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Abstract. In this paper, some ergodic aspects of non-smooth vector fields are studied. More specifically, the concepts of
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1. Introduction

The study of the so-called non-smooth vector fields (NSVF), also addressed in the literature as discontin-
uous or piecewise smooth vector fields, has received special attention from the mathematical community
in the last years, mainly due to the closeness of such area to applied sciences as mechanics, engineering,
electronic and biology, as well as social and financial sciences (for applications of NSVF see, for instance,
the book of di Bernardo et al. [8]).

Roughly speaking, in the theory of NSVF is admitted the existence of one or more codimension one
manifolds separating the phase portrait into a finite number of disjoint regions. Then we define a vector
field (not necessarily the same) on each one of these regions.

It means, among others facts, that on the boundary of each region we have defined at least two vector
fields, so the trajectories passing through such switching regions may be non-regular or even non-unique,
depending on the intrinsic geometry of the vector fields and the switching manifold. Some papers dealing
with more than two vector fields which contain a richer dynamics can be found in [9,13,16], for instance.
Moreover, as we will see, it is also possible for a particular trajectory to be confined onto the switching
manifold itself (more details concerning NSVF will be provided timely in this paper).

The terminology which introduces the behavior of the trajectories on the switching manifold, also
called discontinuity manifold, was presented by Filippov [11]. Before that, the theory of NSVF was
underdeveloped, and it had a strong relation with manifolds with boundaries. In fact, one of the forerunner
works is a paper of Teixeira teixeira. More recently, many other authors have contributed to the progress
of the NSVF’s theory. Some landmarks we can cite are the works [1,15,20] and references therein.

One of the most important goals concerning the theory of NSVF is to look over the validity of the
results coming from the classical theory of dynamical systems into the non-smooth scenario. By classical,
we mean not only topological but also, for instance, ergodic, symbolic and discrete points of view. Though,
in this direction, some particular results have been obtained through the last years. For instance, it
is pretty clear that the Existence and Uniqueness Theorem is not true in the non-smooth context, as
suggested previously. On the other hand, under suitable hypotheses, we already know that Poincaré
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Index Theorem, Poincaré-Bendixson Theorem and Peixoto Theorem possess versions for NSVF (see [3,4]
and [18]). Moreover, some works have recently addressed different concepts from general dynamics in the
NSVF scenario. In such works, the authors introduce, for instance, the concepts of invariance, minimality
and chaoticity for NSVF, and they achieve surprising features concerning these objects, such as the
existence of non-trivial minimal sets and chaotic vector fields in dimension 2 (see for instance [2,6] and
[14]).

We should remark that, in general, presenting a classical result from dynamical systems’ theory for
the non-classical NSVF involves the process of softening the hypotheses of that result by allowing multi-
valued flows, which are eventually non-regular. It means that we do not assume neither uniqueness nor
smoothness of solutions, which prints in some way a randomic feature in PSVF.

2. Setting the problem

Our goal is to study some ergodic aspects of the NSVF. More specifically, we discuss the validity of one of
the most important theorems from ergodic theory, namely the Poincaré Recurrence Theorem. It basically
deals with the recurrence of a set of points depending on invariant measures for the considered NSVF.
We prove that under suitable conditions, such theorem also holds for a special class of NSVF; we also
show that it does not hold in the complementary of such class.

Nevertheless, it is known that in the classical ergodic theory the Poincaré Recurrence Theorem can
be stated in two manners (see, for instance, [21]), so in an analogously way, in this work the first manner
will be called measurable version, which states that “given a finite invariant measure, the orbit of almost
every point of every measurable set E returns to E infinitely many times”. This version will be presented
in Theorem 5.1 of Section 5. On the other hand, the other version will be called topological version. This
version states that “given a finite invariant measure, almost every point is recurrent by the non-smooth
vector field” and it will be presented in Theorem 5.2 of Section 5. As we commented before, our goal here
is to prove these two versions of Poincaré Recurrence Theorem in the scenario of NSVF. In order to do
this, since the flow related to a NSVF is not necessarily unique, we must introduce consistent definitions,
for instance, on what we understand by a recurrent point and its dependence on the flow passing through
such points. Moreover, we shall discuss the meaning of concepts as invariant measures and flows for NSVF
as well as other concepts related on.

