
Contents lists available at ScienceDirect

Geoderma

journal homepage: www.elsevier.com/locate/geoderma

Sample planning for quantifying and mapping magnetic susceptibility, clay
content, and base saturation using auxiliary information

Daniel D.B. Teixeiraa,⁎, José Marques Jr.b, Diego S. Siqueirab, Vinicius Vasconcelose,
Osmar A. Carvalho Jr.c, Éder S. Martinsd, Gener T. Pereiraa

a Department of Exact Sciences, State University of São Paulo (UNESP), Research Group CSME — Soil Characterization for Specific Management, Jaboticabal, São Paulo,
Brazil
b Department of Soils and Fertilizers, State University of São Paulo (UNESP), Research Group CSME — Soil Characterization for Specific Management, Jaboticabal, São
Paulo, Brazil
c Department of Geography, University of Brasília (UNB), LSIE — Laboratory of Spatial Information Systems, Brasília, DF, Brazil
d Embrapa Cerrados, Brasília, DF, Brazil
e Department of Ecology, University of Brasília (UNB), LIE - Laboratory of Spatial Information Systems, Brasília, DF, Brazil

A R T I C L E I N F O

Keywords:
Sampling density
Geology
Geomorphology
Soil class
Geostatistics
Simple kriging with varying local mean

A B S T R A C T

There is a great global demand for detailed soil property description; therefore, an ideal site-specific sampling
has become indispensable to meet this demand. This study aimed to assess the implications of incorporating
geological, geomorphological, and pedological information in reducing the required sampling density for
magnetic susceptibility (MS), clay content (CC), and base saturation (BS) characterizations. The study area is
located in Guatapará-SP (Brazil) and has 870 ha. A total of 371 samples were collected at a depth of 0–0.25 m for
assessing magnetic susceptibility (MS), clay content, and base saturation (BS). A density of one sample was
considered every 2.6, 3, 4, 5, 6, 7, 8, 9, 11, and 14 ha. The incorporation of secondary information in a geos-
tatistical framework was performed by means of simple kriging with varying local means. Accuracy assessment
of the spatial estimates at each sampling density, with and without incorporating secondary information, was
performed by using external validation. For MS, geology and geomorphology information were responsible for
about 45% and 44% spatial continuity, respectively. As for CC, these results were higher, being of 54% (geology)
and 53% (geomorphology). Conversely, no spatial variability was detected for these properties by using pedo-
logical information. For BS, there was no relationship between secondary information and its spatial continuity.
Incorporating geological and geomorphological information to MS data enabled a reduction in the number of
samples required of 37% and 44%, respectively, in order to represent its spatial pattern. Likewise, this in-
formation provides a 35% reduction in the required sampling density for CC. However, secondary information
was no helpful in decreasing sampling density for BS. In brief, incorporating pre-existing information can ensure
a high quality of estimates and decrease the number of samples required for a detailed description for both MS
and CC. Estimates of spatial patterns with geological and geomorphological information for modeling of soil
properties might have a greater potential of use for environmental model composition.

1. Introduction

Recent changes in land use and intensification of formation and
degradation processes have compromised soil and environment quality.
In this context, there is a great demand for detailed information about
soil in order to perform a sustainable management (Grunwald et al.,
2011; Brevik et al., 2016; Hengl et al., 2017). Soil mapping is one of the
key tools to meet this demand and as a strategic planning of agri-
cultural, urban, and management activities of soil variability (Li and
Heap, 2008). Once at the level of detail required (Delden et al., 2011),

soil maps can be used for delineating areas with deficiency or toxicity of
a particular chemical element (Chen et al., 2016). Besides, these maps
highlight the relationship between soil properties and agricultural
productivity, animal production, and human health (White and Zasoski,
1999; Siqueira et al., 2016), besides playing a key role in optimization
of sampling plans (Vašát et al., 2010; Montanari et al., 2012) and
agricultural inputs (White and Zasoski, 1999).

Several protocols for soil modeling and mapping have been devel-
oped to assist the understanding of its variability (Minasny and
McBratney, 2016). According to Castrignanò et al. (2009), the main
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methodologies used can be divided into two groups: (i) protocols that
consider the soil as a discontinuous unit, in which is possible its division
into a discrete number of classes; and (ii) protocols that consider the
soil as a continuous body, which quantitatively describe the variation of
variables in space. The first is represented mainly by mapping meth-
odologies by the similarity between pedons (Soil Survey Staff, 1975), in
addition to free and categorical mappings, in which concepts of soil-
landscape relationship are used (Hudson, 1992). The second is re-
presented mainly by mappings using geostatistical analysis (Oliver and
Webster, 2014).

