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ABSTRACT
We investigate the orbital and rotational evolution of the CoRoT-7 two-planet system, assuming
that the innermost planet behaves like a Maxwell body. We numerically resolve the coupled
differential equations governing the instantaneous deformation of the inner planet together
with the orbital motion of the system. We show that, depending on the relaxation time for
the deformation of the planet, the orbital evolution has two distinct behaviours: for relaxation
times shorter than the orbital period, we reproduce the results from classic tidal theories, for
which the eccentricity is always damped. However, for longer relaxation times, the eccentricity
of the inner orbit is secularly excited and can grow to high values. This mechanism provides
an explanation for the present high eccentricity observed for CoRoT-7 b, as well as for other
close-in super-Earths in multiple planetary systems.

Key words: planets and satellites: dynamical evolution and stability – planet–star interactions.

1 IN T RO D U C T I O N

Close-in planets undergo tidal interactions with the central star,
which shrink and circularize the orbits on time-scales that depend on
the orbital distances, but also on the physical properties of the inter-
acting bodies. The rotation of short-period planets is also modified
and reaches a stationary value in time-scales usually much shorter
than the orbital evolution (e.g. Hut 1981; Ferraz-Mello, Rodrı́guez
& Hussmann 2008; Correia 2009; Rodrı́guez et al. 2011). The tidal
interaction ultimately results in synchronous motion (the orbital
and rotation periods become equal), which is the only possible
state when the orbit is circularized (e.g. Hut 1981; Ferraz-Mello
et al. 2008). However, as long as the orbit has some eccentricity,
the rotation can stay in non-synchronous configurations. In gen-
eral, planets with a primarily rocky composition have a permanent
equatorial deformation or frozen-in figure (e.g. Goldreich & Peale
1966; Greenberg & Weidenschilling 1984), which contributes with
a conservative restoration torque on their figures. In the context
of the two-body problem, the gravitational interaction of an asym-
metric planet with the star drives the planet rotation into different
regimes of motion, including oscillations around exact spin–orbit
resonances (SOR). When dissipative effects are taken into account,
the oscillations are damped and the planet rotation can be trapped
in exact resonance (e.g. Goldreich & Peale 1966; Correia & Laskar
2009).
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Although the orbital and spin evolution are connected through the
total angular momentum conservation, they are commonly studied
separately due to the different time-scales involved in their evolu-
tion. However, it has been shown that for close-in planets the tidal
evolution of the coupled orbit-rotation is important and should not
be disassociated (Correia, Boué & Laskar 2012; Rodrı́guez et al.
2012; Correia et al. 2013; Greenberg, Van Laerhoven & Barnes
2013; Rodrı́guez, Giuppone & Michtchenko 2013). All studies cited
above assumed simplified tidal models, usually using constant or
linear tidal deformations (e.g. Mignard 1979; Darwin 1880), for
which the tidal dissipation is constant or proportional to the corre-
sponding frequency of the perturbation. A more realistic approach
to deal with the dependency of the phase lag with the tidal fre-
quency is to assume a viscoelastic rheology (e.g. Efroimsky 2012;
Remus, Mathis & Zahn 2012; Ferraz-Mello 2013; Correia et al.
2014). These rheologies have been shown to reproduce the main
features of tidal dissipation (for a review of the main viscoelas-
tic models see Henning, O’Connell & Sasselov 2009). One of the
simplest models of this kind is to consider that the planet behaves
like a Maxwell material.1 In this case, the planet can respond as an
elastic solid or as a viscous fluid, depending on the frequency of the
perturbation.

Correia et al. (2014) studied the orbital and rotational evolution
of a single close-in planet using a Maxwell viscoelastic rheology.

1 The Maxwell material is represented by a purely viscous damper and a
purely elastic spring connected in series (e.g. Turcotte & Schubert 2002).
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However, instead of decomposing the tidal potential in an infinite
sum of harmonics of the tidal frequency (e.g. Kaula 1964; Mathis &
Le Poncin-Lafitte 2009; Efroimsky 2012), they compute the instan-
taneous deformation of the planet using a differential equation for
its gravity field coefficients. They have shown that when the relax-
ation time of the deformation is larger than the orbital period (which
is likely the case for rocky planets), spin–orbit equilibria arise natu-
rally at half-integers of the mean motion, without requiring to take
into account the permanent equatorial deformation.

The method by Correia et al. (2014) has several advantages for
studying the tidal evolution of planetary systems: (1) it works for
any kind of perturbation, even for the non-periodic ones (such as
chaotic motions or transient events); (2) the model is valid for any
eccentricity and inclination value, we do not need to truncate the
equations of motion; (3) it simultaneously reproduces the deforma-
tion and the dissipation on the planet. Therefore, this model seems
to be the most appropriate to also study the impact of gravitational
perturbations of companion bodies in the orbit of the inner planet.
Indeed, we show here that the eccentricity of the inner body can in-
crease due to a feedback mechanism between the tidal deformation
of the planet and the orbital forcing.

In this paper, we provide a simple model for the coupled orbital
and spin evolution of an exoplanet with a companion (Section 2),
and apply it to the CoRoT-7 planetary system (Section 3). We then
give an explanation for the non-zero presently observed eccentricity
values (Section 4), and derive some conclusions (Section 5).

2 MO D EL

We consider a system consisting of a central star with mass m0,
and two companion planets with masses m1 and m2, such that m1,
m2 � m0. The subscript 1 always refers to the inner planet, while
the 2 refers to the outer one.

