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Abstract. We propose a definition of genericity for singular flat planar 3-webs formed by
integral curves of implicit ODEs and give a classification of generic singularities of such
webs.

1. Introduction

Aplanar d-web is formed by d foliations in the plane. At each point of the plane, we
have d leaves passing through the point, one from each foliation of the web. A point
is called regular if any two of these d leaves are transverse. Consider the pseu-
dogroup of local diffeomorphisms of the plane and the corresponding equivalence
relation on the set of d-web germs. Any two planar 2-web germs are equivalent
whenever the base points are regular. This is not true for 3-web germs (see [10]).
There is a local invariant, which has, in fact, a topological nature. The differential-
geometric counterpart of this invariant is the so-called Blaschke curvature.

Definition 1. 3-web is flat (or hexagonal) if its germ at any regular point is equiv-
alent to the web formed by three families of parallel lines.

A 3-web is flat if and only if the Blaschke curvature vanishes identically (see, for
instance [10]). This curvature is a scalar 2-form, therefore any general classification
of 3-webs with respect to local diffeomorphisms will necessarily have functional
moduli. Namely, such a classification will inevitably involve arbitrary functions of
two variables.

By the above definition, any two flat 3-web germs are equivalent provided that
the base points are regular. Hence the “personality” of a flat 3-web is encoded in
its singularities.

Web structure is ubiquitous in mathematics and its applications, the Blaschke
curvature often being the obstacle to obtaining a “reasonable” classification. There-
fore flat 3-webs play a distinguished role.

For example, hexagonal 3-webs have a 3-dimensional local symmetry algebra
at regular points, while a generic 3-web does not admit any infinitesimal symmetry
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(see [11]). (By infinitesimal symmetry of the web we understand a vector field
whose local flow preserves the web.)

It was also observed that characteristic 3-webs of integrable equations, playing
important role in mathematical and theoretical physics, are flat (see, for instance,
[6,17,18,21]).

The singularities of planar 2-webs, defined by solutions of implicit ODEs,
quadratic in the derivative, are well understood (see [7,14,26]), whereas singular
implicit ODEs, polynomial in derivatives of degree d ≥ 3 bring more difficulties,
the main obstacle being the nontrivial web structure on its solutions (see [13,14,
20,23,25]).

Let us review some known results on classification of flat 3-webs. One can show
that a general classification of singular flat 3-webs will also have functional moduli,
now the “moduli” being arbitrary functions of one variable (see, for example, the
discussion in [1]). To get a reasonable classification one has to restrict the class of
admissible singularities by imposing some meaningful conditions.

A sufficiently general class of singular 3-web germs can be described by binary
forms:

K3(x, y)dy
3 + K2(x, y)dy

2dx + K1(x, y)dydx
2 + K0(x, y)dx

3 = 0.

Dividing the above form by dx3 one gets an implicit ODE, cubic in p = dy
dx :

K3(x, y)p
3 + K2(x, y)p

2 + K1(x, y)p + K0(x, y) = 0. (1)

Equation (1) defines a (possibly singular) surface M in 3-dimesional contact space
R
2 × P

1(R). It is immediate that if a point (x, y) is not regular then the projection
π : M → R

2, (x, y, p) �→ (x, y) is not a local diffeomorphism at least at one
point m in the fiber π−1(x, y).

Define the criminant C of implicit ODE (1) as the set of points on M , where
the projection π fails to be a local diffeomorphism, and the discriminant � of Eq.
(1) (or the apparent contour of the surface M) as the image of the criminant under
the projection: � = π(C).

Under some natural conditions of regularity for the surface M and for the
criminantC , implying the smoothness of M andC , (see Eq. (8) in the next section),
the following normal forms were obtained in [1]:

1) p3 + px − y = 0, 2) p3 +2xp+ y = 0, 3) p2 = x, 4) p2 = y. (2)

Remark. For the quadratic ODEs, the third root is ∞. The cubic normal forms
were conjectured in [24,25].

Another natural restriction on the singularity is the existence of at least one
infinitesimal symmetry at the singular point. It turns out that at a singular point
generators of a symmetry algebra can become infinite or multi-valued, thus this
restriction is not trivial (see [2]). We call a web homogeneous if it is invariant with
respect to the flow of Euler vector field

E = c1x
∂

∂x
+ c2y

∂

∂y
, ci = const. (3)
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Singular homogeneous 3-webs were classified in [3]. To give the reader some idea
about the functions emerging in this classification, we present here some normal
forms:

p3 + y2 p = 2√
27

y3 tan
(
2
√
3x

)
,

p3 + 4x

(
y − 4

9
x3

)
p + y2 + 64

81
x6 − 32

9
yx3 = 0,

p3 + y3 p = y
9
2U

(
xy

1
2

)
,

where U is expressed in terms of the Legendre functions Pμ
ν (z), Qμ

ν (z). Note that
all the forms (2) also are homogeneous.