However, when considering the soil as a continuous body, several
researchers have observed that the variability of its properties matches
the geological variation (Liu et al., 2013; Siqueira et al., 2014), relief
form (Siqueira et al., 2010; Quijano et al., 2011; Camargo et al., 2016),
and agricultural management practices (Liu et al., 2013). Thus, hybrid
mapping protocols, in which both concepts are brought together, have
stood out for the last decade, especially for studies on local and regional
scales (McBratney et al., 2000). In addition, hybrid mapping techniques
are commonly used in other areas such as geological mapping, in which
information from soil maps on detailed scales can be used to construct
more accurate geological maps than the traditional method (Brevik and
Miller, 2015).

In these protocols, previously acquired information such as geolo-
gical, geomorphological, or pedological maps, or even property maps,
on less detailed scales, can be used along with quantitative analyses
(e.g. geostatistical analysis) to refine the mapping units and increase the
understanding and reliability of the spatial patterns (Castrignanò et al.,
2009; Cambule et al., 2013; Hengl et al., 2014, 2017; Vasques et al.,
2016).

For constructing and delineating these soil maps, sample planning
by means of identifying the appropriate sampling density presents an
important stage to be assessed (McBratney et al., 2002; Vašát et al.,
2010; Siqueira et al., 2014). Sampling density directly influences the
level of detail to be obtained (scale or resolution) (Delden et al., 2011)
and mapping costs (Demattê et al., 2007). Measures such as the
Shannon diversity index (Minasny et al., 2010) can be used as the first
indication of soil pedodiversity intensity (variability) at large scales.
For more detailed scales (regional or local), the study of incorporation
of secondary information into geostatistical models (Castrignanò et al.,
2009; Cambule et al., 2013; Vasques et al., 2016) and use of properties
with potential for identifying the variation of soil formation processes
(magnetic susceptibility–MS, electrical conductivity, and diffuse re-
flectance spectroscopy) (Bilgili et al., 2011; Siqueira et al., 2014;
Mirzaeitalarposhti et al., 2017) represent an increasing research

activity. However, the secondary information often used have quanti-
tative (satellite information, electrical conductivity, and MS)
(Benedetto et al., 2012) and non-qualitative or categorical nature
(Castrignanò et al., 2009).

Qualitative information, which is often available at no charge, has a
great potential to integrate sample planning of soil properties (Cambule
et al., 2013). However, one of the main difficulties is the definition of
what information should be used for the sample planning and mapping
of soil properties (Miller et al., 2015). Hengl et al. (2014) state that
information on climate, lithology, biomass indexes and taxonomic units
are the main covariates for modeling soil properties on a global scale.
For regional and local scales, information on geomorphology, lithology,
and pedology present a great potential (Anderson et al., 2003; Vasques
et al., 2016). The hypothesis of this research is that the knowledge on
soil formation factors (geology and landscape shape), often previously
mapped and available at no charge, should be considered at the time of
mathematical modeling. Its incorporation may assist in delineating
spatial patterns of soil properties, as well as reducing the required
sampling density for representing the phenomenon under study. In this
sense, this study aimed to assess the incorporation of geological, geo-
morphological, and pedological information in reducing the required
sampling density for characterizing magnetic susceptibility, clay con-
tent, and base saturation.

2. Materials and methods

2.1. Description of the area and sampling

The study area was located in Guatapará, São Paulo State, Brazil
(Fig. 1a). Its central coordinates are 21°28′40″S and 48°01′38″W, with
an altitude ranging from 649 to 519 m. According to Thornthwaite
(1948), the local climate can be defined as B1rB′4a′, which means a
humid mesothermal climate with small water deficit and summer
evapotranspiration lower than 48% of the annual evapotranspiration.
The local natural vegetation consisted of a tropical semideciduous
forest. Currently, the area is cultivated with sugarcane under mechan-
ized harvesting system for over 10 years.