This paper is organized as follows. In Sect. 3, we present some basic concepts concerning NSVF, recur-
rence and invariant measures. In Sect. 4, we make use of some examples to discuss the main hypotheses
on what we based our theorems; we also compare the class of systems we are working with to classical
dynamical systems. The main results, namely the Poincaré Recurrence Theorem in the measurable and
topological versions, are stated and proved in Sect. 5. Finally, in Sect. 6, we present the conclusions and
some brief comments about future works in ergodic theory joint with NSVF.

3. Preliminars

In what follows we introduce the first ideas about non-smooth vector fields following the methodology
stated by Filippov [11]. In order to do that, let M be an open set of Rn and consider a codimension one
manifold Σ of Rn given by Σ = F−1(0), where F : V → R is a Cr smooth function having 0 ∈ R as a
regular value. We designate by χ the space of Cr-vector fields on M ⊂ R

n, with r ≥ 1 large enough for
our purposes and take Ω the space of vector fields Z : M → R

n such that

Z(x, y) =
{

X(x, y), for (x, y) ∈ Σ+,
Y (x, y), for (x, y) ∈ Σ−,

(1)
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where X,Y ∈ χ. We call Σ the switching manifold, which is the region where the non-smooth vector field
Z switches from X to Y and viceversa. Consequently Z is bi-valuated on Σ.

Concerning the behavior of the trajectories reaching the switching manifold Σ, consider Lie derivatives

X.F (p) = 〈∇F (p),X(p)〉 and Xi.F (p) =
〈∇Xi−1.F (p),X(p)

〉
, i ≥ 2,

where 〈., .〉 is the usual inner product in R
n. Filippov distinguished three regions on the switching manifold

taking into account the geometry of the vector fields defined on Σ, as follows:

(i) Σc ⊆ Σ, the sewing region, where (X.f)(Y.F ) > 0;
(ii) Σe ⊆ Σ, the escaping region, where (X.F ) > 0 and (Y.F ) < 0;
(iii) Σs ⊆ Σ, the sliding region, where (X.F ) < 0 and (Y.F ) > 0.

We denote by Σt ⊆ Σ the set of points satisfying (X.F (q))(Y.F (q)) = 0, which means the tangency
points of the trajectories of X or Y with Σ. If Xn.F (q) = X.

(
Xn−1.F

)
(q) 
= 0 we say that p is a

tangency of order even (respectively, odd) if n is even (respectively, odd). Moreover, we say that p is a
regular tangency if there is a trajectory reaching p and a singular one otherwise.

Next, we present the definition of a flow induced by a NSVF under the methodology presented by
Filippov [11]. Before that, we remark that a local flow (or local trajectory) σ(t, p) passing through a point
p at the time t = 0 is any trajectory reaching p defined for a finite or infinite time, so it is not necessarily
unique (observe that σ(t, p) is unique if p ∈ Σe ∪ Σc). Observe also that if Z = (X,Y ) is a NSVF and
p ∈ Σs, for instance, the local flow by p could be the trajectory coming from the vector fields X or Y or
slide on Σ. For more details about local flows see [2,12].

Definition 3.1. A global flow ft(t, p0) of Z ∈ Ω passing through p0 is a union

ft(t, p0) =
⋃
i∈Z

Γi

where, for each i ∈ Z, Γi = {σi(t, pi); ti ≤ t ≤ ti+1} with σi(t, pi) being a preserving-orientation local
trajectory satisfying σi(ti+1, pi) = σi+1(ti+1, pi+1) = pi+1 and (ti)i∈Z is a sequence such that ti < ti+1,
∀i ∈ Z, with t0 = 0 and ti → ±∞ as i → ±∞. A global flow is positive (respectively, negative) if i ∈ N

(respectively, −i ∈ N) and t0 = 0.

We observe that the definition of global flow of a NSVF is slightly different from the classical definition
of flow once may occur no uniqueness of trajectories. Thus, we can not assure the uniqueness of local
flows and consequently the same hold for global flows. In order to consider every possible choice for the
trajectory starting or ending in a set A, we define

ϕt(A) =
⋃
p∈A

ft(t, p).

that we call here the saturation of the set A. Of course, analogously we can define the saturation of a
point p by taking A = {p}.