The inner planet is considered an oblate ellipsoid with gravity
field coefficients given by J2, C22 and S22, whereas the star and the
outer planet are considered as point masses. We also assume that
the spin axis of the inner planet, with rotation rate �, is along the
axis of maximal inertia k (gyroscopic approximation), and that k is
orthogonal to its orbital plane (which corresponds to zero obliquity).
The ellipsoid can be deformed by self-rotation and tidal interactions
with the central star, and we adopt a Maxwell viscoelastic rheology
to model the deformation of the planet (see Correia et al. 2014).

2.1 Equations of motion

The equations of motion governing the orbital evolution of the
system in an astrocentric frame are

r̈1 = −μ1

r3
1

r1 + Gm2

(
r2 − r1

|r2 − r1|3 − r2

r3
2

)

+ f + g1 + Gm2

μ2
g2 , (1)

r̈2 = −μ2

r3
2

r2 + Gm1

(
r1 − r2

|r1 − r2|3 − r1

r3
1

)

+ g2 + Gm1

μ1

(
f + g1

)
, (2)

where G is the gravitational constant, μi = G(m0 + mi), and r i is
the position of the planet with respect to the star (with i = 1, 2). gi

are the additional accelerations due to general relativity corrections
to the first order in mi/m0, given by (see Kidder 1995)

gi = − μi

c2r3
i

[(
ṙ i · ṙ i − 4

μi

ri

)
r i − 4(r i · ṙ i)ṙ i

]
, (3)

where c is the speed of light. f is the acceleration arising from the
potential created by the deformation of the inner planet, which is
given by (Correia et al. 2014)

f = −3μ1R
2

2r5
1

J2r1 − 9μ1R
2

r5
1

[C22 cos 2γ − S22 sin 2γ ] r1

+6μ1R
2

r5
1

[C22 sin 2γ + S22 cos 2γ ] k × r1, (4)

where R is the mean radius of the inner planet, and γ = θ − �, with
θ the rotation angle (� = θ̇ ), � = � + v the true longitude, � the
longitude of the pericentre, and v the true anomaly.

The torque acting to modify the inner planet rotation is given by

θ̈ = −6Gm0m1R
2

Cr3
1

[C22 sin 2γ + S22 cos 2γ ] , (5)

where C is the principal moment of the inertia along the axis k.
The inner planet is deformed under the action of self-rotation

and tides. Therefore, the gravity field coefficients can change with
time as the shape of the planet is continuously adapting to the
equilibrium figure. According to the Maxwell viscoelastic rheology,
the deformation law for these coefficients is given by (Correia et al.
2014)

J2 + τ J̇2 = J 0
2 + J r

2 + J t
2 ,

C22 + τ Ċ22 = C0
22 + Ct

22 ,

S22 + τ Ṡ22 = St
22 , (6)

where τ is the relaxation time of the planet in response to
deformation.2 J 0

2 and C0
22 are permanent values of the polar and

equatorial deformations, respectively,

J r
2 = kf

�2R3

3Gm1
(7)

is the rotational deformation, and
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2 = kf
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)3

, (8)
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R
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)3

cos 2γ , (9)
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22 = −kf

4

m0

m1

(
R

r1

)3

sin 2γ , (10)

are the tidal equilibrium values for the gravity coefficients (Correia
& Rodrı́guez 2013), where kf is the fluid second Love number.

2 τ = τ v + τ e, where τ v and τ e are the viscous (or fluid) and Maxwell
(or elastic) relaxation times, respectively. For simplicity, in this paper we
consider τ e = 0, since this term does not contribute to the tidal dissipation
(for more details, see Correia et al. 2014). Our model is thus also equivalent
to a Newtonian creep model (Ferraz-Mello 2013).
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CoRoT-7 system with Maxwell rheology 3251

Table 1. The adopted current orbital elements and physical data of the
CoRoT-7 system (Barros et al. 2014; Haywood et al. 2014).

Body mi R ai current (au) ei current

0 0.915 ± 0.019 M� 0.82 R� – –
1 4.73 ± 0.95 M⊕ 1.53 R⊕ 0.0171 0.12 ± 0.07
2 13.56 ± 1.08 M⊕ – 0.0455 0.12 ± 0.06

3 A P P L I C ATI O N TO TH E C oR oT-7 SY S T E M

We apply the model from previous section to the CoRoT-7 planetary
system, which is composed by two short-period planets. CoRoT-7
is a young G9V Sun-like star with mass m0 = 0.915 ± 0.019 M�,
radius R0 = 0.818 ± 0.016 R� and age of 1.32 ± 0.76 Gyr (Barros
et al. 2014).

3.1 Observed system

The system was observed combining radial velocity and transit
measurements (Barros et al. 2014; Haywood et al. 2014), which
provide us the radius and the true mass of the inner planet, hence an
estimation of its density. The inner planet, CoRoT-7 b, and the outer
planet, CoRoT-7 c, have masses m1 = 4.73 M⊕ and m2 = 13.56 M⊕,
respectively (Haywood et al. 2014), whereas the radius of CoRoT-
7 b is R = 1.53 R⊕ (Barros et al. 2014). Within the uncertainties
of the observations, the mean density of the inner planet is 6.6 ±
1.5 g cm−3 (Haywood et al. 2014), i.e. equal or larger than the
density of the Earth. We can thus assume that CoRoT-7 b is a rocky
planet in the super-Earth mass regime.

The orbital periods of the planets are P1 orb = 20.5 h and
P2 orb = 3.70 d (Haywood et al. 2014). The best fit to the obser-
vational data determines that both planets evolve in non-circular
orbits with an eccentricity value around 0.1 (Haywood et al. 2014),
although the error bars are large and these values are still compat-
ible with zero. Since both planets are very close to the star, the
usual expectation is that the orbits become circular after some time
(Ferraz-Mello et al. 2011). However, CoRoT-7 is a young star, and
some transient equilibria for the eccentricity can occur, which could
explain the non-circular orbits at present.