The area has three parent materials related to the transition be-
tween the Basalt of the São Bento Group, Serra Geral Formation (SG),
Eluvial-Colluvial Deposit (ECD), and Alluvial Deposit (AD) (IPT –
Instituto de Pesquisas Tecnológicas do Estado de São Paulo, 1981;
GEOBANK, 2014) (Fig. 1b). Technical visits were carried out in the area
in order to verify the geological information. Geomorphometric com-
partments were identified according to the methodology proposed by

Fig. 1. Characterization of the study area. Location of the sampling area (a); geological map at scale 1:500,000 (SG–Serra Geral; AD–Alluvial Deposit; ECD–Eluvial-Colluvial Deposit) (b);
geomorphometric map at scale 1:100,000 (Cc–concave; Cx–convex) (c); pedological map at scale 1:12,000 (LVAd (SiBCS: Latossolo Vermelho-Amarelo distrófico com textura média; Soil
Taxonomy: Typic Hapludox); LVd (SiBCS: Latossolo Vermelho distrófico com textura média; Soil Taxonomy: Typic Hapludox); LVdf (SiBCS: Latossolo Vermelho distroférrico com textura
argilosa; Soil Taxonomy: Typic Hapludox); LVef (SiBCS: Latossolo Vermelho eutroférrico com textura argilosa; Soil Taxonomy: Typic Eutrudox); RQod (SiBCS: Neossolo Quartzarênico órtico
distrófico com textura arenosa; Soil Taxonomy: Typic Quartzipsamment)) (d); spatial distribution of samples (e).
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Vasconcelos et al. (2012) (Fig. 1c), in which areas that present concave
(Cc) and convex (Cx) horizontal curvatures were identified. For iden-
tifying these curvatures, SRTM information with a horizontal resolution
of 90 m and vertical precision of the order of 15 m were used. Initially,
a pre-treatment (median filter) of this information was conducted in
order to remove values with variation higher than 10 m. Subsequently,
a data interpolation was carried out by using the Topogrid method
(Hutchinson, 1989). A geomorphometric signature was generated from
the interpolated data (for details, see Vasconcelos et al., 2012). Point
values of this signature were normalized by dividing them by the
maximum point value found producing values ranging from −1 to 1.
After standardization, negative values were considered as belonging to
the convergent curvature (concave) and those positive as belonging to
the divergent curvature (convex).

The pedological map (at scale 1:12,000), generated by the Centro de
Tecnologia Canavieira (CTC) (Sugarcane Technology Center) (Fig. 1d),
registers the occurrence of the following mapping units classified ac-
cording to the Sistema Brasileiro de Classificação de Solos (SiBCS)
(Santos et al., 2013) and Soil Taxonomy: LVAd (SiBCS: Latossolo Ver-
melho-Amarelo distrófico com textura media; Soil Taxonomy: Typic
Hapludox); LVd (SiBCS: Latossolo Vermelho distrófico com textura media;
Soil Taxonomy: Typic Hapludox); LVdf (SiBCS: Latossolo Vermelho dis-
troférrico com textura argilosa; Soil Taxonomy: Typic Hapludox); LVef
(SiBSC: Latossolo Vermelho eutroférrico com textura argilosa; Soil Tax-
onomy: Typic Eutrudox); RQod (SiBCS: Neossolo Quartzarênico órtico
distrófico com textura arenosa; Soil Taxonomy: Typic Quartzipsamment).

In the experimental area, a regular sampling grid containing 371
points separated by minimum distances ranging from 145 m to 174 m
was installed covering a total area of about 870 ha (Fig. 1e). Previously
the beginning of modeling, 10% of points (N = 37) were randomly
selected for constructing a data set to be used in the validation process.
Point distribution and the representative area of each compartment
delimited in Fig. 1b–d are shown in Table 1.

From the original sampling density (one point every 2.6 ha), dif-
ferent sampling densities were considered using 334, 290, 218, 174,
145, 124, 109, 97, 79, and 62 points that are equivalent to a density of
one point every 2.6, 3, 4, 5, 6, 7, 8, 9, 11, and 14 ha, respectively.
Points that integrated the densities were randomly selected using the
methodology developed in other studies (Teixeira et al., 2013; Siqueira
et al., 2014). The lowest sampling density (one point every 14 ha) used
was determined by following the principles of geostatistical analysis
regarding the need for at least 50 pairs of points for each experimental
semivariance calculation (Goovaerts, 1997). At each point of the sam-
pling grid, samples were collected at a depth of 0–0.25 m for de-
termining the magnetic susceptibility (MS), clay content, and base sa-
turation (BS). This depth was chosen for being used by the São Paulo

State sugarcane sector in determining soil management (Siqueira et al.,
2014).

2.2. Laboratory analyses

Magnetic susceptibility (MS) in a low frequency (0.47 kHz) was
determined at 10 g of air-dried soil using a Bartington MS2 equipment
coupled to a Bartington MS2B sensor (Dearing, 1994). Clay content was
determined by the pipette method by using a NaOH 0.1 mol L−1 so-
lution as a chemical dispersant and mechanical agitation at a low speed
for 16 h (EMBRAPA, 1997). Base saturation (BS) was calculated from
the values of Ca, Mg, K (extracted by means of the ion exchange resin
method) (Raij, 2001), and H + Al, being the exchangeable acidity
(Al3+) determined according to Raij and Zullo (1977).