Finally, we stress that although we are unable to guarantee the smoothness of the trajectories of a
NSVF, by Definition 3.1 every flow passing through a given point is continuous. Consequently, it makes
sense to consider a measure which is invariant for a non-smooth flow once every continuous function
is clearly a measurable one. Despite of these considerations, now we define the concept of an invariant
measure by a flow.

Definition 3.2. Given a measure μ and a flow ft of a NSVF Z ∈ Ω defined in a compact manifold M, we
say that μ is invariant by ft if

μ(E) = μ(f−t(E)),

for all measurable subsets E ⊂ M and for all t ∈ R.
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Fig. 1. Recurrence of a point depends on the flow passing through this point

Remark 3.1. Although the classical definition of invariant measures takes into account only positive times,
in the scenario of NSVF the orientation of the time has an important role (see Definition 3.1). That is
the reason why we consider t ∈ R in Definition 3.2 instead of only positive values of t.

We observe that, if Z is smooth (considering, for instance, Z = (X,Y ) with X = Y ), Definition 3.2
coincides with the classical definition of an invariant measure μ by a flow ft of Z, as expected. Note
that in such scenario the flow ft of Z is unique by the Existence and Uniqueness Theorem. However, if
Z is non-smooth, it is not clear that μ is still invariant if we consider other flow gt of Z. Consequently,
the definition of invariance of a measure μ by a flow ft strongly depends on the particular flow we have
considered.

Nevertheless, if the invariance does not depend on the flow, we will say that the measure is invariant
for the non-smooth vector field Z, as stated in the next definition.

Definition 3.3. We say that a measure μ is invariant by a non-smooth vector field Z ∈ Ω if μ is invariant
by every flow ft of Z.

Another fundamental concept in the ergodic theory we must introduce to present the results is the
notion of recurrence, which is very clear in the context of smooth and discrete dynamical systems, but in
the non-smooth scenario it could be clarified in order to avoid misunderstanding.

Definition 3.4. Given a flow (ft)t of a NSVF we say that a point x ∈ M is recurrent by this flow if there
exists a sequence (ti)i, ti → ∞ when i → ∞, such that fti(x) → x when i → ∞.

Again, we observe that this definition coincides to the classical definition of recurrence since in the
classical case we have uniqueness of the flow (note that this is the case in Definition 3.4 once we have
fixed the flow ft). However, due to the non-uniqueness of the flow of a NSVF, we must also provide a
definition of recurrence by a NSVF taking into account these facts. Nevertheless, it is probably simpler to
introduce the idea of non-recurrence for NSVF. Indeed, a point q should be non-recurrent if there exists
a small neighborhood Vq of q and a finite time Tq > 0 such that every flow passing through q does not
return to Vq, for any time t ∈ R with |t| > Tq. It sounds reasonable once we can have infinitely many
flows passing though q. Therefore, the definition of recurrence must be the following.

Definition 3.5. Given a non-smooth vector field Z ∈ Ω defined in a compact manifold M, we say that a
point x ∈ M is recurrent by Z if x is recurrent by some flow ft of Z.

Example 3.1. Consider the non-smooth vector Z which realizes the phase portrait of Fig. 1, that is,
X ∈ Σ+ has a stable focus and Y ∈ Σ− is a constant vector field whose orbits point outside Σ. Consider
now the following trajectories: (i) σ1 the arc of trajectory of X connecting the point s ∈ Σe to the point
q ∈ Σt; (ii) σ2 the arc of local flow contained in the trajectory coming from the sliding vector field which
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Fig. 2. PSVF without sliding or escaping which present non-classical dynamics

starts in the point q and finishes in the point s and (iii) the trajectory of Y starting in a point p ∈ Σe with
p contained in the interior of the trajectory σ2. Observe that any point x that belongs to the pseudo-cycle
Γ0 = σ1 ∪ σ2 is recurrent for Z once the trajectory which remains on Γ0 returns to x infinitely many
times, although some trajectories passing through x are not recurrent (for instance, if x = p, then x is
not recurrent for σ3). On the other hand, by considering a point y ∈ σ3\Σ, the trajectories by y is unique
and does not return to any neighborhood of y for all time t ∈ R, that is, y is not recurrent for Z.