Although the inclination of the CoRoT-7 c planet is not yet de-
termined, for simplicity we assume that the orbits of the planets
are coplanar. All adopted physical and orbital parameters for the
system are listed in Table 1.

3.2 Numerical simulations

We performed a series of numerical simulations using the set of
equations (1)–(6). As in previous studies (e.g. Ferraz-Mello et al.
2011; Rodrı́guez et al. 2011; Dong & Ji 2012), the idea is to study
the past evolution of the CoRoT-7 system and figure out how the
orbits evolved into the present ones. Since the initial system config-
uration is unknown, we take different initial values for the orbital
parameters.

In the following, we denote the semimajor axis and the eccen-
tricity by a and e, respectively. For the initial semimajor axes, we
assume a1 = 0.0188 au and a2 = 0.0455 au. Since the orbital an-
gular momentum of the system, L, is conserved along the evolution
(the rotational angular moment can be neglected in comparison),
we have L = L1 + L2, where

Li ≈ Li k = mi

√
μiai(1 − e2

i ) k . (11)

The eccentricity of the outer planet can then be obtained through
the current elements listed in Table 1 as

e2 �
[

1 −
(

L

m2
√

μ2a2
− m1

m2

√
μ1a1

μ2a2
(1 − e2

1)

)2
]1/2

, (12)

where L is computed from the present values of the orbital elements
(Table 1).

We start with an initial rotation rate such that �/n1 = 4.1, where
n1 is the orbital mean motion of the inner planet. This value for
the rotation is not critical, as the spin quickly evolves under tides
into an SOR. Other adopted initial values (also not critical) for the
numerical simulations are3: θ = 0◦, v1 = v2 = 0◦, � 1 = 10◦,
� 2 = 100◦, kf = 1.0 and C = ξm1R2, with ξ = 0.35. In order to
overcome our total ignorance on the values of the relaxation times,
we perform numerical simulations with six values of τ = 10−3,
10−2, 10−1, 100, 101, and 102 yr.

Since CoRoT-7 b is a super-Earth, we also assume non-zero
values for the permanent non-spherical figure of the planet. For
Venus (which rotates slowly and thus we can neglect the effect of
the rotation on its shape), we have J 0

2 ∼ C0
22 ∼ 10−6 (Yoder 1995).

However, for a more massive super-Earth we expect these values to
become even smaller due to a stronger gravity at the surface. We
thus adopt here J 0

2 = C0
22 = 10−7. These values correspond almost

to a quasi-spherical shape for the unperturbed planet, but they still
facilitate the capture in SORs.

3.2.1 High initial e1

The CoRoT-7 planetary system most likely formed away from the
star and then migrated inward (e.g. Terquem & Papaloizou 2007;
McNeil & Nelson 2010; Cossou et al. 2014). In this process, the
planets can be trapped in mean motion resonances, which increase
the eccentricities until the resonance is broken (Beaugé, Ferraz-
Mello & Michtchenko 2003; Ferraz-Mello, Beaugé & Michtchenko
2003). Therefore, we first consider the case of initial high ec-
centricity for the inner planet. For e1 = 0.25, we obtain from
expression (12), e2 = 0.1546. In Fig. 1, we plot the temporal evo-
lution of the eccentricities and the ratio �/n1 for all values of τ

(10−3–102 yr).
In panel (a), corresponding to τ = 10−3 yr, the planet is in the low-

frequency regime since n1τ < 1. In this regime, the orbital evolution
of the system is expected to be similar to the linear tidal model, for
which the tidal dissipation is proportional to the corresponding
tidal frequency (e.g. Singer 1968; Mignard 1979). According to
this model, the rotation of the planet evolves into an equilibrium
value that depends on the eccentricity of the orbit, often called the
pseudo-synchronization, for which (e.g. Correia et al. 2011)

�

n1
= 1 + 15

2 e2
1 + 45

8 e4
1 + 5

16 e6
1

(1 + 3e2
1 + 3

8 e4
1)(1 − e2

1)3/2
= 1 + 6e2

1 + O(e4
1) . (13)

Our simulations confirm that the rotation of the planet follows this
equilibrium, which is always faster than the synchronous rotation
unless the orbit becomes circular. However, since we are considering
a residual value for the C22, each time the rotation crosses an SOR
there is a chance of capture, although very small because C22 = 10−7

(see Goldreich & Peale 1966; Rodrı́guez et al. 2012).

3 Due to the computational cost of the numerical simulations, we are not able
to explore all the unknown parameters. However, we performed some runs
with changes in these parameters, without observing any relevant changes
in the evolution.
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Figure 1. Evolution of the eccentricities and rotation rate with time for six values of the relaxation time τ . For small τ [panels (a) and (b)], the orbits are
quickly circularized and the rotation rate trapped in the synchronous motion. For intermediate τ [panels (c) and (d)], the rotation is temporarily captured in
SORs, which are destabilized as the eccentricity decays, ending with synchronous motion. For large τ [panels (e) and (f)], the eccentricity of the inner orbit is
excited to high values. In panel (e), the eccentricities are perturbed near 3 Myr because the system crosses the 4:1 mean-motion resonance.

For the Earth and Mars, we have τ ∼ 10−1 yr (Correia et al.
2014). Moreover, although τ ∼ 10−1 yr provides a good estimation
for the average present dissipation ratios on these two planets, it
appears to be incoherent with the observed deformation. Indeed, in
the case of the Earth, the surface post-glacial rebound due to the
last glaciation about 104 yr ago is still going on, suggesting that
the Earth’s mantle relaxation time is something like τ ≈ 4400 yr
(Turcotte & Schubert 2002). For rocky planets a value of τ = 10−3 yr
is thus very unlikely, and it is better to consider higher values for

τ . For all the remaining adopted values, we have n1τ > 1, that is,
the planet is in the high-frequency regime. In this regime, the tidal
energy dissipated is inversely proportional to the frequency.