2.3. Data analysis

2.3.1. Descriptive statistics
Soil property variability was previously described by means of cal-

culating the mean, 95% confidence interval, and coefficient of variation
for each studied compartment.

2.3.2. Geostatistical analysis
Spatial variability of assessed properties was determined by calcu-

lating and modeling the experimental variogram based on the theory of
regionalized variables and intrinsic hypothesis principles (Oliver and
Webster, 2014). The stationarity required to the use of geostatistics was
assessed through trend analyses using linear and quadratic regressions
for the Latitude and Longitude axes and their interactions (Davis,
1986).

In this study, spherical, exponential, and Gaussian models were
tested. The choice of the best-adjusted model to the variograms was
based on cross-validation, linear and angular regression coefficient
between observed and estimated values, and residual sum of squares
(RSS) obtained for model adjustment (data not shown) (Oliver and
Webster, 2014).

After modeling the variogram, interpolation was performed by
means of ordinary kriging (OK) and simple kriging with a varying local
mean (SKVLM). OK technique was used to interpolate soil properties
without secondary information. On the other hand, SKVLM technique
was used aiming at incorporating categorical secondary information
related to geology (Fig. 1b), geomorphology (Fig. 1c), and pedology
(Fig. 1d) in the variability models of the studied soil properties (for
more details, see Isaaks and Srivastava, 1989).

Table 1
Distribution of sampling points and area of each geological, geomorphological, and pedological compartment.

Geology Geomorphology Pedology

SGa ADb ECDc Ccd Cxe LVAdf LVdg LVdfh LVefi RQodj

N 144 23 204 142 229 13 161 87 57 53
Area (ha) 353.8 46.3 469.8 361.8 508.2 23.4 423.7 184.1 134.0 104.9
Area (%) 40.7 5.3 54.0 41.6 58.4 2.7 48.7 21.2 15.4 12.0

(N = 371).
a Serra Geral.
b Alluvial Deposit.
c Eluvial-Colluvial Deposit.
d Concave.
e Convex.
f Latossolo Vermelho-Amarelo distrófico com textura média (Typic Hapludox).
g Latossolo Vermelho distrófico com textura média (Typic Hapludox).
h Latossolo Vermelho distroférrico com textura argilosa (Typic Hapludox).
i Latossolo Vermelho eutroférrico com textura argilosa (Typic Eutrudox).
j Neossolo Quartzarênico órtico distrófico com textura arenosa (Typic Quartzipsamment).

D.D.B. Teixeira et al. Geoderma 305 (2017) 208–218

210



2.3.3. Comparison of maps
The accuracy of estimates with and without incorporation of sec-

ondary information in the assessed sampling density was verified by
estimating the relative root mean square error (RRMSE) (Eq. (5)) (Li
and Heap, 2008) applied to the validation data set (Fig. 1e).
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Where n is the number of estimated values (N = 37), pi is the value
estimated at the point i, and oi is the property value observed at the
point i. Lower RRMSE values are related to a higher accuracy of esti-
mates. This methodology is similar to that used by Teixeira et al. (2013)
for assessing the estimated spatial patterns using the secondary in-
formation to the models.

3. Results and discussion

The average values of MS in the total area (2299 × 10−8 m3 kg−1)
was not covered by the confidence intervals estimated at 95% prob-
ability (95% CI) after the stratification by geology, geomorphology, and
pedology (Table 2). This is the first indication that these compartments
have an influence on MS values and their limits should be considered
during the analysis of spatial continuity.

The 95% confidence intervals for MS after the stratification by
geology indicate that SG formation (2899 × 10−8 m3 kg−1) sig-
nificantly differs from the others (ECD = 1966 × 10−8 m3 kg−1 and
AD = 1503 × 10−8 m3 kg−1). Values found for SG formation are si-
milar to those found for African soils that have basic and ultrabasic
rocks as parent materials (Preetz et al., 2008). These high values are
related to the parent material (SG) that was formed from a magma with
high Fe concentrations under high temperature, which favors magnetite
formation (Preetz et al., 2009).