4. Some differences between classical and non-classical dynamics

In this section, we present some remarks and examples in the direction to understand the hypotheses
demanded throughout the manuscript. First of all, we observe that, in order to assume preservation the
measure, it is strictly necessary to impose the hypothesis

M ∩ ϕt(Σe ∪ Σs) = ∅.

In order to see this, assume that μ is the Lebesgue measure and M ∩ ϕt(Σe ∪ Σs) 
= ∅. Suppose,
without loss of generality, that M ∩ ϕt(Σe) 
= ∅. In this case, there exists a flow fΣe

t , which remains on
Σe, a measurable set E′ and times t1, t2 ∈ R such that μ(E′) > μ(fΣe

t (E′)), for all t ∈ (t1, t2), since fΣe

t

is contained in Σe and Σe has codimension one. As we commented before, this remark will be important
in the statements of the main results in Sect. 5.

One can ask if the hypothesis mentioned above is too restricted, in the sense that it could lead to a
classical behavior of the NSVF under study. However, that is not the case. Indeed, lots of applications
in engineering leads to NSVF’s having no sliding or escaping motions, that is, considering only sewing
and tangency points (or even only sewing points), see [10] and references therein. Other known fact from
NSVF’s which is distinct to smooth dynamical system is that, surprisingly, even linear NSVF without
sliding or escaping can present limit cycles (see, for instance, [17]). Another example of a system presenting
no sliding or escaping but behaving very differently from smooth dynamical system is the following.

Example 4.1. We consider the PSVF Z = (X,Y ) with X(x, y) = (1, 4x(1−x2)) and Y (x, y) = (−1, 4x(1−
x2)). The phase portrait is exhibited in Fig. 2. The PSVF Z has no sliding or escaping motion. However,
the trajectory through the point presenting a simultaneous regular tangency is non-deterministic, which
leads to a chaotic behavior (see more in [2]). Moreover, the simultaneous singular tangencies behave like a
center. Despite of that, they do not preserve Lebesgue measure, which does not occur in smooth system.

Previous example shows that the trajectory of every arc of orbit γ contained in the closed orbit behave
as a non-deterministic way. Indeed, each point of γ which passes through the regular tangency when time
goes to infinity should flows to one of the two possible arcs available for future trajectories. The conclusion
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Fig. 3. Global flow ft of the NSVF preserves the measure of every measurable set E. From left to right: a the set E is
entirely contained in Σ− and has Lebesgue measure m; b the set E reaches Σ: the dashed line represents the virtual flow of
E by the vector field Y which is reflected by the vector field X (filled drawing) preserving the Lebesgue measure of E ∩Σ+;
c the set E is totally reflected by vector field X and has the same original Lebesgue measure m

is that, even considering PSVF’s which avoid sliding or escaping, we can obtain non-determinism and
uncountable trajectories.

In [2] the authors also presents a non-classical dynamical systems. Moreover, in that example they
shows that

0 < μ
(
ϕt(Σe ∪ Σs)

)
< μ(M).

In other words, we can have systems whose measure of the saturation of Σe ∪ Σs is positive, so the
measure of M\ϕt(Σe ∪ Σs) is not full. That is to say, classical Poincaré theorems does not apply in such
context, but the theorems presented in next section contemplate such situation.

Next example shows that Definition 3.3 is non-empty.