In panels (b) and (c), corresponding to τ = 10−2 and 10−1 yr,
respectively, we still observe a rapid synchronization of the rota-
tion with the orbital motion (�/n1 = 1), while both eccentrici-
ties are quickly damped to zero (orbital circularization). The only
difference is that in panel (c) the rotation becomes captured in
higher order SORs (�/n1 = 5:2, 2:1, 3:2) at the beginning of the
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CoRoT-7 system with Maxwell rheology 3253

simulation, that are nevertheless quickly destabilized until the spin
reaches the synchronization. Dissipation of the tidal energy only
occurs in the inner planet, but both eccentricities are damped since
the system is coupled. In the beginning of the simulations, e1 is
damped more efficiently, but when it approaches zero, the pericen-
tres of the planets become aligned, and both eccentricities approach
a quasi-equilibrium value. The transfer of angular momentum be-
tween the two orbits becomes more efficient and both eccentricities
are damped together (for more details see Mardling 2007; Laskar,
Boué & Correia 2012). The difference in the orbital time-scales
is accounted for the value of the relaxation time adopted in each
simulation.

In panel (d), corresponding to τ = 1 yr, we observe that the
rotation evolves through a succession of temporary trappings in
SORs (3:1, 5:2, 2:1, 3:2), ending with synchronous motion (1:1).
In this case, the rotation spends more time trapped in higher order
resonance than for τ = 10−1 yr. All the resonances are destabi-
lized as the eccentricity decays, in agreement with previous results
(Rodrı́guez et al. 2012; Correia et al. 2014), because the capture and
escape probability in SORs critically depends on the eccentricity
(e.g. Goldreich & Peale 1966; Correia & Laskar 2009).

In panels (e) and (f), corresponding to the largest values of τ ,
we observe that the rotation is captured in high-order SOR. For
τ = 10 yr, the rotation is initially trapped in the 7:2 SOR and for
τ = 102 yr it is initially trapped in the 4:1 SOR. As explained
in Correia et al. (2014), large τ imply that the relaxation time is
much longer than the orbital period, allowing the prolateness of
the planet to acquire a much larger deformation than the permanent
C0

22 = 10−7 value. This helps the rotation to be captured more easily
in SOR. The rotation is also trapped for longer periods of time
because SOR are only destabilized for very low eccentricity values
(see Correia et al. 2014).

Unlike previous simulations for lower τ values, in panels (e) and
(f) we also observe that the eccentricity of the inner orbit is initially
excited to a high value, whereas the outer planet eccentricity is si-
multaneously damped (due to the angular momentum conservation).
The initial excitation of e1, that we call ‘eccentricity pumping’, is
somewhat unexpected, since most studies on tidal evolution of the
orbits predict that the eccentricities can only be damped (e.g. Kaula
1964; Mignard 1979; Hut 1981). When the outer orbit eccentricity
approaches zero, the pericentres of the planets become anti-aligned,
the eccentricity pumping ceases, and both eccentricities are slowly
damped to zero as in the previous cases.

A similar initial excitation for the eccentricity has already been
reported for gaseous planets within 0.1 < a1 < 0.3 au (Correia et al.
2012, 2013; Greenberg et al. 2013). For these kind of planets, the
linear tidal model is well suited. As a consequence, the eccentric-
ity pumping is related to a variation in the J2 of the inner planet
due to the rotational deformation (equation 7), that tends to follow
the pseudo-synchronous equilibrium (equation 13). However, in the
present case the rotation is locked in an SOR, so this effect can be
neglected. Moreover, here the pumping effect appears in a system
with a very close-in super-Earth and assuming a viscoelastic re-
sponse. In Section 4, we explain this eccentricity pumping in detail,
and show that this effect is still related to a variation in J2, but as a
result of the tidal deformation term (equation 8).

Because the process of tidal circularization is slower for large
values of τ (Fig. 2), in panel (f) we are not able to show the com-
plete evolution of the rotation. However, we expect that the process
of synchronization follows a similar behaviour as in the previous
panels, following its evolution under subsequent lower order cap-
tures (3:1, 5:2, 2:1, 3:2) to finally reach the 1:1 SOR. We note that,

Figure 2. Evolution of the ratio of mean orbital motions with time for all
adopted values of τ . The labelled colours correspond to the set of adopted
values of τ in units of yr. Larger values of τ delay the evolution of the
system. In addition, once the rotation is trapped in the synchronous motion
the evolution slows down even more. The dashed line gives the present
observed value (Table 1).

despite the capture into high-order SOR, the eccentricity pumping
is not related with such trappings (see Section 4).

In Fig. 2, we plot the temporal evolution of the ratio of mean
orbital motions, n1/n2. This figure allows us to better compare the
orbital evolution time-scales for each value of τ , and also to see
the impact of the orbital 4:1 mean motion resonance crossing. The
dashed line in Fig. 2 gives the present observed value (Table 1).
In general, the orbital decay is faster for small values of τ , since
the dissipation is inversely proportional to τ in the high-frequency
regime (τn1 > 1). However, it is interesting to note that in all
simulations there is a regime transition for which the evolution of
the ratio n2/n1 slows down. This corresponds to the moment at
which the rotation is captured in the synchronous resonance, since
dissipation of tidal energy only occurs on the orbit (see Rodrı́guez
et al. 2012). For large τ values, this transition only occurs when
the orbit is nearly circularized, since higher order resonances are
stable for very low eccentricity values (Correia et al. 2014). As a
consequence, the orbital decay occurs faster for τ = 10 yr than for
τ = 1 yr. Nevertheless, for τ ≥ 100 yr, the system takes a long
time to attain the present configuration, which may explain why the
eccentricity of the inner orbit is not yet fully damped.