The parent materials ECD and AD presented MS values higher than
those reported by other authors for sedimentary rocks (Preetz et al.,
2008; Camargo et al., 2014), which is due to the diversity of rock for-
mation originated from the sedimentary material. Thus, if the

weathered rock has ferric minerals, the formed sedimentary rock may
present higher MS values even after sedimentation process. Moreover,
these high values could be attributed to the manual harvest manage-
ment after sugarcane burning in the previous crop cycles. According to
Schwertmann (1985), the presence of fire can promote the transfor-
mation of pedogenetic iron oxides and subsequent neoformation of
maghemite, which has a high magnetic potential. It is estimated that
during the process of sugarcane burning, soil temperature in the surface
layer varies from 160 to 200 °C (Ripoli and Ripoli, 2004) as maghemite
formation can occur at temperatures below 250 °C (Liu et al., 2010).

Considering the landscape shape as stratifier and 95% confidence
intervals, higher MS values were observed on Cx surface (2611 ×
10−8 m3 kg−1)when compared to Cc surface (1796 × 10−8 m3 kg−1).
Siqueira et al. (2010) assessed MS determination in sandstones of the
Adamantina formation with a low total iron content in the soil
(Fe2O3 < 40 g kg−1) and also observed the influence of these shapes
in MS differentiation, with values of 130 × 10−8 m3 kg−1 for Cc and
330 × 10−8 m3 kg−1 for Cx. Quijano et al. (2011) studied the re-
lationship between MS and relief characteristics in an area without
geological variation and observed higher MS values in convex areas
because of the oxidative character of the environment, which would
provide the neoformation of minerals with a more magnetic expression.
Oxidizing environments can promote a total or partial magnetite oxi-
dation and maghemite neoformation (Dearing, 1994; Ker, 1998). In this
study, the highest MS values found for Cx surface can also be explained
by the location of a large part of this surface (27%) be on the SG
geology, which has the highest MS values.

Using the pedological mapping units found in the area as stratifiers,
higher MS values are observed in the sequence LVef > LVdf > LVd
> LVAd = RQod (95% confidence interval). MS values are higher for
soils with a high iron content (ferric soils), presenting values of
4783 × 10−8 m3 kg−1 (LVef) and 3665 × 10−8 m3 kg−1 (LVdf).

For clay content, the overall average (332 g kg−1) was con-
templated by the confidence intervals of compartments stratified by
geology and geomorphology. Thus, in this study, only pedological
mapping units present influence on clay content. Although the parent
material (Siqueira et al., 2014) and landscape shape (Sanchez et al.,

Table 2
Mean, 95% confidence interval, and coefficient of variation (%) for magnetic susceptibility (MS), clay content, and base saturation (BS) according to stratifying compartments.

MS (×10−8 m3 kg−1) Clay content (g kg−1) BS (%)

Mean CI (95%) CV Mean CI (95%) CV Mean CI (95%) CV

Geology
SGa 2899 2489–3309 81 349 314–384 56 58 56–61 24
ADb 1503 1106–1900 58 325 296–354 20 54 49–59 20
ECDc 1966 1701–2231 92 321 298–345 50 54 52–56 25

Geomorphology
Ccd 1796 1480–2113 100 305 280–330 47 55 52–57 25
Cxe 2611 2317–2906 82 349 323–374 53 56 54–58 24

Pedology
LVAdf 355 162–548 81 273 239–306 18 56 45–66 29
LVdg 1502 1242–1761 104 286 263–308 46 55 53–57 21
LVdfh 3665 3390–3940 33 438 412–464 26 57 53–61 29
LVefi 4783 4363–5204 31 524 492–555 21 53 49–57 26
RQodj 206 143–268 102 113 102–125 35 59 55–64 24
Total area 2299 89 332 51 56 25

a Serra Geral.
b Alluvial Deposit.
c Eluvial-Colluvial Deposit.
d Concave.
e Convex.
f Latossolo Vermelho-Amarelo distrófico com textura média (Typic Hapludox).
g Latossolo Vermelho distrófico com textura média (Typic Hapludox).
h Latossolo Vermelho distroférrico com textura argilosa (Typic Hapludox).
i Latossolo Vermelho eutroférrico com textura argilosa (Typic Eutrudox).
j Neossolo Quartzarênico órtico distrófico com textura arenosa (Typic Quartzipsamment).
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2013) present influences on soil texture, better results are expected in
the stratification by using pedological mapping units due to clay con-
tent be considered as a diagnostic property in their identification
(EMBRAPA, 2006). The average clay contents stratified by soil type
presented the following sequence: LVef > LVdf > LVd = LVAd >
RQod (95% confidence interval).