In this note we address the problem of genericity for singularities of flat 3-webs.
Our considerations are local, all the objects involved are smooth or analytic.

2. Genericity via transversality

The 3-web, formed by integral curves of Eq. (1), is flat if and only if K =
(K3, K2, K1, K0) satisfy a certain (rather involved) nonlinear PDE of second order.
Following Blaschke [9], let us normalize one-forms, vanishing on the web leaves,
to satisfy the condition σ1 + σ2 + σ3 = 0. For example, one may choose

σ1 = (p2 − p3)(dy − p1dx), σ2 = (p3 − p1)(dy − p2dx),

σ3 = (p1 − p2)(dy − p3dx),

where p1, p2, p3 are the roots of (1) at a non-singular point (x, y). The above
normalization defines the so-called Chern connection form γ by dσi = γ ∧ σi .
Its derivative dγ is the Blaschke curvature. Thus the hexagonality of the web
amounts to the equation dγ = 0, which involves the second order derivatives of
pi . Manipulating elementary symmetric functions of pi , one rewrites this equation
in terms of K and its derivatives up to the second order.

The study of generic properties of solutions to PDEs was mainly concentrated
on equations of order one. These properties are relatively well understood in terms
of Legendrian and Lagrangian singularities (see [8,19]).

Our approach is based on the Thom ideas on genericity via transversality and is
close to those of [12,15], though results obtained in these papers are not applicable
here, as the PDE dγ = 0 for K , being linear in 2nd derivatives, has vanishing
coefficients of these derivatives. Thus the Cauchy-Kowalevskaya Theorem does
not work and no existence theorem can help us to analyze the space of solutions.

Consider the set H of map germs K : (R2, 0) → R
4 which solve the equation

dγ = 0. We adopt here a naive and old-fashioned point of view on perturbations,
namely, we call K̃ ∈ H a perturbation of K ∈ H if, at the base point, the values of
K̃ and its first derivatives are close to the corresponding values of K . (Note that our
knowledge of the subspace of H, describing singular hexagonal 3-webs, is rather
limited. For instance, it is not clear if higher derivatives of a perturbation K̃ are
close to those of K .)
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For each (k3, k2, k1, k0) ∈ R
4\{(0, 0, 0, 0)} there are solutions K ∈ H such that

K (0, 0) = (k3, k2, k1, k0). In fact, a cubic form g(p) = k3 p3 + k2 p2 + k1 p + k0
can be brought by a Möbius transform (i.e. by a transform that is fractional linear
in p) to one of the following forms: 1) p3 (triple root), 2) p2 (double root), 3)
p(p − 1)(p + 1) (distinct roots). Thus, applying a suitable local diffeomorphism,
we get a desired solution from the normal form 2) of classification list (2), if g(p)
has a triple root; or from the normal form 3), if g(p) has a double root; or from
the non-singular flat 3-web. Therefore for any K ∈ H there is a small perturbation
K̃ such that K̃ (0, 0) 	= (0, 0, 0, 0). This means that all web directions are well
defined at each point. Choosing local coordinates so that none of the web leaves at
the origin is tangent to the y-axis, one ensures K3(0, 0) 	= 0. Dividing (1) by K3,
one reduces our equation to a monic one:

p3 + a(x, y)p2 + b(x, y)p + c(x, y) = 0. (4)

Finally, “killing” the coefficient by p2 by a differential analog of Tschirnhausen
transformation

y = f (x̃, ỹ), x = x̃, with 3 fx̃ + a(x̃, f ) = 0 (5)

(see [1] for more detail), one arrives at the normal form

F(x, y, p) = p3 + A(x, y)p + B(x, y) = 0. (6)

This equation gives a map germ W : (R2, 0) → R
2 by W (x, y) =

(A(x, y), B(x, y)). Now the Chern connection form in the chosen normalization
of the forms σi is

γ =
(
2A2Ax−4A2By+6ABAy+9BBx

)
4A3+27B2 dx +

(
4A2Ay+6ABx+18BBy−9BAx

)
4A3+27B2 dy. (7)

Then the flatness of the web manifests itself as a nonlinear PDE of the second order
dγ = 0. (See [1] for more detail and the exact form of this PDE. For the ODE
without the quadratic term (6), the explicit formula for the curvature first appeared
in [22].)

Consider the variety E2, defined by equation dγ = 0, in the jet space
J 2(R2,R2). Total derivatives of this equation with respect to x and y give the
prolongedmanifold Ek in each jet space J k(R2,R2) for any k ≥ 2. Differentiating
W we obtain a (possibly singular) parameterized manifold �k ⊂ J k(R2,R2) of
dimension dim�k ≤ 2.