In Fig. 3, we plot the evolution of the instantaneous shape of
CoRoT-7 b as a function of time, given by its oblateness, J2, and
prolateness,

ε =
√

C2
22 + S2

22 . (14)

To better understand the different behaviours, we also plot the av-
erage of the equilibrium shape over one orbital period (see Correia
et al. 2014). For J2 we have

〈J2〉 = J 0
2 + J r

2 + 〈J t
2〉 , (15)

where

〈J t
2〉 = A (1 − e2

1)−3/2 , (16)

and

A = kf

2

m0

m1

(
R

a1

)3

. (17)
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Figure 3. Evolution of the shape of the planet with time for all adopted values of τ . We show the instantaneous values of J2 (a) and ε (b), together with their
average values 〈J2〉 (c) and 〈ε〉 (d) (equations 15 and 18). The colours correspond to the same values of τ as in Fig. 2. For simplicity, in the case of 〈ε〉 we only
show the results for τ = 1 yr in order to better visualize the changes in the shape under the sequence of resonant trappings of the rotation. The instantaneous
values of J2 and ε are in excellent agreement with the theoretical prediction for the averaged values.

The mean equilibrium value of ε depends on the SOR in which the
rotation is trapped in. With p = �/n1 we have

〈ε〉 = C0
22 + A

2
X−3,2

2p (e1) , (18)

where Xl,m
k (e1) are Hansen coefficients such that

(
r1

a1

)l

eimν1 =
+∞∑

k=−∞
Xl,m

k (e1) eikM1 . (19)

The J2 and ε obtained numerically and analytically (equations
15 and 18) show that the instantaneous values closely follow their
average equilibrium values (Fig. 3). The sudden variations observed
correspond to the transition between two successive SORs. When
the rotation jumps from an SOR to a lower order one, the J2 de-
creases, which is a consequence of the term J r

2 (equation 7), that is
proportional to (�/n1)2 = p2. On the other hand, for a given SOR,
the J2 increases as the inner planet migrates towards the central star.
From expression (16) we see that 〈J t

2〉 must increase as a1 decreases,
despite the influence of the factor depending on e1. At the end of
the evolution, when the rotation becomes synchronous, the planet
acquires the same J2 value in all scenarios, because whatever the
value of τ is, the planet has enough time to reach the equilibrium
figure.

Unlike the J2 variations, the prolateness (ε) increases when the
rotation changes from one SOR to the next (lower order) one. The
prolateness of the planet also follows the average equilibrium value
for each SOR (equation 18). It temporarily decreases with the ec-
centricity, since X−3,2

2p (e) is a decreasing function with e. How-
ever, when the critical eccentricity for each resonance is attained,
ε increases again because X−3,2

2p (e) ∝ e2(p−1) (e.g. Correia et al.
2014). When the synchronous rotation is reached, the deforma-
tion always points along the direction of the star and it grows a
lot, since X−3,2

2 (e) ≈ 1 − 5e2/2, i.e. the prolateness marginally de-
pends on the eccentricity. Again, it becomes the same for all τ

values, since the planet has enough time to reach the maximal
deformation.

3.2.2 Low initial e1

We now suppose that the initial eccentricity of the inner orbit is low.
This assumption can be justified, among other reasons, considering
a scenario where the orbit of the inner planet was not excited by
any mean motion resonance with the outer planet, and therefore it
kept a low-eccentricity value during the migration process. We thus
take a low initial value of e1 = 0.05 and keep the same previous
values of initial semimajor axes. Applying equation (12), we obtain
the initial value e2 = 0.1933.
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Figure 4. Evolution of the eccentricities and rotation rate for τ = 10, 102

and 103 yr, and low initial eccentricity (e1 = 0.05). The eccentricity pumping
also appears in this case, indicating that it may be an efficient mechanism
that took place during the evolution of the CoRoT-7 planetary system.

For τ < 1 yr, the eccentricity can only be damped (Fig. 1), so these
cases are not interesting to study here again. However, for τ ≥ 10 yr,
we observed a strong increase in e1. In order to check if the initial
eccentricity pumping is still present for low initial eccentricity,
in Fig. 4 we plot the evolution of eccentricities and rotation for
τ = 10 to 103 yr. The initial increase in e1 is still observed in
all cases, so we conclude that the pumping effect is an efficient
mechanism that may have occurred during the past evolution of the

CoRoT-7 system.4 Since the eccentricity pumping is present even
for initial low eccentricities of the inner orbit, it provides a possible
explanation for the present observed high value of 0.12 (Table 1).
It can also explain the occurrence of high eccentricities of other
close-in super-Earths in multiple planetary systems.

The main difference with respect to the case with high initial ec-
centricity (Section 3.2.1) is that the rotation is now initially captured
in lower order SORs. This behaviour was expected due to the lower
initial value of e1, for which high-order SORs are unstable. Once
captured in an SOR, the pumping effect helps to keep the rotation
trapped in a non-synchronous spin–orbit resonant configuration for
a longer period of time as well.

In Fig. 5, we show the evolution of the instantaneous shape (top),
together with the corresponding analytical averaged equilibrium
values (bottom) given by expressions (15) and (18). As in the case
with high initial eccentricity (Section 3.2.1), the agreement between
the numerical and the averaged deformation is very good. Note
that, in all cases, the agreement for the prolateness begins when
the rotation becomes trapped in the an SOR, because the averaged
value depends on p (equation 18). We conclude that expression (18)
provides a good approximation for the shape of the body even when
the orbit is excited by an external companion.

