10−4

10 1.2 1–6 × 10−8 2.7π × 10−4

(b)
16 2.4 1–1.4 × 10−6 1.72π × 10−5

17 2.2 1–1.4 × 10−8 1.8π × 10−5

31 1.3 1–8.5 × 10−10 2.7π × 10−5

32 1.5 1–4.4 × 10−10 2.7π × 10−5

The fixed points of the simplified Fermi-Ulam model
are located at the coordinates (φ,V ) = (φ∗,V ∗) with φ∗ =
(0,π ) and V ∗ = 1/(mπ ) for m = 1,2,3, . . . . The fixed points
associated to φ∗ = 0 are unstable. Therefore we focus in the
islands of regular motion observed around the fixed points
associated to φ∗ = π . These islands of regular motion are
surrounded by a chaotic sea. Because our purpose is to study
the transport from Wo to Wd in the chaotic sea around islands
of regular motion, we define elliptical windows that enclosure
a thin layer of chaotic sea that surrounds the regions of regular
motion. So we use polar variables ρ and θ to represent the
coordinates (x,y) of the border of the ellipses as x = ρ cos θ

and y = ρ sin θ , where ρ = μσ/
√

(σ cos θ )2 + (μ sin θ )2. The
parameters μ and σ represent the semiaxes of the ellipses. In
terms of μ and the eccentricity e, the parameter σ is given
by σ = μ

√
1 − e2. It is observed that the regions of regular

motion present inclinations around a horizontal axis. Therefore
we use the rotation matrix to gyrate the ellipses by an angle
α measured with respect to the horizontal. This procedure
furnishes the coordinates of a rotated ellipse, given by xr =
x cos α − y sin α and yr = x sin α + y cos α. Displacing the
center of the rotated ellipse from the origin to the position of
the fixed points, the coordinates of the ellipses in the plane φ

vs. V are φ = xr + π and V = yr + 1/(mπ ).
The smaller the m, the greater the size of the KAM island.

Moreover, each island presents a different slope with respect to
a horizontal line. Therefore we used values of parameters μ, e,
and α that furnish the ellipses a best adjust to the narrow layers
of the chaotic sea that surround the islands. The Table I(a)
summarizes the values of the parameters of these elliptical
windows for ε = 10−3 for each value of m used in this work.
Similarly, Table I(b) presents the parameters of the windows
for ε = 10−4 for the corresponding values of m.

The values of m presented in Table I were chosen based in
our interest in the study of transport from Wo to Wd combining
situations where Wo and Wd could be close to or distant from
each other.

We define Wm as the elliptical window that incorporates
a thin layer of the chaotic sea around the region of regular
motion with center at the elliptical fixed point associated to
the integer m. This is the procedure we used to define the
windows of origin and destination which we use to study the

FIG. 7. (a) Phase space of model in gray (violet); ICs chosen
in the chaotic sea inside W5 and W10 in black. (b) Amplification of
region around window W10.

transport process between two regions located near islands of
regular motion.

To define the ICs inside Wo, for a predefined o = m, we
used the following procedure. An IC located in the chaotic sea
is iterated by the map (1). Eventually, the trajectory enters in
the window Wo. When that happens, we store the coordinates
of the trajectory first by truncating the values of φ and V

at the eighth significant digit. This truncation is enough to
avoid considering different points of a same trajectory in the
posterior transport study. After we stored a predefined number
M of points inside Wo the procedure finishes. This set of points
is used as the ICs inside the window of origin.

Figure 7 illustrates the phase space of the Fermi-Ulam
model for ε = 10−3. The gray points (violet) correspond to
the trajectories, including chaotic and regular ones, obtained
by iteration of map (1). The black points correspond to ICs,
inside the elliptical windows W5 and W10, obtained by the
procedure described in the previous paragraph. Figure 7(b) is
an amplification of Fig. 7(a) where the ICs in the portion of
the chaotic sea inside the window W10 is illustrated in black.

Defining the ensemble of M ICs inside a Wo, we specify
a Wd , with d �= o, and the transport process from Wo to Wd

is evaluated as described in Sec. II. The number M of ICs
and the maximum iteration number nmax changed according
to the necessity of each simulation. So in simulations we used
M = 105, M = 106, or M = 107 and nmax = 107 or nmax =
108. In this section we focus in the study of properties of
survival probability. The results we now discuss are organized
according to the behavior of P (n) in four different ways.

