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• The nonregularity in the separation line occurs only in one point.
• The number of periodic orbits is bigger than for the regular case.
• All the periodic orbits have the breaking point in its interior.
• Higher Melnikov theory is used for the described bifurcating phenomena.
• The stabilization phenomena in the number appear increasing the order.
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a b s t r a c t

In this paper we deal with planar piecewise linear differential systems defined in two zones. We consider
the casewhen the two linear zones are angular sectors of anglesα and 2π−α, respectively, forα ∈ (0, π).
We study the problem of determining lower bounds for the number of isolated periodic orbits in such
systems using Melnikov functions. These limit cycles appear studying higher order piecewise linear
perturbations of a linear center. It is proved that themaximumnumber of limit cycles that can appear up to
a sixth order perturbation is five. Moreover, for these values of α, we prove the existence of systems with
four limit cycles up to fifth order and, for α = π/2,we provide an explicit example with five up to sixth
order. In general, the nonregular separation line increases the number of periodic orbits in comparison
with the case where the two zones are separated by a straight line.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many systems of relevance to applications aremodeled using piecewise linear differential systems. The study of such systems goes back
to Andronov and coworkers [1] and nowadays still continues receiving attention by many researchers. For more details about piecewise
linear (and piecewise smooth in general) differential systems see for instance the books of Filippov [2] and di Bernardo et al. [3] and the
references quoted therein.

In the classical theory for smooth systems an important topic is theweak16thHilbert’s problem. Thequestion is:Which is themaximum
number of isolated periodic orbits, also called limit cycles, that bifurcate perturbing a center? This problem for piecewise differential
systems defined in two zones have been studied recently, among other papers, in [4–12]. Usually the separation line between the two
zones is a straight line. Here we study the case when the separation line is nonregular. angular regions, i.e. the separation line is formed
by two semi-straight lines that coincide at the origin forming an angle α, with α ∈ (0, π). In particular we provide lower bounds for
the number of limit cycles of the linear center under perturbation, with piecewise linear vector fields, up to order six. After a linear
transformation, if it is necessary, it is not restrictive to assume that the center is the classic harmonic oscillator. More precisely, for each
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N ∈ N, we consider the following piecewise linear perturbation of the linear center
ẋ = −y +

N
i=1

εi(a±

0i + a±

1ix + a±

2iy),

ẏ = x +

N
i=1

εi(b±

0i + b±

1ix + b±

2iy),

(1)

defined in the angular regions separated by the lineΣα . In fact the separation lineΣα is defined as follows. For α ∈ (0, π) and α ≠ π/2,
then Σα = {(x, y) : x ≥ 0, y = 0} ∪ {(x, y) : x = (tanα)−1y, y ≥ 0}. For α = π/2, we have Σ π

2
= {(x, y) : x ≥ 0, y = 0} ∪ {(x, y) :

x = 0, y ≥ 0}. Finally,Σπ denotes the straight line {(x, y) : y = 0}. The notationsΣ±
α indicate the angular sectors of angles α and 2π − α

separated by Σα , respectively. We denote the vector fields associated to system (1), defined in Σ±
α , by X±, respectively. The point (0, 0)

where the separation lineΣα loses its regularity will be referred to as the breaking point.
It is worth to emphasize that, with the perturbations that we have considered, the perturbed systems do not escape from the class of

piecewise linear system, but we consider the period annulus of the center instead of a neighborhood of the origin. This is the aim of the
higher order Poincaré–Pontryagin–Melnikov theory instead of degenerated Hopf bifurcation. This theory provides the same results, in the
plane, than the averaging one. In this paper, N denotes the degree in the perturbation parameter ε, or the order of perturbation in ε.

The number of limit cycles close to the origin for piecewise families, using Lyapunov constants, is studied in [13,12]. All the families
introduced in both works have the origin as a critical point for the systems defined in Σ±

π , respectively. In fact, the perturbations are of
higher order in the variables. In our case the perturbations are linear in the variables but nonlinear in the parameter ε. Moreover, we do
not preserve the origin as a critical point inΣ±

α , then the technique used in those papers, based on a change to polar coordinates, is more
difficult to apply. Consequently these two problems are not equivalent.

In the case when the separation line is a straight line, Han and Zhang in [7] conjectured that the maximum number of limit cycles for
planar discontinuous piecewise linear systems should be at most two. However, Huan and Yang in [8] provided strong numerical evidence
that three limit cycles should exist. A computer-assisted proof of the existence of such limit cycles was given in [10]. The existence of
other examples with three limit cycles, via bifurcation techniques, can be found in [4,14]. The example given in [4] uses a piecewise linear
perturbation of a linear center and it is proved that three is the maximum number of limit cycles that can appear up to a seventh order
perturbation. Moreover, as was observed in [4], when the order of the perturbation increases, the number of limit cycles seems to stabilize
in three. However, it is still an open question to determine whether three is the maximum number of limit cycles for planar discontinuous
piecewise linear differential systems when the separation line is a straight line. In this case, Euzébio and Llibre in [15] proved that if one of
the linear differential systems has its equilibrium point on the straight line of separation, then the maximum number is less than or equal
to four. This upper bound is decreased by two in the same cases in [16,17]. For this special class, the complete study is done in [18], where
it is shown that the maximum number of limit cycles is two. Moreover, this upper bound is reached.

When the separation line is no longer a straight line, it is possible to obtain more than three limit cycles. Braga and Mello in [19]
showed the importance of the separation boundary in the number of bifurcated limit cycles. They proved the existence of piecewise linear
differential systems with two zones in the plane with four, five, six and seven limit cycles, and conjectured that, given n ∈ N, there is a
piecewise linear systemwith two zones in the planewith exactly n limit cycles. Promptly, Novaes and Ponce in [20] gave a positive answer
to this conjecture. Braga and Mello in [21] also showed the existence of a class of discontinuous piecewise linear differential systems with
two zones in the plane having exactly n hyperbolic limit cycles. As it was pointed out in [21], in the obtained examples in [20], the limit
cycles can be nonhyperbolic.

In this article, we highlight once again the importance of the separation line and the number of breaking points in the number of limit
cycles that can appear by perturbation in piecewise linear vector fields. We study the bifurcation of limit cycles by studying higher order
piecewise linear perturbations of a linear center. We follow the procedure described in [4] to study the Σα-piecewise linear vector field
and we get four limit cycles for every α ∈ (0, π) and five for α = π/2. This shows that, in general, one can obtain more limit cycles in
comparison with the case ofΣπ -piecewise linear vector fields. Clearly, the functions to be studied, which ensure the existence of all these
limit cycles, cannot be well defined when α goes to π or to 0. We will come back to this question later.

In the works [19,20] as well as in the present paper, all the considered limit cycles are nested and they intersect Σα only at crossing
points. That is, the limit cycles intersecting the sliding region are not considered. Belowwe give the precise definitions. Besides themethod
used, the main qualitative difference with [19] is that we have only one breaking point which defines the nonregular set in Σα , and not
one between two consecutive limit cycles. Moreover all our limit cycles have this breaking point in its interior. With respect to [20] we
observe that the separation line is analytic.

For analytic vector fields the number of limit cycles usually increases when higher order perturbations are considered. It is well known
that, up to a first order analysis in ε, perturbing the linear center with arbitrary polynomials of degree n, we can only obtain [(n − 1)/2]
limit cycles for the perturbed system, where [·] denotes the integer part function, see [22]. On the other hand but in the same class of
systems, in [23] it is proved that the maximum number of limit cycles is lower than or equal to [N(n−1)/2]. This upper bound, in general,
is reached when n is large enough and N = 2. In many classes of polynomial systems, when N increases, the number of limit cycles
usually stabilizes. The stabilization process depends on the considered family. In [24] this phenomenon is studied for some families. For
example, a concrete class is presented such that the maximum number of limit cycles is 0, 0, 1, 1, 1, 2, 2, 2, 2, 2 when N = 1, . . . , 10.
In [23], considering perturbations of a linear center by quadratic polynomials, it is shown that when N = 1, . . . , 6, the maximum
number of limit cycles is 0, 1, 1, 2, 2, 3, respectively. A higher order study is not necessary because Bautin in [25], for quadratic systems,
proves that at most three limit cycles can appear near a focus or a center. This stabilization phenomenon also appears in piecewise linear
systems. In [4] it is proved that for system (1), with separation line Σπ , the maximum number of limit cycles is 1, 1, 2, 3, 3, 3, 3 when
N = 1, 2, 3, 4, 5, 6, 7, respectively. In this paper we have not shown if the stabilization procedure also appears in general piecewise linear
systems with nonregular separation line because of the computations. But we think that this phenomenon will appear for every family of
systems, as we show in Section 5 for some classes ofΣα-piecewise linear Liénard systems.
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Fig. 1. Filippov convention for (a) crossing, (b) escaping and (c) sliding regions.