Example 4.2. Consider μ the Lebesgue measure and Z = (X,Y ) the planar NSVF with switching manifold
given by Σ = F−1(0), where F : R2 −→ R writes F (x, y) = y. Consider X and Y defined in Σ+ and Σ−,
respectively, by X(x, y) = (b,−a) and Y (x, y) = (a, b), with a < 0 and b > 0. Observe that (X.F (x, 0))
(Y.F (x, 0)) = −ab > 0, which means that every trajectory reaching Σ from Σ− to Σ+ crosses Σ in a
sewing point. Moreover, the trajectories coming from Σ− rotates ninety degrees in the clockwise direction
when they cross Σ (see Fig. 3). In this situation, it is easy to see that the global flow ft associated to
Z (which is unique since every point of Σ is a sewing one) is a map which preserves the measure μ of
every measurable set of M , for all time t ∈ R. Indeed, it holds since the rotation is a preserving measure
map (not only ninety degrees but any degree of rotation which preserves the sewing region). Therefore,
according to Definition 3.3 the measure μ is invariant by Z. Observe that taking b = −a, we have a
refracted system since X.F (x, 0) = Y.F (x, 0) = −a, which take an special place into non-smooth vector
fields (see for instance Ref. [5]).

5. Main Results

Before establishing our main results we need to prove some technical ones which shall help us in the proof
of the theorems.

Lemma 5.1. Consider Z = (X,Y ) ∈ Ω and assume that Z has isolated tangencies and M∩ϕt(
∑e ∪∑s) =

∅. Then the following holds:
(a) If X has a tangency point p of order even, then p is a tangency point for Y with order even, i.e.,

tangencies of order even appear pairwise.
(b) If X has a tangency point p of order odd, then there exists a neighborhood Vp of p in

∑
such that

Xf(q) · Y f(q) ≥ 0, ∀q ∈ Vp.
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Proof. By hypothesis we have Xf(p) = 0 and X2f(p) 
= 0. Assume X2f(p) > 0, i.e., Xf(q) < 0 if
q < p and Xf(q) > 0 if q > p. In order to prove that p is a tangency point for Y we need to prove that
Y f(p) = 0. By contradiction, we suppose that Y f(p) 
= 0. Once Y f(q) =< ∇f(q), Y (q) > is a continuous
function, there exists a neighborhood Vp of p in

∑
such that Y f(q) > 0 for all q ∈ Vp or Y f(q) < 0 for

all q ∈ Vp. Without loss of generality, we can assume that Y f(q) > 0 for all q ∈ Vp. The other case is
analogous. Then, we get from the invariance of the signal of Y f that Xf(q) ·Y f(q) < 0 for all q < p, i.e.,
Vp ∩ {x ∈ ∑

;x < p} ⊂ ∑s, which is a contradiction to the fact that M ∩ ϕt(
∑e ∪∑s) = ∅. Therefore,

Y f(q) = 0. This complete the proof of statement (a).
For statement (b) we can assume that X3f(p) > 0, since p is a tangency point of order even for X.

From the fact that tangencies are isolated and since Xf(q) is a continuous function, we get that there
exists a neighborhood Vp of p of p in

∑
such that Xf(q) < 0 for all q ∈ Vp\{p}. If Xf(q) · Y f(q) < 0 for

all q ∈ Vp\{p}, then Vp ∩ ∑ ⊂ ∑s which is a contradiction. So Xf(q) · Y f(q) ≥ 0. �
A consequence of Lemma 5.1 is the result which follows and its proof is straightforward from the fact

that there are open sets (ti, ti+1) ⊂ ∑s, where tk ∈ ∑t, for all k, since tangencies are isolated.

Corollary 5.1. Under the same hypotheses of Lemma 5.1 if p is a tangency point of order odd for X then
every orbit passing through a point in Vp is unique.

It is important to note that, in Corollary 5.1, since the order of the tangencies is odd, the trajectory
through them are unique.

Taking into account the previous definitions and considerations, we are able to state and prove the
Poincaré Recurrence Theorem in two versions, one measurable and another topological. First, we intro-
duce the measurable version of such theorem, as follows:

Theorem 5.1. Consider Z ∈ Ω and assume that Z has a finite number of tangencies, M∩ϕt(
∑e ∪∑s) = ∅

and Z has no equilibrium points. Let μ be a finite measure in M which is invariant by some measurable
flow ft : M → M of Z. If E ⊂ M is a measurable subset of M with μ(E) > 0 then for μ−almost every
point x ∈ E there exist sequences (ti)i≥1 and (si)i≥1 satisfying:
(1) t1 < s1 < t2 < s2 < . . . < ti < si < . . ., for all i ≥ 1
(2) ft(x) ∈ E, ∀t ∈ [ti, si], ∀i ≥ 1
(3) ti → ∞ when i → ∞
(4) si → ∞ when i → ∞

Before provide the proof of Theorem 5.1, we stress that it is possible to allow equilibrium points in M
if they are particular centers, in the sense M posses only preserving measures’ centers. That happen, for
instance, if Z = (X,Y ) with X = Y has a linear center. Otherwise, centers in PSVF’s does not preserve
measure, which is an obvious difference between smooth dynamical systems and non-smooth ones.