For BS values, the average in total area (56%) was covered at all
95% confidence intervals after stratification, indicating no influence of
geology, geomorphology, and pedology on this property. Intensive soil
management during crop cycles can lead to a relative homogenization
of the area, reducing the influence of factors and processes that are
intrinsic to soil. Cardoso et al. (2014) found a high anthropogenic in-
fluence on the variability of soil chemical properties in a sugarcane
area, mainly affecting the nutrients with less mobility in soil.

The variation inferred that by the coefficient of variation (CV) in-
dicates a greater MS heterogeneity (89%) in relation to clay content
(51%) and BS (25%) (Table 2). The low variation of BS is attributed to a
similar management over crop cycles (Panosso et al., 2012). The
highest CV values for MS are related to a higher sensitivity of this
property to changes in processes and formation factors of soil (geology
and landscape shape), as can be verified by comparing the confidence
intervals. Several authors (Matias et al., 2014; Siqueira et al., 2014),
when studying soils with a variation of total iron (Fe2O3) from 40 to
180 g kg−1, also observed a greater MS sensitivity to changes in
geology and landscape shape in relation to physical and chemical soil
properties.

In general, property stratification as a function of pedology and
geology promoted reductions in CV values when compared to those
found for the total area (without stratification). The stratification based
on landscape shape promoted the decrease in CV values only for BS.
This decreased CV indicates that the known compartments are pro-
moting the identification of areas more homogeneous with each other,
which is another indication that this information should be in-
corporated into future spatial analysis and decision-making processes
such as the identification of areas of specific management.

For MS and clay content, the highest average reductions in CV were
promoted by the stratification based on pedological compartments
(18.8% and 21.8%, respectively), followed by the stratification by
geology (12% and 9%, respectively) and geomorphology (2% and 1%,
respectively). When soil compartments are considered, the greatest CV
reduction may be related to a higher degree of compartmentalization
and detailing (5 classes) of the area in relation to geology (3 classes)
and geomorphology (2 classes). However, smaller areas (increased
number of polygons in an area) does not guarantee the variability
control within each delineated polygon and hence a CV reduction.

Although CV value is an indicative of property variation, it does not
include the existing spatial relationships between the analyzed samples.
Geostatistical analyses, which are based on constructing and modeling
the experimental variogram (Oliver and Webster, 2014), allow the
spatial verification of interrelations between soil properties (Yang et al.,
2016), as well as the spatial influence determination of stratifiers on
estimates of unsampled locations (Goovaerts, 1997; Vasques et al.,
2016).

The influence of incorporation of stratifying compartments on
geostatistical models was assessed as a function of sampling density of
one point every 2.6, 3, 4, 5, 6, 7, 8, 9, 11, and 14 ha (Fig. 2). In order to
verify the variability captured or promoted by different stratifiers
(geology, geomorphology, and pedology), variogram parameters ad-
justed to the data without considering the secondary information
(conventional) were compared to variograms considering such in-
formation (Goovaerts, 1997).

All theoretical models adjusted to the experimental variograms were
spherical, which is the most used in soil science (Cambardella et al.,
1994) and describes properties with abrupt changes along the surface
under study (Oliver and Webster, 2014). This characteristic allows
stating that it would be possible to use vector categorical maps

(geological, geomorphological, and pedological) to assist in the deli-
mitation of spatial patterns of soil properties since these maps present
the same characteristics of abrupt changes in space. For MS and clay
content, the spatial dependence could not be detected in the density of
one point every 14 ha when pedological information was incorporated.
For BS, no spatial dependence was observed in the lowest assessed
density. Siqueira et al. (2014), when assessing the effect of sampling
density in capturing the spatial dependence of MS, clay content, and BS,
found that BS is more sensitive to the decreased sampling density when
compared to the other properties. Nanni et al. (2011), also assessing the
sampling density in a geological transition region, found that variogram
ranges for BS presented 21% variation in relation to sampling density,
being the most sensitive property to this variation.

The average values of range found for MS (1326 m) and clay content
(1274 m), not considering the secondary information, are relatively
close to the ranges found by Campos et al. (2007) in a sandstone-basalt
litosequence (range of clay content = 1211 m) and Matias et al. (2014)
in a sandstone-basaltic transition with mudstone influence (range of
MS = 1881 m and range of clay content = 930 m). Thus, the protocols
and results developed in this study have the potential for use in regions
with geological transitions. In contrast, the lowest average value of
range for BS (776 m) indicates its lower spatial continuity. Similar re-
sults were found by other authors (Marques et al., 2014; Yang et al.,
2016), who observed a lower spatial continuity of chemical properties
when compared to physical and mineralogical properties. The similarity
between the range values of MS and clay content may be an indicative
of a high spatial association between these properties (Peluco et al.,
2013). This association allows the use of MS as a covariate in estimating
clay content in the soil (Hanesch and Scholger, 2005; Siqueira et al.,
2010, 2014).