Fig. 2. Possible perturbed phase portraits for system (1). The color segments mean noncrossing segments (escaping in red and sliding in blue). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Before the presentation of our main results we introduce some definitions and notation. In our approach, Filippov convention [2]
is considered. Let X = (X+, X−) be a general piecewise vector field with nonregular boundary Σα . We assume that (0, 0) is the only
breaking point. The points on Σ∗

α = Σα \ {(0, 0)} where both vector fields X+ and X− simultaneously point outward or inward for Σ∗
α

define the escaping and sliding regions. The complement of these regions inΣ∗
α , excluding the tangency points of X± withΣα , defines the

crossing (or sewing) region. See these situations in Fig. 1. If the boundary between the two zones is regular (i.e.Σα is a smooth curve), the
definitions of crossing, escaping and sliding regions make sense for any p ∈ Σα .

Any segment S contained in an escaping or a sliding region is called usually a sliding segment. A periodic orbit that intersectsΣα but not
the escaping or sliding region is calledΣα-crossing periodic orbit. When this periodic orbit is isolated, we call itΣα-crossing limit cycle, or
simply crossing limit cycle. In this paper we only study this type of periodic orbits bifurcating from the linear center. In the case when the
separation line is the straight line Σπ , for ε small enough, the sliding segment of system (1) is an open interval that contains the origin.
However, if the separation line is no longer a straight line, system (1) can have more than one sliding segment separated by the breaking
point. Examples of this situation can be seen in Fig. 2. Additionally, for ε small enough in (1), the critical point of X+ and X− is a focus or a
center.

This work is an application of a generalization of Françoise’s method for smooth systems, see [26]. More specifically, the method used
in this work, see [27], is a generalization to piecewise linear systems of the extension to higher order perturbations, see [28], of themethod
of Françoise. The main application in [27] is the computation of the Lyapunov constants for piecewise systems and their use in the center-
focus problem. Other applications of this method can be found in [29,30]. This procedure is useful not only to discuss the weak 16th
Hilbert’s problem, but also to study related problems such that the persistence of centers under small perturbations, and the study of the
period function for centers, see [4].

The method described in [27] is based on a decomposition of certain one-forms associated to the expression of the vector field in polar
coordinates. The decomposition, see Section 2, is done in such a way that it simplifies the computations of the first nonzero term,MN(ρ),
of the expansion in ε of the return map associated to the vector field defined on the positive x-axis, so that

M(ρ, ε) = ρ + εNMN(ρ)+ O(εN+1).

In this case the function MN(ρ) is called the first nonvanishing Poincaré–Pontryagin–Melnikov function. As in smooth systems, for each
simple zero ρ0 of MN(ρ), there exists a hyperbolic limit cycle γε of the perturbed system (1), such that γε goes to γ0 when ε goes to 0,
where γ0 is the level curve {x2 + y2 = ρ2

0 } of the unperturbed system. When Mi = 0 for i = 1, . . . ,N − 1, then the number of zeros of
MN(ρ) determines the upper bound of the number of limit cycles bifurcating from the center of the unperturbed system up to order N .
Our main result is the following.

Theorem 1.1. For system (1) and α ∈ (0, π), the maximum number, ZN , of zeros of the corresponding function MN(ρ) is 1, 2, 2, 3, 4, 5 when
N = 1, . . . , 6. Moreover, for each N ≤ 5, there exist perturbation parameters such that system (1), for ε small enough, exhibits ZN hyperbolic
limit cycles for every α ∈ (0, π). In addition, when α = π/2, for some concrete perturbation parameters and for ε small enough, system (1) has
five limit cycles.

We recall that, in [4], the authors proved that system (1), when the separation line is Σπ , has three limit cycles. In order to compare
with this regular case, a natural question appears: What happens with the extra limit cycles, when they exist, that appear in Theorem 1.1
when α goes to π? Analyzing the functionsMN(ρ) in Section 3, it is possible to show that the radius of at least one of the limit cycles goes
to infinity. Consequently at least one limit cycle goes to infinity when α goes to π . Moreover, if α goes to 0 the system becomes linear so
there are no limit cycles. In this case all the limit cycles go to origin. See Remark 3.3.

This paper is organized as follows. In Section 2 we provide the main tools to prove the results of this work. In Section 3 we study the
maximum number of limit cycles that appears fromΣα-piecewise linear perturbations of a linear center up to a sixth order perturbation.
In addition, we prove the existence of a piecewise linear system with four Σα-crossing limit cycles. For α = π/2, see Section 4, we give
an explicit example with five limit cycles, together with the numerical simulation for small values of ε. Moreover we also get the values of
ε where some of these limit cycles disappear in a semistable limit cycle bifurcation. In Section 5 we show some piecewise linear Liénard
systemswhere the stabilization process, commented previously, appears.We finishwith a concluding section. Although the computations
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Fig. 3. Difference of the half-return maps of system (1).

of this work can be done analytically, due to the size of the expressions that appear in some of the proofs, almost all have been done with
a Computer Algebra System.1

2. Difference map forΣα-piecewise linear systems

This section is devoted to present the main tools that we need to state and prove the results of this paper. We extend toΣα-piecewise
linear vector fields the presentation given in [4] for the Σπ case. The method described uses the decomposition of a one-form given in
[26,32] but for higher order perturbations, in polar coordinates, as was introduced in [27].

Consider a system

X±
: (ẋ, ẏ) =


−y +

N
i=1

εiP±

i (x, y), x +

N
i=1

εiQ±

i (x, y)

,

where P±

i (x, y) and Q±

i (x, y) are analytic functions, defined in the regions Σ±
α , see (1). The above vector field X±, in polar coordinates

(x, y) = (r cos θ, r sin θ), writes as

(ṙ, θ̇ ) =




N
i=1

εiR+

i (r, θ), 1 +

N
i=1

εiΘ+

i (r, θ)


if θ ∈ [0, α),

N
i=1

εiR−

i (r, θ), 1 +

N
i=1

εiΘ−

i (r, θ)


if θ ∈ [α, 2π),

where R±

i ,Θ
±

i are analytic functions in r, sin θ , and cos θ . Then it can also be expressed as
dH +

N
i=1

εiω+

i = 0 if θ ∈ [0, α),

dH +

N
i=1

εiω−

i = 0 if θ ∈ [α, 2π),
(2)

where H(r) = (x2 + y2)/2 = r2/2, and ω±

i = ω±

i (r, θ) are analytic one-forms, 2π-periodic in θ and polynomial in r.
Let r+(θ, ρ, ε) (resp. r−(θ, ρ, ε)) be the solution of X± such that r+(0, ρ, ε) = ρ (resp. r−(0, ρ, ε) = ρ and reversing the angle θ ).

Observe that, for ε small enough, it is well defined in an annular region that does not contain the origin. The periodic orbits are the zeros
of the difference map∆α(ρ, ε) = r+(α, ρ, ε)− r−(−2π + α, ρ, ε), see Fig. 3.

We write the solution r±(θ, ρ, ε) in power series of ε as r±(θ, ρ, ε) =
N

i=0 r
±

i (θ, ρ)ε
i. It can be checked easily that r±(θ, ρ, 0) =

r±

0 (θ, ρ) ≡ ρ and r±

i (0, ρ) ≡ 0. Next proposition provides the first nonvanishing term of the difference map ∆α(ρ, ε) in series of ε and
the relation between its simple zeros with the limit cycles of (2).

Proposition 2.1. Denoting byMN(ρ) = r+

N (α, ρ)−r−

N (−2π+α, ρ), the Poincaré–Pontryagin–Melnikov functions of order N for system (2) are
given by

M1(ρ) = M1(ρ) and MN(ρ) = MN(ρ)

{Mk(ρ)≡0, k=1,...,N−1}, for N ≥ 2.

Moreover, if ρ is a simple zero of MN , then a limit cycle of system (2) exists and it converges to the level curve x2 + y2 = ρ2 when ε goes to zero.

The functionsMN(ρ) depend on the coefficients of the perturbations. But they only coincides with the Poincaré–Pontryagin–Melnikov
functions when the previous ones vanish identically. In the sequel we describe how these functions can be computed. The explicit
expressions of ri(θ, ρ) are given recursively in Theorem 2.3 and explicitly in Corollary 2.4. The functions F , S, and h that appear in those
statements are obtained from the decomposition defined in Lemma 2.2. In particular, Propositions 2.5 and 2.6 and Corollary 2.7 give how
these functions can be written for piecewise linear systems. Finally, a concrete example, for which we show the procedure to obtain the
first nonvanishing terms of its return map, is given in Proposition 2.8.

1 The computations are done with MAPLETM in a Xeon computer (CPU E5-450, 3.0 GHz, RAM 32 Gb) with GNU Linux. See [31].
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Consider now initial the value problemdH +

N
i=1

εiωi = 0,

r(0, ρ, ε) = ρ,

(3)

where H(r) = r2/2 and ωi = ωi(r, θ) are smooth one-forms 2π-periodic in θ . The solution r(θ, ρ, ε) of (3) writes as r(θ, ρ, ε) =N
i=0 ri(θ, ρ)ε

i and it can be checked easily that r(θ, ρ, 0) = r0(θ, ρ) ≡ ρ.