Proof. Let E ⊂ M be a measurable subset of M with μ(E) > 0. Consider the set

E0 = {x ∈ E : ft(x) /∈ E ∀ t ≥ 1}.

Hence, if a point x ∈ E remains a finite time inside E, i.e., there exists Tx > 0 such that ft(x) /∈ E for
all |t| ≥ Tx, then x ∈ E0 or x ∈ f−k

1 (E0) for some positive integer k.
In order to prove the theorem, we just need to prove that

μ

( ∞⋃
k=0

f−k
1 (E0)

)
= 0

and for this we need to assure that all the preimages of E0 by f1 are pairwise disjoint, i.e., f−i
1 (E0) ∩

f−j
1 (E0) = ∅, for all i 
= j. Firstly, we suppose that

∑∩ [⋃∞
k=0 f−k

1 (E0)
]

= ∅.
Since, for each fixed t, the map ft(·) is a diffeomorphism, it is not difficult to see that the preimages

of E0 by f1 are pairwise disjoint, i.e., f−i
1 (E0) ∩ f−j

1 (E0) = ∅, for all i 
= j.
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Consequently, since μ is invariant by ft for all t, in particular for f1, we get

μ

( ∞⋃
k=0

f−k
1 (E0)

)
=

∞∑
k=0

μ(f−k
1 (E0)) =

∞∑
i=k

μ(E0).

Furthermore, once μ is finite we have
∑∞

i=0 μ(E0) < ∞ which implies μ(E0) = 0 and then
μ(

⋃∞
k=0 f−k

1 (E0)) = 0.
Now, we shall deal with the case

∑∩ [⋃∞
k=0 f−k

1 (E0)
] 
= ∅. Firstly, we observe that, in this case, the

hypothesis M ∩ϕt(
∑e ∪∑s) = ∅ implies that in

∑
we can have only tangencies or sewing region. Indeed,

when the intersection
∑∩ [⋃∞

k=0 f−k
1 (E0)

]
occurs in a sewing region, we apply the previous argument.

This is possible because the trajectory passing through a point in the sewing region is unique even if it
is non-smooth.

Now, we assume that the intersection
∑∩ [⋃∞

k=0 f−k
1 (E0)

]
occurs in a tangency point p ∈ ∑

. In this
case, we have to analyze two situations, as described in Lemma 5.1. That is, we have to consider the
order of the tangency. Nevertheless, if p is a tangency point of order even, using Lemma 5.1(a), since
tangencies appear pairwise, it lead us to the following possibilities for p as a tangency point for X and
Y :

(i) p is a singular tangency for both X and Y ;
(ii) p is a regular tangency for X and a singular one for Y (or vice-versa);
(iii) p is a regular tangency for both X and Y .

Case (i) can not happen since a common singular tangency generates a point which behaves like
a smooth center or a smooth focus in the sense that the trajectory of such a point is stationary and
attracts or repels every point in a neighborhood (case focus) provides a continuum of periodic orbits not
necessarily preserving measure. In any case, we have a contradiction to the hypothesis which does not
allow equilibrium points.

Case (ii) is similar to the case where we have only regular or sewing points once the trajectory through
such points is unique, that is, the local trajectory passing by p remains on the same region before and
after reach p. So previous argument apply since the trajectory through p is just an arc of orbit of
X or Y .

Case (iii) is not so trivial once there is no uniqueness of trajectory at points which are regular tangencies
for both X and Y . That is true because p is reached in finite time for these vector fields, so the set⋃∞

k=0 f−k
1 (E0) has a non-deterministic nature. However, it can be fixed by considering the set

Ẽ = E\
⋃

p∈Σt

ϕt({p}).