Figure 8 illustrates the survival probability related to the
transport of trajectories from different windows of origin to
different windows of destination for ε = 10−4 and ε = 10−3.
Figure 8(a) illustrates, in log-log scales, the power-law decay
of P (n) in the regime of big values of n for the transport from
W16 to W17 and from W16 to W32, ε = 10−4, and from W10

to W9 for ε = 10−3. The long-term regime of transport from
W6 to W5 and from W10 to W5, ε = 10−3, is characterized by

042208-6



TRANSPORT OF CHAOTIC TRAJECTORIES FROM . . . PHYSICAL REVIEW E 94, 042208 (2016)

100 102 104 106 108

n

10−7

10−5

10−3

10−1

101

P

ε=10−4, M=10
6
, W

16
 to W

17

ε=10−4, M=10
6
, W

16
 to W

32

ε=10−3, M=10
7
, W

6
 to W

5

ε=10−3, M=10
6
, W

10
 to W

5

ε=10−3, M=10
7
, W

10
 to W

9

(a)

5.0×105 1.5×106 2.5×106 3.5×106

n

10−5

10−3

10−1

P

(b)

FIG. 8. (a) Log-log plot of survival probability of transport
between different windows for different values of ε. (b) Log-linear
plots of the initial regime of decay for the curves displayed in (a).

a very slow decay, apparently a power law. However, at this
stage, the reduced number of decades and the relative small
number of remaining trajectories does not allow us to define
precisely the decay form for large values of n. This very slow
decay is attributed to a few trajectories that remain stuck in
regular motion structures for very long times. In Fig. 8(b)
we present the plot of P (n) in log-linear scales, where we
see the exponential decay of P (n) for small values of n. In
the particular case of P (n) for ε = 10−3 from W10 to W9

the exponential decay is observed for values of n up to 6 ×
103. The initial exponential decay of P (n) is attributed to the
contribution of chaotic sea, whereas the power-law decay is
related to the trajectories temporarily trapped near regions of
regular motion [8,9].

A close examination of the P (n) curves in Fig. 8 reveals that
the transport from W16 to W17 and from W16 to W32, ε = 10−4,
although similar, presents values of P (n) that are greater for the
second case. This is expected because the window of origin is
the same for both cases (as well as the ICs) but the destination
window is far apart for the second case. A similar situation
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FIG. 9. Plot of survival probability as function of n.

occurs for the transport from W6 to W5 and from W10 to W5,
regarding ε = 10−3, for the most values of n in the P (n) curves.
Now the destination window is the same in both cases and the
origin window differs. Only near the end of simulation is P (n)
greater for the transport from W6 to W5 than from W10 to W5.
This is a consequence of two factors. The first is the small
number of remaining trajectories near the end of simulation
in both transports. In the transport from W6 to W5, the values
of P (n) correspond to 70 trajectories, or 7 × 10−4% of the
ICs, while in the transport from W10 to W5 the values of P (n)
near the end of simulation correspond to six trajectories, or
6 × 10−4%, of the ICs. The second factor is the fact that the
ensembles of ICs differ in each transport. These two factors
combined lead us to conclude that the quantitative change of
P (n) near the end of simulations between the transports from
W6 to W5 and from W10 to W5, both for ε = 10−3, correspond
to small statistical fluctuations.

Figure 9 illustrates the probability P (n) for ε = 10−4, when
the transport is from the origin window W32 to the destination
window W31 and for ε = 10−3, when the transport is from
W9 to W10. The upper inset of Fig. 9 displays, in log-linear
scales, the exponential decay of P (n) observed for small
values of n. The lower inset of Fig. 9 displays, in log-linear
scales, the behavior of P (n) as function of n1/2 in regime
of large values of n. As we observe, in this regime, the
plots of P (n) present decays of stretched exponential type
given by P (n) ∝ exp(δ

√
n), δ < 0. For ε = 10−4 we have that,

after n1/2 = 1.5 × 103, fewer than 80 trajectories of the initial
M = 106 remain in the simulation. The initial exponential
decays observed in both curves are related to the contribution
of the chaotic sea in the transport process while the stretched
exponential decays are attributed to the temporary stick of
trajectories near structures of regular motion [29].