Lemma 2.2 ([27]). Let Ω = α(r, θ)dr + β(r, θ)dθ be an arbitrary analytic one-form, 2π-periodic in θ , and H(r) = r2/2. Then there exist
functions h(r, θ), S(r, θ) and F(r) also 2π-periodic in θ and defined by F(r) =

1
2π

 2π
0 β(r, ψ)dψ, S(r, θ) =

 θ
0 β(r, ψ) dψ − F(r)θ and

h(r, θ) =


α(r, θ)−

∂S(r,θ)
∂r


/H ′(r), such that

Ω = Ω0
+Ω1 where Ω0

= hdH + dS, Ω1
= F(r)dθ,

and 
H=ρ2/2

Ω0
= 0,


H=ρ2/2

Ω1
=


H=ρ2/2

Ω.

Theorem 2.3 ([27]). Let r(θ, ρ, ε) be the solution of (3). Then for any n ∈ N, r(θ, ρ, ε) satisfies the following implicit equation

r2(θ, ρ, ε)− ρ2

2
+ O(εn+1) =

n
i=1

εi
 θ

0
Fi(r(ψ, ρ, ε))dψ + Si(r(ψ, ρ, ε), ψ)|

ψ=θ

ψ=0


, (4)

where the one-formsΩi and the functions Fi(r), hi(r, θ) and Si(r, θ) are defined inductively as follows: h0 = 1,

−Ω1 := −ω1h0 = h1dH + dS1 + F1dθ,

and

−Ωi := −

i
j=1

ωjhi−j = hidH + dSi + Fidθ,

for i = 2, . . . , n using the decomposition given in Lemma 2.2 for the one-forms −Ωi.

From the above theorem we can obtain recursively the expressions of rn(θ, ρ). Next result provides their explicit expressions up to
sixth order.

Corollary 2.4. Let r(θ, ρ, ε) =
N

i=0 ri(θ, ρ)ε
i be the solution of (3). Assume that the functions r0(θ, ρ) = ρ, r1(θ, ρ), r2(θ, ρ), . . . ,

rn−1(θ, ρ) are known. Then rn(θ, ρ) can be obtained equating the terms of order εn in both sides of Eq. (4). In fact, this equality writes

ρ rn(θ, ρ) = Fn(θ, ρ, r1, . . . , rn−1), (5)

where Fn depends on the one-forms ω1, ω2, . . . , ωn, through the corresponding Fi, Si and ri = ri(θ, ρ) for i = 1, 2, . . . , n. In particular,

F1 = S1 + F1θ,

F2 = −
1
2 r

2
1 + S2 + D1(S1)r1 + F2θ + F ′

1I(r1),

F3 = −r1r2 + S3 + r1D1(S2)+
1
2 r

2
1D

2
1(S1)+ r2D1(S1)+ F3θ +

1
2F

′′

1 I(r
2
1 )+ F ′

1I(r2)+ F ′

2I(r1),

F4 = −r1r3 −
1
2 r

2
2 + S4 + r1D1(S3)+

1
2 r

2
1D

2
1(S2)+ r2D1(S2)+

1
6 r

3
1D

3
1(S1)

+ r1r2D2
1(S1)+ r3D1(S1)+ F4θ + F ′

3I(r1)+
1
2F

′′

2 I(r
2
1 )+ F ′′

2 I(r2)+
1
6F

(3)
1 I(r31 )+ F ′′

1 I(r1r2)+ F ′

1I(r3),

F5 = r1r4 − r2r3 + S5 + r1D1(S4)+
1
2 r

2
1D

2
1(S3)+ r2D1(S3)+

1
6 r

3
1D

3
1(S2)+ r1r2D2

1(S2)

+ r3D1(S2)+
1
24 r

4
1D

4
1(S1)+

1
2 r

2
1 r2D

3
1(S1)+ r1r3D2

1(S1)+
1
2 r

2
2D

2
1(S1)+ r4D1(S1)

+ F5θ + F ′

4I(r1)+
1
2F

′′

3 I(r
2
1 )+ F ′

3I(r2)+
1
6F

(3)
2 I(r31 )+ F ′′

2 I(r1r2)+ F ′

2I(r3)

+
1
24F

(4)
1 I(r41 )+

1
2F

(3)
1 I(r21 r2)+ F ′′

1 I(r1r3)+
1
2F

′′

1 I(r
2
2 )+ F ′

1I(r4),

F6 = −r1r5 − r2r4 −
1
2 r

2
3 + S6 + r1D1(S5)+

1
2 r

2
1D

2
1(S4)+ r2D1(S4)+

1
6 r

3
1D

3
1(S3)

+
1
2 r

2
2D

2
1(S2)+ r1r2D2

1(S3)+ r3D1(S3)+
1
24 r

4
1D

4
1(S2)+

1
2 r

2
1 r2D

3
1(S2)

+ r1r3D2
1(S2)+ r4D1(S2)+

1
120 r

5
1D

5
1(S1)+

1
6 r

3
1 r2D

4
1(S1)+

1
2 r

2
1 r3D

3
1(S1)

+
1
2 r1r

2
2D

3
1(S1)+ r1r4D2

1(S1)+ r2r3D2
1(S1)+ r5D1(S1)+ F6θ + F ′

5I(r1)
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+
1
2F

′′

4 I(r
2
1 )+ F ′

4I(r2)+
1
6F

(3)
3 I(r31 )+ F ′′

3 I(r1r2)+ F ′

3I(r3)+
1
24F

(4)
2 I(r41 )

+
1
2F

(3)
2 I(r21 r2)+ F ′′

2 I(r1r3)+
1
2F

′′

2 I(r
2
2 )+ F ′

2I(r4)+
1

120F
(5)
1 I(r51 )+

1
6F

(4)
1 I(r31 r2)

+
1
2F

(3)
1 I(r21 r3)+

1
2F

(3)
1 I(r1r22 )+ F ′′

1 I(r1r4)+ F ′′

1 I(r2r3)+ F ′

1I(r5).

Here f (i) =
dif (r)
dr i


r=ρ
,D(i)1 (f ) =

∂ if (r,θ)
∂r i


r=ρ

, and I(f ) =
 θ
0 f (ψ, ρ)dψ.

We remark that in general, from (5), we cannot extend the return map to the origin. More precisely the functions Mi(ρ), in
Proposition 2.1, can have a singularity at the origin. This fact is shown in the example described in Proposition 2.8. Next two propositions,
proved in [4], provide the expressions for Fi, hi, and Si for piecewise linear systems.

Proposition 2.5. Consider the system

(ẋ, ẏ) =


−y +

N
i=1

εi(a0i + a1ix + a2iy), x +

N
i=1

εi(b0i + b1ix + b2iy)

. (6)

For any n ∈ N, the functions Fi(r), Si(r, θ) and hi(r, θ), for i = 1, . . . , n, provided by Theorem 2.3, can be rewritten in the following form:
Fi(r) = fir2, Si(r, θ) = p1,i(θ)r +p2,i(θ)r2 and hi(r, θ) = gi, for i = 1, . . . , n, with fi and gi real numbers and pk,i homogeneous trigonometric
polynomials of degree k.

Proposition 2.6. For any n ∈ N, given the functions Fi(r) = fir2, Si(r, θ) = p1,i(θ)r + p2,i(θ)r2 and hi(r, θ) = gi, for i = 1, . . . , n, obtained
in Proposition 2.5 and the functions ri(θ, ρ), for i = 1, . . . , n − 1, we have

rn(θ, ρ) = ρ[fnθ + p2,n(θ)− p2,n(0)] +


p1,n(θ)− p1,n(0)+ 2

n−1
j=1


p2,n−j(θ)rj(θ, ρ)+ fn−j

 θ

0
rj(ψ, ρ)dψ


+

1
ρ

n−1
j=1


−

1
2
rj(θ, ρ)rn−j(θ, ρ)+ p1,n−j(θ)rj(θ, ρ)

+

j−1
k=1


p2,n−j(θ)rk(θ, ρ)rj−k(θ, ρ)+ fn−j

 θ

0
rk(ψ, ρ)rj−k(ψ, ρ)dψ


.

We can use Propositions 2.5 and 2.6 to obtain, recursively, the explicit expressions for ri(α, ρ) and ri(−2π + α, ρ). Due to the size of
them, next corollary provides only the first two.