4 ECCENTRI CI TY PUMPI NG

The initial secular increase observed for the eccentricity of the
inner orbit (Figs 1 and 4) is somewhat unexpected, although a
similar behaviour has already been described for gaseous planets
(Correia et al. 2012, 2013; Greenberg et al. 2013). In previous
works, the eccentricity pumping is related to a variation in the J2 of
the inner planet due to the rotation, that tends to follow the pseudo-
synchronous equilibrium (equation 13). However, in the present
case the rotation is always locked in an SOR, so this effect can
be neglected. In this section, we show that the initial eccentricity
pumping also results from a variation in J2, but here the excitation
directly comes from the tidal deformation with the adopted Maxwell
rheology (equation 6).

4.1 Secular evolution of the eccentricity

The eccentricity evolution of the inner orbit can be obtained from
the Laplace–Runge–Lenz vector,

e1 = ṙ1 × L1

Gm0m1
− r1

r1
, (20)

which points along the major axis in the direction of periapsis with
magnitude e1 = |e1|. Thus,

ė1 = 1

Gm0m1

(
f × L1 + ṙ1 × L̇1

)
, (21)

where f is the acceleration arising from the potential created by the
deformation of the inner planet (equation 4), and L̇1 = m1 r1 × f .
The secular evolution of the eccentricity can then be obtained by
averaging over one orbital period

ė1 =
〈

ė1 · e1

e1

〉
M1

, (22)

where M1 is the mean anomaly of the inner planet’s orbit.

4 We also performed a simulation (not shown here) with a1 = 0.02 au and
the eccentricity pumping also appeared.
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Figure 5. Evolution of the shape of the planet with time for τ = 10, 102 and 103 yr, and low initial eccentricity (e1 = 0.05). We show the instantaneous values
of J2 (a) and ε (b), together with their average values 〈J2〉 (c) and 〈ε〉 (d) (equations 15 and 18). The colours correspond to the same values of τ as in Fig. 3.
The instantaneous values of J2 and ε are still in agreement with the theoretical prediction for the averaged values.

For a single planet undergoing tidal dissipation with a Maxwell
rheology, the secular evolution of the eccentricity becomes (Correia
et al. 2014, equation 53):

ė1 = −A
2

(
R

a1

)2 (1 − e2
1)

e1

+∞∑
k=−∞

[(
X−3,0

k

)2 τk2n2
1

1 + τ 2k2n2
1

+
(
X−3,2

k

)2 3τω2
k

1 + τ 2ω2
k

(
1 + 2n1/ωk√

1 − e2

)]
, (23)

where Xl,m
k is given by expression (19), and ωk = 2� − kn1. The

first term in expression (23) results from the contribution of the
J2, while the last-term results from the contribution of C22 and
S22 (see equation 4). When the rotation is captured in an SOR,
�/n1 = p = k/2, it means that the tidal torque is dominated by the
term with amplitude X−3,2

2p , but also that ω2p = 0. As a consequence,
the eccentricity evolution is dominated by the J2 contribution:

ė1 ≈ −A
2

(
R

a1

)2 (1 − e2
1)

e1

+∞∑
k=−∞

(
X−3,0

k

)2 τk2n2
1

1 + τ 2k2n2
1

. (24)

The coefficient (X−3,0
k )2 is always positive and dominated by e2k

1

(e.g. Laskar & Boué 2010). Since the term with k = 0 is zero, the
leading terms in the above series are for k = ±1, and thus ė1 ∝ −e1.
We hence conclude that the eccentricity of a single planet captured
in an SOR can only decrease for a Maxwell rheology (see Correia
et al. 2014).

4.2 Secular evolution of J2

In order to obtain expression (24), we assumed a constant rotation
rate and a constant eccentricity for J t

2 (equation 8):

J2 = J c
2 + 1

τ

∫ t

0
J t

2 (t ′) e(t ′−t)/τ dt ′

= J c
2 + A

+∞∑
k=−∞

X−3,0
k

1 + iτkn1
eikM1 , (25)

with J c
2 = J 0

2 + J r
2 = cte. When the rotation is captured in an SOR

we can keep the assumption of constant rotation. However, when
the eccentricity is perturbed by a companion planet, the Hansen
coefficients are no longer constant (equation 19). Let us assume
that the eccentricity is a periodic function with frequency g. Thus,

Xl,m
k (e1) =

+∞∑
j=−∞

Y l,m
j,k eijgt . (26)

Using this expansion for J t
2 (equation 8) in the computation of J2

(equation 25) gives

J2 = J c
2 + A

∑
j,k

Y−3,0
j,k

1 + iτ (kn1 + jg)
ei(kn1+jg)t . (27)
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In general, we have g � n1. Therefore, for all terms except k = 0,
we can neglect the contribution from g in previous expression:

J2 ≈ J c
2 + A

∑
k �=0

X−3,0
k

1 + iτkn1
eikn1t

+ A
∑

j

Y−3,0
j,0

1 + iτjg
eijgt , (28)

which gives

〈J2〉 ≈ J c
2 + A

∑
j

Y−3,0
j,0

1 + iτjg
eijgt . (29)

Noting also that

A
∑

j

Y−3,0
j,0

1 + iτjg
eijgt = 1

τ

∫ t

0
〈J t

2〉 e(t ′−t)/τ dt ′ , (30)

where 〈J t
2〉 = AX−3,0

0 (e) is the average value of J t
2 over one orbital

period (equation 16), we can thus obtain a secular version for the
〈J2〉 rheological law (equation 6) as