Conversely, any map W : (x, y) → (A(x, y), B(x, y)) with δ := −4A3 −
27B2 	≡ 0 locally determines a 3-web, namely, the web of integral curves of the
implicit ODE (6). Any property of the web can be described in terms of the map
W and its derivatives.

In particular, the failure of the following regularity condition on the criminant
C

rank((x, y, p) �→ (F, Fp)) = 2, (8)
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used in [1,14], determines a submanifold R of codimension 3 in J 1(R2,R2) by:
⎧⎪⎪⎨
⎪⎪⎩

4A3 + 27B2 = 0
Ax By − Ay Bx = 0
3BAx − 2ABx = 0
3BAy − 2ABy = 0.

(9)

One obtains equations (9) by direct computation, substituting the double root p of
(6), satisfying F = Fp = 0, into the determinantal variety determined by the rank
drop

rank((x, y, p) �→ (F, Fp)) < 2.

Observe that the regularity condition (8) implies that M and C are smooth.
Let us call the set of points m on the criminant C a Legendrian locus, if the

tangent plane to M at m ∈ C ⊂ M coincides with the contact plane dy − pdx = 0
at m. The Legendrian locus is determined by the following conditions:

dF ∧ (dy − pdx) = 0, F = Fp = 0.

Direct computation yields the following equations for the corresponding variety in
J 1(R2,R2), which we denote by L:

{
4A3 + 27B2 = 0
6ABAx − 9B2Ay + 6ABBy − 4A2Bx = 0

(10)

Note that the variety L is of codimension 2.

Definition 2. We call a flat web, formed by integral curves of Eq. (6), generic if the
parameterized manifold �1 is transverse to the variety R ∪ L .

Remark. The varieties L and R are defined in geometric terms. Therefore they are
invariant with respect to any diffeomorphisms preserving the form of Eq. (6). A
diffeomorphism preserves this form if it respects the condition p1 + p2 + p3 = 0
and does not send any of the roots pi to infinity.

3. Generic singularities of flat 3-webs

Theorem 1. A generic singular flat 3-web germ defined by the implicit cubic ODE
(6) is diffeomorphic either to the web formed by integral curves of the equation

p3 + 2xp + y = 0, (11)

if all 3 web leaves are tangent at the base point, or to the web, formed by the lines
x = cst and by the integral curves of the equation

p2 − x = 0, (12)

if only 2 web leaves are tangent at the base point.
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Proof. Let us fix the base point (x0, y0) of the web germ and the point m =
(x0, y0, p0) ∈ C ⊂ M . Since the variety R is of codimension 3, the surface �1
does not intersect R. Hence the regularity condition (8) is satisfied. The variety L
is of codimension 2. Therefore the surface �1 can meet L only in isolated points.

Consider first the case of a triple root of (6). As shown in [1] (see Lemma 2
there), the contact plane is tangent to M at m. (This amounts to Bx = 0 at (x0, y0),
since one has p0 = 0 for the normalization (6).) Thus�1 intersects L at a point. Due
to genericity, this point is isolated and the criminant C is transverse to the contact
plane field in some punctured neighborhood of m. Consequently the conditions of
Theorem 7 of [1] are satisfied and Eq. (6) is equivalent to the form (11) with respect
to some local diffeomorphism at π(m) = (x0, y0).

Now consider the case of double root. Equation (6) has a quadratic factor:

p3 + A(x, y)p + B(x, y) = (p2 + a(x, y)p + b(x, y))(p − a(x, y)) = 0.

At the point (x0, y0) we have a simple root p1 = a(x0, y0) 	= 0 and a double root
p0 = −a(x0, y0)/2. Since these roots are distinct, the point (x0, y0, p0) lies on the
surface defined by the quadratic equation f (x, y, p) = p2 +a(x, y)p+b(x, y) =
0. Hence the regularity condition (8) is now fulfilled for the function f . If�1 misses
the variety L , then the contact plane is not tangent to C at m. Due to the regularity
condition, Theorem 5 of [1] implies that our web is equivalent to the normal form
(12). Note that for this form the discriminant x = 0 is a leave of one of the web
foliations.Moreover, the discriminant curve a2−4b = 0 of p2+a(x, y)p+b(x, y)
is smooth. In fact, the regularity condition implies that at least one of the expressions
bx + p0ax = bx − a

2ax and by + p0ay = by − a
2ay does not vanish at (x0, y0, p0).