Corollary 2.7. Let r(θ, ρ, ε) =
N

i=1 ri(θ, ρ)ε
i be the solution of system (6), written in polar coordinates. Then,

r1(α, ρ) = b01(1 − cosα)+ a01 sinα +

(a11 + b21)α + (a21 + b11) sin2 α + (a11 − b21) cosα sinα


ρ/2,

r1(−2π + α, ρ) = r1(α, ρ)− π(a11 + b21)ρ,

r2(α, ρ) =
 1
2 (a

2
01 − b201) sin

2 α − a01b01 sinα cosα

ρ−1

+

b02 + a01(a11 + b21)

− b01b11 +
1
2b01(a11 + b21)α + (a02 + a01a21 − b01(a11 + b21)) sinα

+ (−b02 − a01(a11 + b21)+ b01b11) cosα +
1
2b01(a11 − b21) sinα cosα

+
1
2b01(a21 + b11) sin2 α + (a01(a11 − b21)− b01(a21 + b11)) sin2 α cosα

− (a01(a21 + b11)+ b01(a11 − b21)) sinα cos2 α

+
 1
8 (4a22 + 4b12

+ a21b11 − b211 + 3a221 + 2a211 − 2b221)+
1
8 (a11 + b21)2α2

+
1
2 (a12 + b22

+ a21(a11 + b21))α −
1
4 (a11 + b21)(a21 + b11)α cos2 α +

 1
4 (a

2
11 − b221)α

+
1
2 (a11a21 − b11b21 − 2a21b21 + a12 − b22)


sinα cosα +

1
8 (a

2
11 − 4b12

− 2b211 − 6a221 + 5b221 − 4a22 − 8a21b11 − 6a11b21) cos2 α +
3
4 (b21 − a11)

× (a21 + b11) sinα cos3 α +
3
8 ((a21 + b11)2 − (a11 − b21)2) cos4 α


ρ,

r2(−2π + α, ρ) = r2(α, ρ)− πb01(a11 + b21)+

−
π
2 (2(a12 + b22)+ (a11 + b21)(a21 − b11))

+
π
2 (a11 + b21)2(π − α)−

π
2 (a

2
11 − b221) sinα cosα −

π
2 (a11 + b21)(a21 + b11) sin2 α


ρ.

Proof. The expressions of r1(θ, ρ) and r2(θ, ρ) can be obtained using Corollary 2.4 or Proposition 2.6. The statement follows evaluating
r1(θ, ρ) and r2(θ, ρ) in θ = α and θ = −2π + α. �

Finally, we exemplify the algorithm of this section with the following proposition. Result below gives an example of a piecewise linear
perturbation of the linear center that exhibits two limit cycles when α = π/2.
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Proposition 2.8. Consider, inΣ±
π
2
, the system

X+
: (ẋ, ẏ) = (−y + (1 − 3x)ε − 8π−1xε2, x),

X−
: (ẋ, ẏ) = (−y + (1 + x)ε − 4ε2 + (β1x + β2)ε

3, x),
(7)

with β1 = (3π2
+8π−48)/(3π2) and β2 = (3π2

+10π−8)/π . It has two hyperbolic limit cycles Γ ε
1 and Γ ε

2 , for ε small enough. Moreover,
when ε goes to 0, the limit cycles Γ ε

1 and Γ ε
2 go to the circles x2 + y2 = 1 and x2 + y2 = 4, respectively.

Proof. We will prove that the first two Poincaré–Pontryagin–Melnikov functions vanish identically and the third one has exactly two
simple zeros. The statement follows using Proposition 2.1.

Firstly, we write system (7) in the polar form. The vector fields X± write as

(ṙ, θ̇ ) =


Y+

1 (r, θ), Y
+

2 (r, θ)


if θ ∈ [0, π/2),
Y−

1 (r, θ), Y
−

2 (r, θ)


if θ ∈ [π/2, 2π),
(8)

where

Y+

1 (r, θ) = cos θ(1 − 3r cos θ)ε − 8π−1r cos2 θε2,

Y+

2 (r, θ) = 1 − r−1 sin θ(1 − 3r cos θ)ε + 8π−1 sin θ cos θε2,

Y−

1 (r, θ) = cos θ(1 + r cos θ)ε − 4 cos θε2 + cos θ(β2 + β1r cos θ)ε3,

Y−

2 (r, θ) = 1 − r−1 sin θ(1 + r cos θ)ε + 4r−1 sin θε2 − r−1 sin θ(β2 + β1r cos θ)ε3.

System (8) can also be expressed as
W+(r, θ) if θ ∈ [0, π/2),
W−(r, θ) if θ ∈ [π/2, 2π),

where

W+(r, θ) = rdr − (1 − 3r cos θ)(sin θdr + r cos θdθ)ε + 8π−1r cos θ(sin θdr + r cos θdθ)ε2,

W−(r, θ) = rdr − (1 + r cos θ)(sin θdr + r cos θdθ)ε + 4(sin θdr + r cos θdθ)ε2 − (β2 + β1r cos θ)(sin θdr + r cos θdθ)ε3.

The analytic one-forms ω±

i , defined in system (2), for system (8) are given by

ω+

1 (r, θ) = −(1 − 3r cos θ)(sin θdr + r cos θdθ),

ω+

2 (r, θ) = 8π−1r cos θ(sin θdr + r cos θdθ),

ω−

1 (r, θ) = −(1 + r cos θ)(sin θdr + r cos θdθ),

ω−

2 (r, θ) = 4(sin θdr + r cos θdθ),

ω−

3 (r, θ) = −(β1r cos θ + β2)(sin θdr + r cos θdθ),

and ω+

3 (r, θ) = 0.
Let r±(θ, ρ, ε) = r±

0 (θ, ρ) + r±

1 (θ, ρ)ε + r±

2 (θ, ρ)ε
2

+ r±

3 (θ, ρ)ε
3 be the solution of the initial value problem W±(r, θ) =

0, r±(0, ρ, ε) = ρ. It is easy to check that r±

0 (θ, ρ) ≡ ρ and r±

i (0, ρ) = 0.
Nowwe start with the computation of the first order term of the differencemap.We use Lemma 2.2 in order to obtain a decomposition

of the one-forms Ω±

1 defined in Theorem 2.3. If we write them as −Ω±

1 (r, θ) = −ω±

1 = α±

1 (r, θ)dr + β±

1 (r, θ)dθ , then the functions
F±

1 (r), S
±

1 (r, θ) and h±

1 (r, θ) are obtained from the decomposition of Lemma 2.2 of the one-forms −Ω±

1 . Consequently,

F±

1 (r) =
1
2π

 2π

0
β±

1 (r, ψ)dψ, h±

1 (r, θ) =
1
r


α±

1 (r, θ)− D1(S±

1 )(r, θ)


S±

1 (r, θ) =

 θ

0
β±

1 (r, ψ) dψ − F±

1 (r)θ.

Thus, after some direct calculations, we obtain the following expressions:

F+

1 (r) = −3r2/2, S+

1 (r, θ) = r sin θ − 3r2 sin(2θ)/4, h+

1 (r, θ) = 0,

F−

1 (r) = r2/2, S−

1 (r, θ) = r sin θ + r2 sin(2θ)/4, h−

1 (r, θ) = 0.

In order to obtain r±

1 (θ, ρ), from Corollary 2.4, we need to solve the equation ρ r±

1 (θ, ρ) = F±

1 (ρ)θ+S±

1 (ρ, θ)−S±

1 (ρ, 0), which simplifies
to

ρ r+

1 (θ, ρ) = −3(θ + cos θ sin θ)ρ2/2 + ρ sin θ,

ρ r−

1 (θ, ρ) = (θ + cos θ sin θ)ρ2/2 + ρ sin θ.

Therefore, r+

1 (θ, ρ) = −3(θ + cos θ sin θ)ρ/2 + sin θ and r−

1 (θ, ρ) = (θ + cos θ sin θ)ρ/2 + sin θ . Consequently r+

1 (π/2, ρ) =

r−

1 (−3π/2, ρ) = −3πρ/4 + 1 and the first coefficient of the difference mapM1(ρ) ≡ 0.
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For the second order term we use again Lemma 2.2 to decompose the one-forms

−Ω+

2 = −ω+

1 h+

1 − ω+

2 = −ω+

2 = −8π−1r cos θ sin θdr − 8π−1r2 cos2 θdθ,
−Ω−

2 = −ω−

1 h−

1 − ω−

2 = −ω−

2 = −4 sin θdr − 4r cos θdθ.

We write them as −Ω±

2 (r, θ) = α±

2 (r, θ)dr + β±

2 (r, θ)dθ . The functions F±

2 , S
±

2 and h±

2 are given by

F+

2 (r) =
1
2π

 2π

0
β+

2 (r, ψ)dψ =
1
2π

 2π

0
−

8r2 cos2 ψ
π

dψ = −
4
π
r2,

S+

2 (r, θ) =

 θ

0
β+

2 (r, ψ) dψ − F+

2 (r)θ =

 θ

0
−

8r2 cos2 ψ
π

dψ +
4
π
r2θ = −

2
π
r2 sin(2θ),

h+

2 (r, θ) = r−1(α+

2 (r, θ)− D1(S+

2 )(r, θ)) = r−1(−8π−1r cos θ sin θ)+ 4π−1r sin(2θ) = 0,

F−

2 (r) =
1
2π

 2π

0
β−

2 (r, ψ)dψ =
1
2π

 2π

0
−4r cosψdψ = 0,

S−

2 (r, θ) =

 θ

0
β−

2 (r, ψ) dψ − F−

2 (r)θ =

 θ

0
−4r cosψ dψ = −4r sin θ,

h−

2 (r, θ) = r−1(α−

2 (r, θ)− D1(S−

2 )(r, θ)) = r−1(−4 sin θ + 4 sin θ) = 0.