〈J2〉 + τ 〈J̇2〉 = J c
2 + 〈J t

2〉 . (31)

4.3 Planetary perturbations

We now consider the effect of the outer planet. In absence of tidal
deformation and dissipation, the eccentricity of the inner orbit is
only perturbed by the outer companion. Considering the leading
orbital perturbations (octupole-level), we have (e.g. Correia et al.
2012):

ė1 ≈ −ν31
e2(1 + 3/4e2

1)
√

1 − e2
1

(1 − e2
2)5/2

sin � , (32)

and

�̇ ≈ νgr

(1 − e2
1)

+ ν21

√
1 − e2

1

(1 − e2
2)3/2

− ν22
(1 + 3

2 e2
1)

(1 − e2
2)2

, (33)

with

ν31 ≈ n1
15

16

m2

m0

(
a1

a2

)4

, νgr ≈ 3n1

(n1a1

c

)2
, (34)

ν21 ≈ n1
3

4

m2

m0

(
a1

a2

)3

, ν22 ≈ n2
3

4

m1

m0

(
a1

a2

)2

. (35)

The variations in e2 can be obtained from expression (12). The
angle � = � 1 − � 2 is the difference between the longitude of the
periastron of the inner and outer orbits, and it can be also obtained
from the Laplace vector (equation 21) as

�̇1 =
〈

ė1 ·
(

k × e1

e2
1

)〉
M1

. (36)

In expression (33), we only include the orbital perturbations (New-
tonian and general relativity corrections), but we also need to take
into account the contribution from tides, given by f (equation 4).
Considering only the leading J2 term, we get

�̇1 = ν1

[ 〈J2〉
(1 − e2

1)2
+ AF (e1)

]
, (37)

with

ν1 = 3n1

2

(
R

a1

)2

, (38)

and

F (e) =
√

1 − e2

e

∑
k �=0

X−3,0
k

1 + τ 2k2n2
1

(
X−4,1

−k + X−4,−1
−k

)
. (39)

4.4 Linear approximation

The complete secular evolution of the eccentricity of the inner orbit
is given by the set of equations (24), (31), (32), (33) and (37).
Following Correia et al. (2012), we can understand the unexpected
increase of the eccentricity during the initial stages of the evolution
by linearizing the secular equations in the vicinity of the average
values of e1 and J2.

Let 〈J2〉 = J c
2 + δJ , e1 = e10 + δe1 and e2 = e20 + δe2. The

δe2 can be expressed as a function of δe1 using the conservation
of the orbital angular momentum (equation 12), which we neglect
since δe2 � δe1. We also neglect the small damping effect given
by expression (24). Then, assuming that ei0 �= 0, the equations of
motion (31–33, 37) reduce to:

δė1 = −νe sin � , (40)

�̇ = g + geδe1 + gJ δJ , (41)

δJ̇ = Jeδe1/τ − δJ/τ , (42)

with

νe = ν31
e20(1 + 3/4e2

10)
√

1 − e2
10

(1 − e2
20)5/2

, (43)

g = νgr

(1 − e2
10)

+ ν1

[
J c

2

(1 − e2
10)2

+ Af (e10)

]

+ ν21

√
1 − e2

10

(1 − e2
20)3/2

− ν22
(1 + 3e2

10/2)

(1 − e2
20)2

, (44)

ge = 2ν0 e10

(1 − e2
10)2

+ ν1

[
2J c

2 e10

(1 − e2
10)3

+ A∂f

∂e
(e10)

]

− ν21 e10√
1 − e2

10(1 − e2
20)3/2

− 3ν22 e10

(1 − e2
20)2

, (45)

gJ = ν1

(1 − e2
10)2

, (46)

Je = 3A e10

(1 − e2
10)5/2

. (47)

At first order, the precession of the periastron is constant �̇ � g,
and the eccentricity is simply given from expression (40) as

δe1 = �e cos(gt + �0), (48)

where �e = νe/g, and � = gt + � 0. That is, the eccentricity e1

presents periodic variations around an equilibrium value e10, with
amplitude �e and frequency g. Since geδe1, gJδJ � g, the above
solution for the eccentricity can be adopted as the zeroth-order so-
lution of the system of equations (40–42). With this approximation,
the equation of motion of δJ (42) becomes that of a driven harmonic
oscillator whose steady state solution is

δJ = �J cos(gt + �0 − φ), (49)

MNRAS 463, 3249–3259 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/463/3/3249/2646623 by U
niversidade Estadual Paulista Jï¿½

lio de M
esquita Filho user on 28 M

ay 2019



3258 A. Rodrı́guez, N. Callegari Jr. and A. C. M. Correia

with

�J = Je�e√
1 + (τg)2

, and sin φ = τg√
1 + (τg)2

. (50)

The J2 thus presents an oscillation identical to the eccentricity
(equation 48), but delayed by an angle φ. Using the above ex-
pression in equation (41) and integrating, gives for the periastron:

� = gt + �0 + ge

g
�e sin(gt + �0) + gJ

g
�J sin(gt + �0 − φ) .