Thus the gradient of a2 − 4b is not zero.
Finally, if �1 intersects L at a point, then the point m of the criminant is

Lagrangian. As we have mentioned before, the discriminant curve is tangent to
the vector field ∂x + a∂y at each point (x, y) 	= (x0, y0), therefore this also holds
true at (x0, y0). But at the point (x0, y0) the vector field ∂x − a

2 ∂y is tangent to the

discriminant curve as well, since m is Lagrangian. Thus a(x0, y0) = − a(x0,y0)
2 and

the root is triple. This contradiction finishes the proof. ��
Remark 1. The web germ (12) is equivalent to the web germ of the web (11) at
any point (x0, y0) 	= (0, 0) on the discriminant. See Fig. 1. For more web portraits
the reader may consult [24].

Remark 2. As examples of non-generic singular flat 3-webs, one easily constructs
the following ones, starting from the well-folded singularity p2 + ax2 = 2y,
a = cst :

(xp − 2y)(p2 + ax2 − 2y) = 0, (2yp − x(2y − ax2))(p2 + ax2 − 2y) = 0.

(See [14] for the detailed study of well-folded singularities of implicit quadratic
ODEs.) The point (0, 0, 0) is Legendrian for the folded point (0, 0) of p2 + ax2 =
2y, and all coefficients of the above cubic equations vanish at the base point.
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Fig. 1. Flat 3-webs of p3 + 2xp + y = 0 (left) and of p2 = x (right)

4. Concluding remarks

• Genericity and differential consequences of PDE It seems natural to expect a
normal form with a triple root, where �1 misses L . As it was shown in [1], the
surface �1 always meets L whenever the regularity condition (8) holds true and all
3 roots pi of (6) coincide. It is interesting that this differential condition of order
one follows from the PDE dγ = 0, which is of order two.

• Perturbations of singular flat 3-webs The variety L is of codimension 2 and the
variety R is of codimension 3, thus, due to Thom’s Transversality Lemma, for a
generic smooth map U ⊂ R

2 → R
2, its lift to U ⊂ R

2 → J 1(R2,R2) misses R
and has isolated points of intersection with L . But our map W satisfies the PDE
dγ = 0 and its differential consequences, which defines an algebraic provariety of
infinite codimension in the jet space J∞(R2,R2). Therefore W is not generic in
the definition of Tougeron [27].

It remains a challenge to show rigorously that for any singular flat 3-web there
is a small perturbation, within the class of flat 3-webs, that brings the web to a
generic flat 3-web in the sense of Definition 2. For the case when A, B are of
order 2 the existence of such a perturbation can be shown directly, avoiding the
difficult problem of existence of solutions to the singular PDE dγ = 0. In fact,
a change of variables y = F(X,Y ), x = G(X,Y ) with F(0, 0) = G(0, 0) = 0
preserving the form (6), sends (11) to the equation P3+ Ã(X,Y )P+ B̃(X,Y ) = 0
with ÃX (0, 0) = 2G3

X (0, 0)/F2
Y (0, 0), ÃY (0, 0) = 5G2

X (0, 0)GY (0, 0)/F2
Y (0, 0),

B̃X (0, 0) = 0 and B̃Y (0, 0) = G3
X (0, 0)/F2

Y (0, 0). Therefore keeping FYGX 	= 0,
which ensures that F,G are local coordinates, one can make all the first derivatives
of Ã, B̃ arbitrarily small. Thus, according to our definition of perturbation in Section
2, the web of P3 + Ã(X,Y )P + B̃(X,Y ) = 0 is the desired perturbation.

• Flat 3-webs of characteristics of PDEs In this note we define a singular web
as a web of integral curves of some implicit ODE. This approach is motivated by
examples frommathematical physics. For instance, any solution of the associativity
equation

uyyy = u2xxy − uxxxuxyy (13)
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determines the so called characteristic 3-web in (x, y)-plane by the following cubic
implicit ODE:

μ3 + uxxxμ
2 − 2uxxyμ + uxyy = 0, where μ = −dx

dy
.

This web is flat. Each weighted homogeneous solution of the associativity Eq. (13)
defines a structure of Frobenius 3-manifold (see [16]), for example, the web of
normal form (11) is the characteristic web of a polynomial solutions to (13). (See
[4,5] for a geometric construction of such webs from Frobenius manifolds.)

Another class of examples of flat 3-webs comes as characteristic webs of inte-
grable systems (see [17,18]) of hydrodynamic type:

�vx = 
(�v)�vy,
where �v : U ⊂ R

2 → R
3 is a vector function and 
(v) is a 3 × 3 matrix,

whose entries depend explicitly only on �v. Again, each solution �v(x, y) defines the
characteristic web by the following implicit ODE

det
[

(�v(x, y)) + p · 1] = 0.

Here determinantal singularities may come into play and it would be surprising if
generic singularities of characteristic webs of scalar PDE and those of systems of
hydrodynamic types were the same. (Sometimes a system of hydrodynamic type is
equivalent to a scalar PDE, see [6].)
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