In order to obtain r±

2 (θ, ρ), again from Corollary 2.4, we need to solve the equations ρ r±

2 (θ, ρ) = F ±

2 (θ, ρ, r1), where

F ±

2 = F±

2 (ρ)θ +


S±

2 (ρ, ψ)+
∂S±

1

∂r
(ρ, ψ)r±

1 (ψ, ρ)

ψ=θ

ψ=0
−

1
2
r±

1 (θ, ρ)
2
+ (F±

1 )
′(ρ)

 θ

0
r±

1 (ψ, ρ)dψ.

From these equations we obtain the following expressions for the functions r±

2 (θ, ρ)

r+

2 (θ, ρ) =


9
4

−
4θ
π

+
9θ2

8
+

9
8


1 − 3 cos2 θ


cos2 θ +


9θ
4

−
4
π


cos θ sin θ


ρ + 3 cos3 θ − 3 +

sin2 θ

2ρ
,

r−

2 (θ, ρ) =


1
4

+
θ2

8
+

1
8


1 − 3 cos2 θ


cos2 θ +

θ

4
cos θ sin θ


ρ − cos3 θ − 4 sin θ + 1 +

sin2 θ

2ρ
.

Consequently r+

2 (π/2, ρ) = r−

2 (−3π/2, ρ) = (9π2
+ 8)ρ/32 − 3 + 1/(2ρ) and M2(ρ) ≡ 0.

We finishwith the third order term.We use again Lemma 2.2 to decompose the one-forms−Ω+

3 = −ω+

1 h+

2 −ω+

2 h+

1 −ω+

3 = −ω+

3 = 0
and −Ω−

3 = −ω−

1 h−

2 − ω−

2 h−

1 − ω−

3 = −ω−

3 . The expression for ω−

3 can be found above. Similarly as in the first and second order, one
can compute the functions F±

3 , S
±

3 and h±

3 that appear in the decomposition of Lemma 2.2 of the one-forms −Ω±

3 . They are given by
F−

3 (r) = β1r2/2, S−

3 (r, θ) = β2r sin θ + β1r2 sin(2θ), and h±

3 (r, θ) = F+

3 (r) = S+

3 (r, θ) = 0.
Using again Corollary 2.4, we can obtain the functions r±

3 (θ, ρ). For simplicity, we omit the expressions of them. Consequently,

r+

3 (π/2, ρ) = −3(3π4
+ 44π2

− 512)ρ/(128π)+ (9π2
− 32)/(4π)− 3π/(8ρ),

r−

3 (−3π/2, ρ) = −(9π4
+ 132π2

+ 256π − 1536)/(128π)ρ + (9π2
+ 24π − 32)/(4π)− (3π + 32)/(8ρ),

andM3(ρ) = 2(ρ−1)(ρ−2)/ρ. The proof finishes because ρ = 1 and ρ = 2 are two simple zeros ofM3(ρ) andM1(ρ) ≡ M2(ρ) ≡ 0. �

3. Higher order perturbations forΣα-piecewise linear systems

In this sectionwe study thenumber of limit cycles that appear frompiecewise linear perturbations up to order six of a linear centerwhen
the separation line has only a breaking point. The next result provides themaximumnumber of zeros of the Poincaré–Pontryagin–Melnikov
function of order N for the first values of N.

Proposition 3.1. For system (1), the maximum number of zeros of the corresponding function MN(ρ) is 1, 2, 2, 3, 4, 5 when N = 1, . . . , 6.

Proof. Let P±

i (x, y) = a±

0i + a±

1ix + a±

2iy and Q±

i (x, y) = b±

0i + b±

1ix + b±

2iy be the polynomials defined in (1). By Propositions 2.5 and 2.6
and Corollary 2.7, substituting the parameters a0i, a1i, a2i, b0i, b1i and b2i by the respective a±

0i, a
±

1i, a
±

2i, b
±

0i, b
±

1i and b±

2i , we get r+

i (α, ρ) and
r−

i (−2π + α, ρ), for i = 1, . . . , 6. So, from Proposition 2.1 we have that

M1(ρ) = M1(ρ) = (a+

01 − a−

01) sinα + (b+

01 − b−

01)(1 − cosα)

+
1
2


(a+

11 − a−

11)(α + sinα cosα)+ (b+

21 − b−

21)(α − sinα cosα)

+ (a+

21 − a−

21 + b+

11 − b−

11) sin
2 α + 2π(a−

11 + b−

21)

ρ = C0,1 + C1,1ρ.

In general, for 2 ≤ i ≤ 6, the Poincaré–Pontryagin–Melnikov functions write as

Mi(ρ) =

1
j=1−i

Cj,i(λi)ρ
j,
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where Cj,i(λ) are polynomials of degree i in the variables

λ = (a±

01, a
±

11, a
±

21, b
±

01, b
±

11, b
±

21, . . . , a
±

0i, a
±

1i, a
±

2i, b
±

0i, b
±

1i, b
±

2i).

We omit the explicit expressions of the polynomials Cj,i(λi) because of the size of them. We have that M1(ρ) ≡ 0 if and only if
C0,1 = C1,1 = 0, that is

a−

01 = (sinα)−1a+

01 sinα + (b+

01 − b−

01)(1 − cosα)

,

a−

11 = (α − 2π + sinα cosα)−1

a+

11(α + sinα cosα)+ (b+

21 − b−

21)(α − sinα cosα)

+ (a+

21 − a−

21 + b+

11 − b−

11) sin
2 α + 2πb−

21


.

(9)

Then, the polynomial C−1,2 corresponding to function M2(ρ) becomes

C−1,2 = (b−

01 − b+

01)

a+

01 sinα + b+

01(1 − cosα)

.

If b−

01 ≠ b+

01, then C−1,2 ≡ 0 if and only if

a+

01 =
(cosα − 1)b+

01

sinα
. (10)

Imposing that the parameters a−

01, a
−

11 and a+

01 are like in (9) and (10) we obtain that C−2,3 = C−3,4 = C−4,5 = C−5,6 = 0. This shows that
the degrees of the functions M3(ρ),M4(ρ),M5(ρ), and M6(ρ) are at most 2, 3, 4, and 5, respectively. Therefore, when N = 1, . . . , 6, the
maximum number of zeros of MN(ρ) is 1, 2, 2, 3, 4, 5, respectively. The proof concludes because the zeros ofMN(ρ) and MN(ρ) agree. �

The result below shows the existence of an example of a piecewise linear perturbation of the linear center that exhibits four limit cycles
when the separation line is nonregular.

Proposition 3.2. For every α ∈ (0, π), there exist real numbers a+

01, a
+

11, a
+

21, a
+

02, a
+

22, a
+

03, a
+

04, a
−

0i , and a−

1i , for i = 1, . . . , 5, such that the
system

X+
:


ẋ = −y + (a+

01 + a+

11x + a+

21y)ε + (a+

02 + a+

22y)ε
2

+ a+

03ε
3
+ a+

04ε
4,

ẏ = x + 2ε,

X−
:

ẋ = −y +

5
i=1

εi(a−

0i + a−

1ix),

ẏ = x + ε,

(11)

has 4 hyperbolic limit cycles, for ε small enough.

Proof. From the procedure described in Section 2, Proposition 2.6, and Corollary 2.7we get r+

i (α, ρ) and r−

i (−2π+α, ρ), for i = 1, . . . , 5.
So, from Proposition 2.1, we have that the Poincaré–Pontryagin–Melnikov functions, for i = 1, . . . , 5, write as

Mi(ρ) =

1
j=1−i

Cj,i(λ)ρ
j,

where Cj,i(λ) are given polynomials of degree i in the variables

λ = (a±

01, a
±

02, a
±

03, a
±

04, a
−

05, a
±

11, a
−

12, a
−

13, a
−

14, a
−

15, a
+

21, a
+

22).