Indeed, since there are two possibilities for the trajectory passing at p ∈ ∑t and, by hypothesis, there
exists a finite number of tangencies, the measure of the saturation of p is zero, so it is the union of
saturation of the finite quantity of regular tangencies. Therefore, we get

μ(E) = μ(Ẽ),

that is, we can avoid these kind of tangencies and apply the previous results for the set E\(̃E).
Now, if p is a tangency point of order odd, using Corollary 5.1, once the trajectory is unique in every

odd tangency point, we can use similar arguments as in the sewing case above. Other cases taking into
account odd order tangencies are not possible by the hypothesis M ∩ ϕt(

∑e ∪∑s) = ∅.
Finally, if Σ∩ [⋃∞

k=0 f−k
1 (E0)

] ⊂ (
ΣS ∪ Σt

)
, then we can combine the previous arguments to conclude

that the proof goes analogously.
�
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The next result establishes a topological version of the Poincaré Recurrence Theorem. This version is
similar to the classical scenario of smooth vector fields but we shall repeat it here for completeness of the
text and since it is very short and simple to understand.

Theorem 5.2. Let Z = (X,Y ) be a non-smooth vector field defined on a compact manifold M . Let μ be a
finite measure in M which is invariant by Z. Then, μ-almost every point x ∈ M is recurrent by Z.

Proof. Consider (Uk)k≥1 a basis of open sets Uk, for all k ≥ 1, of M . Since μ is invariant by Z, by
definition (3.3), μ is invariant by every flow ft : M → M . Then for each k ≥ 1 we consider the set

Ũk = {x ∈ Uk : ∃ Tk > 0 such that {ft(x); |t| ≥ Tk} ∩ Uk = ∅}.

Applying Theorem 5.1 for each set Ũk we conclude that μ(Ũk) = 0, for every k ≥ 1, and then μ(
⋃∞

k=1 Ũk)
= 0.

In order to prove the theorem, we just need to prove that every point x ∈ M\⋃∞
k=1 Ũk is recurrent

by Z. For this, we take a point x ∈ M\⋃∞
k=1 Ũk. Then, x /∈ Ũk for all k ≥ 1. We note that x /∈ Ũk

means that for every Tk > 0 there exists tk > Tk such that ftk(x) ∈ Uk. But given a neighborhood U of
x there exists an open set Uk from the basis (Uk)k≥1 such that x ∈ Uk ⊂ U . Thus, x ∈ Uk\Ũk, that is, x
is recurrent by Z. �

6. Conclusions

Here, we presented some concepts related to ergodic features of non-smooth vector fields. We introduced
the ideas of invariant measures and recurrence in this context and presented an important result coming
from the ergodic theory of the dynamical systems, namely the Poincaré Recurrence Theorem. We under-
stand that establishing such a result in the NSVF’s scenario improve the theory of dynamical systems in
two ways. First, it should be of interest in ergodic theory once the results presented throughout the cur-
rent paper allow us to soften the hypotheses of a classical theorem in the sense that it provides the result
by considering multivalued flows which, besides, are usually non-regular. As far as the authors know,
this is the first result improving the Poincaré Recurrence Theorem by allowing such degeneracies, which
means, among other considerations, that this theorem can be applied for a class of maps much larger than
considered at the present moment. Second, the results presented in this work could provide some advance
in the theory of non-smooth vector fields since they establish a classical result of the theory of dynamical
systems in the context of a very recent theory, that is, considering non-smooth vector fields, theory which
has found a wide range of applications in many real problems. Nevertheless, translate adapted versions
of classical theorems or testing their validity into the scenario of NSVF is one of the main goals of this
theory. More specifically, in what concerns ergodic aspects of NSVF, the present paper is one of the first
works dealing with this aspect and it comes after some few works which can be enumerated by [2,3,7],
and it goes forward in parallel to the works [6,14]. Future works, some of then in progress by some of the
authors cited throughout this paper, should address other aspects of ergodic theory as, for instance, the
acclaimed λ−lemma, apart from introducing the basic statements and definitions of ergodic theory for
NSVF.
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