The average degree of spatial dependence (DSD) of the variograms
of MS (0.15) and clay content (0.24) can be classified as strong, char-
acterized by the C0/(C0 + C1) ≤ 0.25 ratio; for BS, DSD value (0.60)
can be classified as moderate (0.25 < C0/(C0 + C1) ≤ 0.75).
According to Cambardella et al. (1994), the strong spatial dependence
of soil properties is related to its interaction with intrinsic factors
(parent material, climate, and relief) whereas the moderate spatial
dependence is attributed to extrinsic factors such as the management of
agricultural practices. These results confirm those observed in Table 2,
in which the influence of geology, geomorphology, and pedology is
found for MS and clay content whereas the BS variability can be at-
tributed mainly to agricultural management (anthropic factor).

Variographic models that use information about geology and geo-
morphology presented the highest average values of range for MS (1924
and 1914 m, respectively) and clay content (1968 and 1946 m, re-
spectively). The highest spatial continuity observed (higher range value
of the variogram) is due to the increased capturing of spatial variation
by means of these stratifiers and relative data homogenization due to a
higher spatial continuity of these compartments. The difference be-
tween the average range values with and without secondary informa-
tion indicates the capturing of variation or the variation fraction due to
stratifier factors. Thus, geological information is responsible for about
45% and 54% of the spatial variation of MS and clay content, respec-
tively. Geomorphology, in its turn, accounts for about 44% and 53% of
the spatial variability of MS and clay content, respectively.

The information of pedological mapping units promoted a decrease
in the average values of range for MS and clay content (841 and 857 m,
respectively). Thus, these mapping units promote rather than reduce an
increased spatial variation of models by 37% and 33% for MS and clay
content, respectively. This result contrasts with that observed in
Table 2, in which pedological mapping units contribute to the reduction
of CV values. This result indicates that although the pedological map (at
scale 1:12,000) identify regions with similar properties, its delineation
is not appropriate to compose spatial models.

Maps of pedological mapping units or taxa are delimited by means
of the tacit knowledge of pedologists (Hudson, 1992) and aim to
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minimize the variance within classes and maximize the variance be-
tween mapped classes (Castrignanò et al., 2009). This knowledge is
based primarily on soil-landscape paradigm and local geological in-
formation (Hudson, 1992). Although this information includes the main
factors responsible for soil property variability, direct information on
their spatial continuity is often ignored at delineation time. Several
authors (Burrough, 1991; McBratney et al., 2000, 2003; Legros, 2006)
have proposed the inclusion of knowledge on spatial variability of soil
properties for composing maps of mapping units. On the other hand,

geological and geomorphological limits are easily identified in the field
and even somewhat detailed maps (geological map with a scale of
1:500,000 and geomorphological map with a scale of 1:100,000) ex-
press variability classes of properties in the field (Vidal-Torrado et al.,
2005).

For BS, all the assessed stratifier agents promoted a spatial varia-
tion, resulting in an increase of about 19% (geology), 4% (geomor-
phology), and 14% (pedology). This fact confirms again that the an-
thropic management is the main active factor in the spatial variation of

Fig. 2. Variogram models adjusted to the magnetic susceptibility (MS), clay content, and base saturation (BS) data at sampling densities as a function of the used stratifiers. Dashed lines
indicate the highest (Max) and lowest (Min) range found among the assessed sampling densities.
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this property.
The influence of different sampling densities can be observed by the

difference between models and parameters of variograms of each
property (Teixeira et al., 2013). Models with no secondary information
presented higher variation in their parameters (C0, C0 + C1, and range)
as a function of the studied sampling densities. This result indicates that
the use of secondary information may soften the effects of reduced
sampling density. The ideal sampling density for soil properties is the
focus of several studies due to its key role for planning and, especially,
enabling the local variability characterization of soil properties for
different purposes (Kerry et al., 2010; Bilgili et al., 2011; Nanni et al.,
2011; Montanari et al., 2012; Cherubin et al., 2014; Siqueira et al.,
2014).