We start with a short scheme of the proof. We prove that, for every α, there are parameters λ such that M1(ρ) ≡ M2(ρ) ≡ M3(ρ) ≡

M4(ρ) ≡ 0 and

M5(ρ) = G0ρ
−3

+ G1ρ
−2

+ G2ρ
−1

+ G3 + ρ

where Gi for i = 0, . . . , 3 are arbitrary constants. Therefore, M5(ρ) can have 4 simple zeros. For that we consider a sequence of systems
of equations, Ek, k = 1, . . . , 7, involving the coefficients of M1, . . . ,M5 with respect to ρ, which are denoted by Cj,i(λ). The systems Ek are
linear with respect to a specific collection of variables, λk, that are a subset of the full parameter λ. More precisely we follow the next steps.
First we start considering the system of equations, E1(α), defined by the coefficients of the function M1(ρ). Solving E1(α)with respect to
λ1 we vanish identicallyM1(ρ). The second system, E2, is defined by the coefficient of lower degree ofM2. As in the proof of Proposition 3.1,
when this coefficient vanishes all the coefficients of lower degree of M3,M4, and M5 also vanish. For each k = 3, . . . , 7, we consider the
system Ek(α) formed by the polynomials Cj,i(λ) such that j + i = k − 1. Step by step, we show that there are variables λk such that,
with respect to them, the system Ek(α) is linear and it can be uniquely solved. The determinant of the corresponding matrix Ak(α) of the
coefficients of Ek(α)with respect to λk is nonzero, for all α ∈ (0, π), so that there exists a unique solution such that M5 has indeterminate
coefficients.
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Now we continue with the full proof. For the vector fields X+ and X−, using the method of Section 2 the functions F±

i , h
±

i , and S±

i in
Proposition 2.5 write as

F+

1 (r) =
1
2a

+

11r
2, h+

1 (r, θ) =
1
2a

+

21,

F+

2 (r) =
1
4a

+

11a
+

21r
2, h+

2 (r, θ) =
1
4


(a+

21)
2
+ 2a+

22


,

F+

3 (r) =
1
8a

+

11


(a+

21)
2
+ 2a+

22


r2, h+

3 (r, θ) =
1
8


(a+

21)
3
+ 4a+

21a
+

22


,

F+

4 (r) =
1
16a

+

11


(a+

21)
3
+ 4a+

21a
+

22


r2, h+

4 (r, θ) =
1
16


(a+

21)
4
+ 6(a+

21)
2a+

22 + 4(a+

22)
2

,

F+

5 (r) =
1
32a

+

11


(a+

21)
4
+ 6(a+

21)
2a+

22 + 4(a+

22)
2

r2, h+

5 (r, θ) =
1
32


(a+

21)
5
+ 8(a+

21)
3a+

22 + 12a+

21(a
+

22)
2

,

F−

i (r) =
1
2a

−

1ir
2, for i = 1, . . . , 5, h−

i (r, θ) = 0, for i = 1, . . . , 5,

S−

1 (r, θ) =
1
2


2a−

01 + a−

11r cos θ

r sin θ − r cos θ,

S−

i (r, θ) =
1
2


2a−

0i + a−

1ir cos θ

r sin θ, for i = 2, . . . , 5,

S+

1 (r, θ) =
1
4 r

4a+

01 sin θ − 8 cos θ + 2a+

11r sin θ cos θ + a+

21r(1 − 2 cos2 θ)

,

S+

2 (r, θ) =
1
8 r

(4(a+

01a
+

21 + 2a+

02)+ 2a+

11a
+

21r cos θ) sin θ + ((a+

21)
2
+ a+

22)r(1 − 2 cos2 θ)− 8a+

21 cos θ

,

S+

3 (r, θ) =
1
16 r

4(a+

01(a
+

21)
2
+ 2a+

01a
+

22 + 2a+

21a
+

02 + 4a+

03) sin θ + 2(a+

11(a
+

21)
2
+ 2a+

11a
+

22)r sin θ cos θ

+ a+

21((a
+

21)
2
+ 4a+

22)r(1 − 2 cos2 θ)− 8((a+

21)
2
+ 2a+

22) cos θ

,

S+

4 (r, θ) =
1
32 r

4(a+

01(a
+

21)
3
+ 4a+

01a
+

21a
+

22 + 2(a+

21)
2a+

02 + 4a+

02a
+

22 + 4a+

21a
+

03 + 8a+

04) sin θ

− 8((a+

21)
3
+ 4a+

21a
+

22) cos θ + 2(a+

11(a
+

21)
3
+ 4a+

11a
+

21a
+

22)r sin θ cos θ

+ ((a+

21)
4
+ 6(a+

21)
2a+

22 + 4(a+

22)
2)r(1 − 2 cos2 θ)


,

S+

5 (r, θ) =
1
64 r

4

a+

01(a
+

21)
4
+ 4a+

01(a
+

22)
2
+ 2(a+

21)
3a+

02 + 4(a+

21)
2a+

03 + 8a+

03a
+

22 + 8a+

04a
+

21 + 6a+

01(a
+

21)
2a+

22

+ 8a+

02a
+

21a
+

22


sin θ − 8


(a+

21)
4
+ 6(a+

21)
2a+

22 + 4(a+

22)
2 cos θ + 2


a+

11(a
+

21)
4
+ 6a+

11(a
+

21)
2a+

22

+ 4a+

11(a
+

22)
2
+ ((a+

21)
5
+ 8(a+

21)
3a+

22 + 12a+

21(a
+

22)
2)r(1 − 2 cos2 θ)


r sin θ cos θ


.

The first step starts defining E1(α) and λ1. We have that the coefficients C0,1 and C1,1 of the function M1(ρ) are linear with respect to
variables a−

01, a
+

01, a
−

11, a
+

11, and a+

21. Consequently E1(α) = {C0,1 = 0, C1,1 = 0} and λ1 = (a−

01, a
−

11), where

C0,1 = (a+

01 − a−

01) sinα + 1 − cosα,

C1,1 =
1
2


(a+

11 − a−

11)(α + sinα cosα)+ a+

21 sin
2 α + 2a−

11π


.

Let A1(α) be the matrix of the coefficients of E1(α) with respect to λ1. We have that det A1(α) = sinα(cosα sinα − 2π + α)/2 ≠ 0, for
all α ∈ (0, π), so that there exists a unique solution of system E1(α). That is

a−

01 =
1 + a+

01 sinα − cosα
sinα

, a−

11 =
a+

11α + a+

21 sin
2 α + a+

11 sinα cosα
α − 2π + sinα cosα

.

Then we obtain that M1(ρ) ≡ 0.
The second step continues considering the coefficients of M2(ρ):

C−1,2 = −a+

01 sinα + 2(cosα − 1),
C0,2 = −a−

02 sinα + U2(a+

01, a
+

02, a
+

11, a
+

21),

C1,2 =
1
2
a−

12


2π − α − sinα cosα


+ V2(a+

11, a
+

21, a
+

22),

where U2 and V2 are polynomials of degree two in the respective parameters. Note that C−1,2 is linear with respect to the variable a+

01.
Consequently E2(α) = {C−1,2 = 0} and λ2 = (a+

01). If we denote by A2 the matrix of the coefficients of U2 with respect to λ2, in fact A2 is a
real number, we see that det A2(α) = − sinα ≠ 0, for all α ∈ (0, π). So the solution of E2(α)with respect to λ2 is

a+

01 = 2
cosα − 1

sinα
.

As we have mentioned before, this implies that the coefficients C−2,3, C−3,4, and C−4,5 also vanish.
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For the last steps we omit, due to the size of them, the explicit expression of the polynomials Cj,i(λ), for i = 3, 4, 5. In what follows we
only explicit the systems Ek and the variables λk aforementioned:

E3(α) = {C0,2 = 0, C−1,3 = 0, C−2,4 = 0, C−3,5 = G0}, λ3 = (a−

02, a
+

02, a
+

21, a
+

11),

E4(α) = {C1,2 = 0, C0,3 = 0, C−1,4 = 0, C−2,5 = G1}, λ4 = (a−

12, a
+

22, a
−

03, a
+

03),

E5(α) = {C1,3 = 0, C0,4 = 0, C−1,5 = G2}, λ5 = (a−

13, a
−

04, a
+

04),

E6(α) = {C1,4 = 0, C0,5 = G3}, λ6 = (a−

14, a
−

05),

E7(α) = {C1,5 = 1}, λ7 = (a−

15).

The determinants of the respective matrices Ak(α), for k = 3, . . . , 7 are

det A3(α) =
8(cosα − 1)3(7 cos2 α − 24π sinα + 15α sinα + 16 cosα − 23)

9(cosα + 1)(cosα sinα − 2π + α)
,

det A4(α) = −(cosα − 1)2(2 cosα sinα + 6π cosα − 3α cosα + 4 sinα + 6π − 3α)/3,

det A5(α) = − sin2 α(cosα sinα − 2π + α)/2,

det A6(α) = −(cos3 α − 2π sinα + α sinα + cosα)/2,
det A7(α) = −(cosα sinα + 2π − α)/2.

Simple calculations show that all of above determinants are nonzero for all α ∈ (0, π). So that there exists a unique solution of each
system Ek(α)with respect to variables λk such that Mi ≡ 0 for i = 1, . . . , 4 and the coefficients of M5 are Gk for k = 0, . . . , 3.