(51)

Finally, substituting in expression (40) and using the approximation
ge�e, gJ�J � g gives

δė1 ≈ −νe sin(gt + �0)

− νe

ge

g
�e sin(gt + �0) cos(gt + �0)

− νe

gJ

g
�J sin(gt + �0 − φ) cos(gt + �0), (52)

or, combining the two products of periodic functions,

δė1 = −νe sin(gt + �0) + νe

gJ

2g
�J sin φ

− νe

ge

2g
�e sin(2 gt + 2�0)

− νe

gJ

2g
�J sin(2 gt + 2�0 − φ) . (53)

The last two terms in previous equation can be neglected since they
are periodic and have a very small amplitude (ge�e, gJ�J � g).
However, the second term in sin φ is constant and it adds an increas-
ing drift to the eccentricity,

〈δė1〉 = νe

Je�e

2

τgJ

1 + (τg)2
. (54)

The drift is maximized for τg ∼ 1, which corresponds to φ ∼ 45◦

(equation 50). It vanishes for weak dissipation (τg � 1), but also for
strong dissipation (τg > 1). The phase lag φ between the eccentricity
(equation 48) and the J2 variations (equation 49) is thus essential to
get a drift on the eccentricity. The eccentricity pumping was never
observed in previous studies with viscoelastic rheologies, since tidal
deformation and dissipation are given in the Fourier domain by the
complex Love number k2 (which is computed for a given frequency),
while here we use a time-dependent rheological law (equation 6)
that allows this kind of feedback effects.

The major difference when we consider the full non-linearized
problem is that the drift (equation 54) cannot grow indefinitely. In-
deed, when the eccentricity reaches high values, the drift vanishes
(Fig. 4). Moreover, the tidal damping of the eccentricity is also en-
hanced for high eccentricities (equation 24), which counterbalances
the drift (Fig. 1). Although the pumping drift can be present for the
age of the system, when the amplitude of the eccentricity oscilla-
tions becomes small (�e → 0), the drift disappears (equation 54)
and the eccentricity can only be damped.

5 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have studied the coupled orbital and spin evolution
of the CoRoT-7 two-planet system using a Maxwell viscoelastic
rheology for the inner planet. This rheology is characterized by a
viscous relaxation time, τ , that can be seen as the characteristic
average time that the planet requires to achieve a new equilibrium
shape after being disturbed by an external forcing.

We studied the past evolution of the system adopting different
values for the relaxation time of CoRoT-7 b, ranging from a few
hours up to one century (10−3–102 yr). In all situations, the spin
evolves quickly until it is captured in some SOR. It then follows
through a successive temporarily trappings in SORs, which are pro-
gressively destabilized as the eccentricity decays. Several works on
tidal evolution usually assume synchronous motion for the rotation
of the close-in companions, as this is the natural outcome resulting
from tidal interactions. Nevertheless, for large values of the relax-
ation times, which are likely the case for most terrestrial planets,
we note that the rotation can remain trapped into high-order SORs
for tens of Myr.

We observed that there are two different regimes for the orbital
evolution. For small τ values (0.01–0.1 yr), the eccentricity of both
orbits is rapidly damped, in agreement with previous results (e.g.
Ferraz-Mello et al. 2011; Rodrı́guez et al. 2011; Dong & Ji 2012).
However, for large τ values (10–102 yr), the inner planet eccentricity
is pumped to higher values, whereas the outer planet eccentricity
is simultaneously damped due to the orbital angular momentum
conservation.

The inner orbit eccentricity pumping was already reported in
previous works that used the linear model instead of the Maxwell
one (Correia et al. 2012, 2013; Greenberg et al. 2013). In these
works, the effect resulted from a forced excitation of the J2 due to
oscillations in the rotation rate. This mechanism works as long as
the rotation is close to the pseudo-synchronous state and undergoes
variations due to the eccentricity forcing (see Correia 2011). Al-
though the pseudo-synchronous state can be expected for gaseous
planets, for rocky planets the spin always ends up trapped in an
SOR due to the permanent equatorial deformation. Thus, for this
class of planets, the pumping mechanism identified by Correia et al.
(2012) does not work.

The eccentricity pumping described in this paper also results
from a forced excitation of the J2 of the planet, but due to the tidal
deformation. Indeed, the equilibrium J2 has a rotational (equation 7)
and a tidal contribution (equation 8), but inside an SOR the rotational
contribution is nearly constant, while the tidal one still undergoes
variations due to the term in r−3

1 . The pumping effect is an impor-
tant mechanism that may help to explain the non-zero eccentricity
presently observed for the orbit of CoRoT-7 b.

Due to the computational cost of the numerical simulations, we
were not able to perform here a large set of runs for different
planetary systems. However, we have shown that at least for the
CoRoT-7 system unexpected behaviours can occur when we take
into account the coupled orbital and spin evolution. In particular,
the non-zero eccentricities observed for many other close-in super-
Earths in multiple planetary systems, may be explained by similar
pumping mechanisms.

Since the Maxwell model is more realistic than the constant−Q
and the constant time lag models, the results described in this pa-
per provide a more accurate picture for the diversity of behaviours
among planetary systems that interact by tides. Alternative vis-
coelastic rheologies to the Maxwell model exist, such as the Stan-
dard Anelastic Solid model (e.g. Henning et al. 2009) or the Andrade
model (e.g. Efroimsky 2012). These rheologies may also be able to
reproduce the pumping effect on the inner orbit eccentricity. Note,
however, that in order to observe the excitation in J2 due to the
eccentricity forcing, we need to use a time-dependent rheological
law similar to expression (6) that allows feedback effects.

In this study, we considered coplanar orbits and the spin of the
planet orthogonal to the orbits (zero obliquity). Although multi-
planet systems usually present low mutual inclinations of about 1◦
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on average (Figueira et al. 2012; Tremaine & Dong 2012), this value
can be large enough to perturb the long-term evolution of the obliq-
uity (Laskar & Robutel 1993; Correia & Laskar 2003). Our model
can be easily extended to non-planar configurations (for planets
with some obliquity and evolving in inclined orbits), provided that
we additionally take into account the deformation of the C21 and S21

gravity field coefficients in the gravitational potential, as explained
in Boué, Correia & Laskar (2016).
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