Figure 10 displays the survival probability P (n) as function
of n in log-linear scales. For ε = 10−3 the plot includes the
transport of trajectories from the window of origin W5 to the
destination window W6 and from W5 to W10. For ε = 10−4 we
see the result of transport from W31 to W32. Looking closely at
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FIG. 10. Log-linear plot of survival probability for different
values of parameter and different windows.

the curves of survival probability, we observe that P (n) for the
transport from W5 to W6 is, for each value of n, smaller than
the probability for the transport from W5 to W10, as expected.
For ε = 10−4, we observe that P (n) is essentially constant
after n ≈ 2 × 107, corresponding to fewer than 30 trajectories
of the initial M = 106. In all cases, after a brief transient, we
observe for small-enough n that P (n) decays exponentially.
This initial decay is presented for ε = 10−4 in the left inset
of Fig. 10, while for ε = 10−3, and regarding both transports
from W5 to W6 and from W5 to W10, the initial exponential
decay is presented in the right inset of Fig. 10. For large-
enough values of n the probability curves bend towards the
other regime of exponential decays characterized by smaller
rates of decreasing than the former ones. The right inset of
Fig. 10 illustrates this slower exponential decay observed for
ε = 10−4, while for both transports associated to ε = 10−3,
i.e., from W5 to W6 and from W5 to W10, this slower exponential
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FIG. 11. Survival probability as function n for the transport
between different windows.

decay is presented in the external plot of Fig. 10. Exponential
decays observed in survival probability are associated to the
contribution of the chaotic region of phase space [6,25,26].
So, in the cases presented here, the two different exponential
decays observed in each curve are attributed to two groups of
trajectories in the chaotic sea: (i) the initial, faster, exponential
decays are related to trajectories that evolve more directly
from Wo to Wd spending a short amount of time, while (ii) the
later, slower, exponential decays are related to trajectories that
evolve in a large portion of chaotic sea and spend more time
before they reach the destination window.

Figure 11 illustrates the behavior of the survival probability
for ε = 10−4 when the transport occurs from W17 to W16

and from W32 to W16. As we observe, in these cases the
contribution of the chaotic sea is much more important than
the contribution of the stick domains, because in each case
the survival probability presents a single and exponential
decay.

IV. CONCLUSIONS

We presented the transport properties of chaotic trajectories
in the phase space of the Fermi-Ulam model in two parts. In the
first part we obtained the normalized histogram of transport
and the survival probability for the transport of trajectories
originating from a window located at a distance from the
structures of regular motion. The destination window was
defined as portions of chaotic sea above a velocity value estab-
lished in terms of the positions of the lowest-energy-spanning
curves. After scaling considerations, we demonstrated that the
histogram for different values of ε presents universal behavior.
We showed also the survival probability presents an initial
decay regime of exponential type followed by power-law decay
for large n, in agreement with the mixed nature of phase space.

In the second part of this work we studied the transport
process when the windows of origin are regions of phase space
that enclose thin layers of the chaotic sea that surround islands
of regular motion. The destination windows were defined in
the same way. Regarding different combinations of windows
of origin and destination, we demonstrated four kinds of
behavior for the survival probability curves: (i) transition from
an initial exponential decay to a power law decay, (ii) transition
from an initial exponential decay to a regime of stretched
exponential decay, (iii) transition from a fast exponential
decay to a slower exponential decay, and (iv) a single and
exponential decay. Cases (i) and (ii) are consistent with the
mixed structure of phase space of the model under study.
Because exponential decays in the survival probability indicate
the contribution of chaotic motion in the transport process, the
behavior described in case (iii) is attributed to two transport
mechanisms. One of them is related to a set of trajectories
that are quickly transported between the windows of origin
and destination, generating the fast initial exponential decay.
The other is attributed to a set of trajectories that evolve in a
large portion of phase space and, consequently, spend more
time before they reach the destination window, generating
a slower exponential decay for large n. Despite the mixed
structure of phase space, the behavior of survival probability
described in cases (iii) and (iv) suggests the transport process
is especially influenced by the chaotic portion of phase space,
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since power-law or stretched exponential decays are not
observed.

Specifically for the last two cases above we can say that
in a phase space of mixed type, where chaotic and regular
trajectories coexist, depending on the particular choice of
windows of origin (and destination), the transport process
is weakly affected by the sticky domains associated to the
structures of regular motion and strongly dominated by the
chaotic portion of phase space.

Finally, the observation of two different regimes of ex-
ponential decay in the survival probability for a parameter
value in the transport between two regions is surprising.
According to our knowledge, this result is original and it

opens a new perspective about the asymptotic behavior in
transport processes in systems that present phase space with
mixed structure. We intend to pursuit similar results and
their consequences in future works for both one and two-
dimensional billiards.
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