The proof finishes from the Implicit Function Theorem that guarantees that each simple zero, ρj, of Mi, or equivalently Mi, gets a limit
cycle for system (11). In fact the limit cycles bifurcate from the circles x2 + y2 = ρ2

j , for ε small enough. �

We note that, usually when we study a Poincaré–Pontryagin–Melnikov function of some given order, we have proved first that the
previous vanish identically. That is, for each order we solve the system of equations defined by all the coefficients of the corresponding
function. In the above proofwe have used another approach to prove that the fifth function has indeterminate coefficients and the previous
are identically zero. In each step the system is defined from the coefficients of lower degreemonomials of all the functions simultaneously.

Remark 3.3. It is not difficult to check that when α goes to π , the coefficient C−3,5 of the function M5(ρ) goes to infinity. Once C−3,5 is
defined by the product of the radius of the four limit cycles, at least one radius goes to infinity. This means that when α goes to π , at least
one limit cycle goes to infinity. When α goes to 0 all of the coefficients of the functions Mi(ρ), for i = 1, . . . , 5, except the one of maximal
degree, go to zero. Therefore all of the limit cycles go to origin. In particular, when α goes to 0 the system becomes a purely linear system,
for which it is known that no limit cycles exist.

The proof of the first part of Theorem 1.1 follows directly from Propositions 3.1 and 3.2. The second part is proved in the next section.

4. An explicit example with five limit cycles

In this section first we provide an example of a concrete system (1), with α = π/2, exhibiting five limit cycles up to a perturbation of
order 6. Second we give the values where two of the limit cycles, that appear from the level curves of the center, disappear in a semistable
limit cycle bifurcation. Similar systems can be obtained for other values of α, like α = π/3 or α = π/4, but the expressions to manipulate
are too big to provide the same result for every α. In fact this can be used as an illustration of Proposition 3.2 where another type of
piecewise linear system has four limit cycles up to a perturbation of order 5, but for any α.

Proposition 4.1. Consider, inΣ±
π
2
, the system

X±
: (ẋ, ẏ) =


−y +

6
i=1

εi(a±

0i + a±

1ix), x +

6
i=1

εi(b±

0i + b±

1ix)

, (12)

with a−

03 = a−

04 = a−

06 = a−

12 = a−

13 = a−

14 = a−

15 = b−

01 = b−

02 = b−

03 = b−

05 = b−

06 = b−

12 = b−

13 = b−

14 = b−

15 = b−

16 = a+

02 = a+

06 = a+

14 =

a+

15 = a+

16 = b+

01 = b+

05 = b+

06 = b+

11 = b+

16 = 0, a−

01 = a+

01 = 1 and

a−

11 =
137(3π − 8)
200(3π + 8)

, b+

13 =
137π b̃+

13

48 · 106(3π − 8)2(3π + 8)3
,

b−

11 = −
274π

25(3π + 8)
, b−

04 = −
b̃−

04

2304 · 106(3π − 8)2(3π + 8)3
,

a+

11 = −
137(9π + 8)
200(3π + 8)

, a+

04 =
137π ã+

04

96 · 106(3π − 8)2(3π + 8)3
,

a−

02 = −
137π

25(3π + 8)
, b+

04 = −
b̃+

04

2304 · 106(3π − 8)2(3π + 8)3
,

a+

12 =
18769π(9π − 8)

5000(3π + 8)2(3π − 8)
, b+

14 = −
18769π b̃+

14

384 · 108(3π − 8)2(3π + 8)4
,
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b+

02 =
137π

50(3π + 8)
, a−

05 = −
ã−

05

442368 · 108(3π − 8)3(3π + 8)4
,

b+

12 = −
56307π(9π3

− 4π2
− 24π − 64)

104(3π + 8)2(3π − 8)
, a+

05 = −
ã+

05

442368 · 108(3π − 8)3(3π + 8)4
,

a+

03 = −
18769π(27π3

− 18π2
− 8π − 320)

2 · 104(3π + 8)2(3π − 8)
, b+

15 =
2571353π b̃+

15

1536 · 1011(3π − 8)3(3π + 8)5
,

a+

13 =
137π ã+

13

8 · 106(3π − 8)2(3π + 8)3
, a−

16 = −
137ã−

16

55296 · 1013(3π − 8)4(3π + 8)6
,

b+

03 =
18769π(3π2

− 19π + 24)
5000(3π + 8)2(3π − 8)

,

with

ã−

05 = 4181103066129489π11
− 81708322605754392π10

+ 718656846864896880π9

− 3513609133038501120π8
+ 14146051889489165568π7

− 52270826764050935424π6

+ 137440270455671973888π5
− 224865343103126777856π4

+ 223463238163167379456π3
− 117210783524524130304π2

+ 19019943696196960256π − 17768647117686964224,
ã−

16 = 10387544938396777485π14
− 221600958685797919680π13

+ 3266022594636620255520π12
− 30507673260011278331340π11

+ 189967531652404749842256π10
− 801061043428012618757628π9

+ 2321494974549119646057024π8
− 4908024571773961918342656π7

+ 8188364135670255140327424π6
− 10698758352775621551112192π5

+ 9974370209421370484588544π4
− 6632578667031793508548608π3

+ 3115667460316900267917312π2
− 341925545063855526248448π

+ 356351263498044935503872,
b̃−

04 = 16870647033π8
− 258683254506π7

+ 887271066180π6
+ 2964064868154π5

− 20822685722640π4
+ 35660258560320π3

− 22653867737600π2

+ 10756238168064π − 3269824380928,
ã+

04 = 41047803π6
− 401356296π5

+ 2678981472π4
− 8009389248π3

+ 8925785728π2

− 5674143744π + 7841538048,
ã+

05 = 4181103066129489π11
− 75051840112413912π10

+ 590852382992759664π9

− 1912928489522952192π8
+ 3518876760251069952π7

− 11356639358023421568π6

+ 42263173441251182592π5
− 99395993027561435136π4

+ 141659664965141463040π3

− 82254079608837636096π2
− 8065952330895327232π − 17768647117686964224,

ã+

13 = 13682601π5
− 34966647π4

− 86001900π3
+ 76671376π2

+ 406561536π − 126661632,
b̃+

04 = 16870647033π8
− 258683254506π7

+ 1667069862372π6
− 790869101670π5

− 14311310178960π4
+ 19927281672000π3

+ 9234529541632π2

− 1824551743488π − 3269824380928,
b̃+

13 = 41047803π6
− 474330168π5

+ 2046541248π4
− 3441765408π3

+ 2626609024π2

− 4636293120π + 5073936384,
b̃+

14 = 369430227π8
− 6567648480π7

+ 44634734748π6
− 133196235948π5

+ 236392607904π4

− 375635258752π3
+ 412507991040π2

− 220447137792π + 171924455424,
b̃+

15 = 49873080645π11
− 975295799280π10

+ 11610242789130π9
− 73488565814220π8

+ 274726689588612π7
− 667239956931456π6

+ 1138618041586176π5

− 1556130962061312π4
+ 1771316277657600π3

− 1168818168135680π2

+ 228294320455680π − 167679759482880.

Then, system (12) has five hyperbolic limit cycles Γ ε
i , i = 1, . . . , 5, for ε small enough. Moreover, when ε goes to 0, the limit cycle Γ ε

i goes to
the circle x2 + y2 = i2, for i = 1, . . . , 5.

Proof. Using Proposition 2.5 we can obtain the functions F±

i (r), h
±

i (r, θ), S
±

i (r, θ), for i = 1, . . . , 6 and, from Proposition 2.6 and
Corollary 2.7, we can obtain the first coefficients of the series of r±

i for system (12). We have omitted the explicit expressions of these
functions, due to the size of them. Thus, we getM1(ρ) ≡ M2(ρ) ≡ M3(ρ) ≡ M4(ρ) ≡ M5(ρ) ≡ 0 and

M6(ρ) =
137π(ρ − 1)(ρ − 2)(ρ − 3)(ρ − 4)(ρ − 5)

120000(3π + 8)ρ4
. (13)

Therefore, ρ = 1, ρ = 2, ρ = 3, ρ = 4, and ρ = 5 are the five simple zeros of M6(ρ). The proof finishes in a similar way than
Proposition 3.2 because all the zeros ofM6 are simple. �

Proposition 4.1 provides the convergence of the difference map, rescaled by ε6, to the function M6, given in (13), when ε goes to 0.
This fact is shown in Fig. 4, where the numerical approximation of the difference map is drawn together with the functionM6 for different
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Fig. 4. The red curves are the difference maps, rescaled by ρ4ε6 , for system (12) with ε = 1 · 10−8, ε = 5 · 10−9 and ε = 1 · 10−9 , respectively. The function M6 given in
(13) is drawn in black. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Difference map for system (12), rescaled by ρ4 , with ε = 1 · 10−8, ε = ε+
s , and ε = 2 · 10−8 , respectively.

Fig. 6. Difference map for system (12), rescaled by ρ4 , with ε = −8 · 10−9, ε = ε−
s , and ε = −1.1 · 10−8 , respectively.

values of ε. We remark that the numerical computationmust be donewith high accuracy, since there are perturbation parameters of order
10−50.

Of course the coefficients given in above result are not very ‘‘friendly’’. Unfortunately, the vanishing conditions of first coefficients in ε
of the difference map imply intricate relations between the parameters of system.

The five limit cycles of Proposition 4.1 bifurcate from the level curves of the center for ε small enough. These limit cycles exist until two
of them collapse into a semistable one. This bifurcation can be seen in Figs. 5 and 6. Next proposition establishes the interval in ε where
the five limit cycles of system (12) exist. The proof is done looking for the first values of ε where the difference map has a double zero.

Proposition 4.2. System (12) has five limit cycles when ε ∈ (ε−
s , 0) ∪ (0, ε

+
s ) with ε−

s ≈ −9.3602420168 · 10−9 and ε+
s ≈ 1.6090831394 ·

10−8.

Finally we remark that, in this section, the computation of the difference map is obtained subtracting the evaluations of the analytical
solution of system (12), in polar coordinates, in the values θ = π/2 and θ = −3π/2. Consequently the numerical error only comes from
the evaluation of this solution.
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5. Piecewise Liénard linear systems

In previous sections we have shown how the number of limit cycles bifurcating from the center increases with the perturbation order.
When this growth is saturated, we can say that there has been a stabilization process. This section is devoted to study this phenomenon
for someΣα-piecewise linear Liénard systems. This stabilization process is similar to the one commented in [4], forΣπ -piecewise linear
systems. This phenomenon cannot be shown for the systems in Sections 3 and 4 due to the computational difficulties to get further in the
order of perturbation.

Proposition 5.1. For system

X±
: (ẋ, ẏ) =


−y +

N
i=1

εi(a±

0i + a±

1ix), x

, (14)

the maximum number, ZN , of zeros of the corresponding functionMN(ρ) is 1, 2, 2, 2, 2, 2when N = 1, 2, 3, 4, 5, 6. Moreover, for each N, there
exist perturbation parameters such that system (14) exhibits ZN limit cycles for ε small enough.

Proof. Considering the functions P±

i (x, y) = a±

0i + a±

1ix and Q±

i (x, y) = 0 as in the proof of Proposition 3.1, we get

M1(ρ) = M1(ρ) = (a+

01 − a−

01) sinα +
1
2


(a+

11 − a−

11)(α + sinα cosα)+ 2πa−

11


ρ.

In general, for 2 ≤ i ≤ 6, the Poincaré–Pontryagin–Melnikov functions write as

Mi(ρ) =

1
j=−1

Cj,i(λi)ρ
j, for i = 2, 3, and Mi(ρ) =

1
j=−3

Cj,i(λi)ρ
j, for i = 4, 6,

where Cj,i(λi) are polynomials of degree i in the variables λi = (a±

01, a
±

11, . . . , a
±

0i, a
±

1i). We have thatM1(ρ) ≡ 0 if and only if

a−

01 = a+

01 and a+

11 =
a−

11(α − 2π + sinα cosα)
α + sinα cosα

.

Thus, the polynomials C−1,2, C0,2 and C1,2 of the function M2(ρ) take the form

C−1,2 = 0,

C0,2 =
(a+

02 − a−

02)(α + sinα cosα) sinα − 2πa−

11a
+

01(1 − cos3 α)
α + sinα cosα

,

C1,2 =
−1

2(α2 + 2α sinα cosα + sin2 α cos2 α)


−4παa−

12 sinα cosα

+ 2π(a−

11)
2(1 − cos4 α)(α − π + sinα cosα)− 2πa−

12(α
2
+ sin2 α cos2 α)

+ (a−

12 − a+

12)(α
3
+ sinα cosα(3α2

+ 3α sinα cosα + sin2 α cos2 α))

.

Solving C0,2 = 0 and C1,2 = 0 with respect to a−

02 and a+

12, respectively, we get

a−

02 = a+

02 −
2πa−

11a
+

01(1 − cos3 α)
(α + sinα cosα) sinα

,

a+

12 =
1

α3 + sinα cosα(3α2 + 3α sinα cosα + sin2 α cos2 α)


α2a−

12(α − 2π)

+ a−

12(3α − 2π) sin2 α cos2 α + a−

12 sinα cosα(α(3α − 4π)+ sin2 α cos2 α)

+ 2π(a−

11)
2(1 − cos4 α)(α − π + sinα cosα)


.

Then, the polynomial C−1,3 of the function M3(ρ) becomes

C−1,3 =
2πa−

11(a
+

01)
2

α + sinα cosα
.

Note that C−1,3 ≡ 0 if and only if a+

01 = 0 or a−

11 = 0. We assume that the parameters a−

01, a
+

11, a
−

02 and a+

12 are like above. If a+

01 = 0 we get
C−3,4 = C−2,4 = C−3,5 = C−2,5 = C−3,6 = C−2,6 = 0. This shows that the degree of the functions M4(ρ), M5(ρ), and M6(ρ) is at most 2.
Therefore, when N = 2, . . . , 6, the maximum number of zeros of MN(ρ) is 2. If a−

11 = 0 we get C−3,4 = C−2,4 = C−3,5 = C−3,6 = 0. In this
case we should continue investigating the functions M5(ρ) and M6(ρ).

The polynomials C0,3 and C1,3 of the function M3(ρ) are given by

C0,3 =
(a−

03 − a+

03)(α + sinα cosα) sinα + 2πa+

01a
−

12(1 − cos3 α)
α + sinα cosα

,

C1,3 =
1
2
(a+

13 − a−

13)(α + sinα cosα)+ πa−

13.
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Solving C0,3 = 0 and C1,3 = 0 with respect to a−

03 and a+

13, respectively, we get

a−

03 = a+

03 −
2πa+

01a
−

12(1 − cos3 α)
(α + sinα cosα) sinα

and a+

13 =
a−

13(α − 2π + sinα cosα)
α + sinα cosα

.

Then, the polynomial C−1,4 of the function M4(ρ) becomes

C−1,4 =
2πa−

12(a
+

01)
2 sinα

α + sinα cosα
.

We have that C−1,4 ≡ 0 if and only if a+

01 = 0 or a−

12 = 0. In both cases, we get C−2,5 = 0. This shows that the degree of M5(ρ) is at most
two. Similar computations can be done for M6(ρ).

Consequently, when N = 1, . . . , 6, the maximum number of zeros of MN(ρ) is 1, 2, 2, 2, 2, 2, respectively. We remark that the zeros
ofMN(ρ) and MN(ρ) agree. Following the same ideas as in the proof of Proposition 3.2 explicit examples with 1 and 2 simple zeros can be
found for orders N = 2, . . . , 6.

The proof concludes also using Proposition 2.1 to get the limit cycles corresponding to each simple zero of the functionMN . �

Finally, we consider onemore Liénard class. Now, the nonlinearity terms are in the second componentwhile in the previous proposition
they were in the first component. Clearly, the number of limit cycles is not the same and it points out that there is no symmetry between
both problems. We omit the proof of the next result, because it follows using similar arguments and computations.

Proposition 5.2. Consider the system

X±
: (ẋ, ẏ) =


−y, x +

N
i=1

εi(b±

0i + b±

1ix)

, (15)

defined inΣ±
α . Then, the maximum number, ZN , of zeros of the corresponding function MN(ρ) is 1when N = 1, 2, 3, 4, 5, 6. Moreover, for each

N, there exist perturbation parameters such that system (15) exhibits ZN limit cycles for ε small enough.

6. Conclusions

Planar piecewise linear differential systems with two zones were studied in this paper. We have seen that the separation line has a
strong influence on the number of limit cycles that can appear. The simplest case occurs when the separation line is a straight line. For this
case, it has already proven the existence of three limit cycles. It is worth to mention that it is still an open problem to determine whether
three is the maximum number of limit cycles forΣπ -planar piecewise linear differential systems.

If the separation line is no longer a straight line, more than three limit cycles can appear. In this paper we have considered the case
when the two linear zones are angular sectors of angles α and 2π − α, where α ∈ (0, π). That is the separation lineΣα is formed by two
semi straight lines with a breaking point at the origin. We have studied the bifurcation of limit cycles by studying higher order piecewise
linear perturbations of a linear center. We have proved that the maximum number of limit cycles that can appear up to a sixth order is
five. Moreover, this upper bound is reached for some values of α.

Some natural questions still remain. The first one is to prove that there exist concrete examples with five limit cycles for every
α ∈ (0, π). The second one is if the saturation is five and if it occurs for the sixth order. Finally, whether five is the maximum number of
crossing limit cycles for the class ofΣα-planar piecewise linear differential systems.
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