In general, the lowest values of range and C0 were found for the
highest sampling densities (one point every 2.6 and 3 ha) and the
highest values were found for the lowest sampling densities (one point
every 7 and 11 ha). Other researchers (Bilgili et al., 2011; Nanni et al.,
2011; Teixeira et al., 2013) found this same trend. The value of C0

indicates the non-captured variation by spatial dependency structure,
being the result of the sum of variations due to measurement errors and
from variations existent at a smaller scale than the assessed (Oliver and
Webster, 2014). The low increase in range values as sampling density
decreases is due to the higher initial spacing between samples. In ad-
dition, the increase in the number of points and reduction in the spacing
between samples promote a greater capture of structural variability,
resulting in lower C0 values.

Spatial patterns of MS, clay content and BS estimated for the density
of one point every 2.6 ha without considering the information of stra-
tifiers are shown in Fig. 3. Spatial patterns of MS and clay content were
similar (r = 0.913, p < 0.001), with higher values at the top right of
the map, which is the region that represents the geology SG, convex
geomorphology, and the soil classes LVef and LVdf. The lowest values
can be observed at the bottom of the map, which represents the region
located mainly on the geology ECD and soil mapping unit RQod. These
results confirm those reported in Table 2. The high association between
MS and clay content, also reported in other studies (Hanesch and
Scholger, 2005), is due to the fact that the studied soils are highly
weathered and originated from parent materials with the presence of Fe
while facilitating the formation of clay and iron oxides with magnetic
expression potential.

At the center of the maps of MS and clay content, located on the
geological transition AD/ECD, a marked influence of geomorphology is
observed. This transition may be considered relatively softer than the
transition SG/ECD due to the greater similarity between parent mate-
rials. Fürst et al. (2010), assessing the spatial estimation of MS through
covariates and multiple regression analysis, observed that geomor-
phological parameters presented a greater contribution to the models at
larger scales whereas geological parameters presented a greater con-
tribution at smaller scales.

At the top of the maps of MS and clay content, the spatial continuity

is higher in the latitudinal direction (east–west). This direction coin-
cides with the higher spatial continuity presented by mapping units in
the pedological map (Fig. 1). Thus, in this region, the influence of
mapping units can be observed in the values of MS and clay content, as
observed in Table 2. However, the boundaries of mapping units and
spatial patterns of MS and clay content do not coincide precisely in
space, indicating the spatial loss of this relationship. This result was
previously indicated by variographic analysis (Fig. 2), in which the
stratification by means of soil mapping units promotes a decrease in
spatial continuity of the analyzed properties.

The spatial patterns of BS presented linear correlation values of
−0.20 (P < 0.001) and −0.23 (P < 0.001) with the spatial patterns
of MS and clay content, respectively. Other authors (Siqueira et al.,
2010; Matias et al., 2014) also observed this inverse relationship. These
results are due to the inverse relationship between BS and CEC, the
latter being directly dependent on quality and quantity of clay and soil
organic matter in the soil.

The highest BS values are concentrated mainly on the right side of
the map, which is a region characterized by geology SG and soils LVef,
LVdf, and RQod. Although at all stages of this study the stratification of
BS has promoted a low reduction in CV values (Table 2) when geolo-
gical compartments were considered, its spatial pattern indicates that
this stratifier may present itself as a contributing factor to BS values. Liu
et al. (2013) studied the spatial variation of soil nutrients in agricultural
areas and observed their spatial relationship with geology only on as-
sessments at a large scale whereas at more detailed scales soil man-
agement was the main conditioning factor of variability. Spatial pat-
terns of BS present more continuity in the latitudinal direction of the
map, which is the direction of the sugarcane row and other agricultural
practices. Panosso et al. (2012) also observed this lower variation in
chemical properties in the direction of sugarcane row.

The quality of spatial estimates as a function of the different as-
sessed densities and the use of secondary information is presented in
Fig. 4. Analyzing the RRMSE indexes, greater variations of MS are ob-
served, followed by clay content and BS depending on the reduction of
sampling density and incorporation of secondary information, being
these results similar to those found by Siqueira et al. (2014). When
associated with auxiliary information, MS presented higher gains in
representing the spatial continuity because this property is highly re-
sponsive to pedoenvironmental changes such as those related to
geology (Fialová et al., 2006) and landscape shape (Jong et al., 2000).

For MS, the stratifiers (geology and geomorphology) positively
contributed for capturing the spatial variation. These contributions are
evidenced only at densities lower to one point every 5 ha. The lack of
contribution to higher densities is because the intense sampling can
reproduce the limits of isolines accurately, even those due to stratifier
factors. Sanchez et al. (2013) studied the spatial variation of physical
and chemical soil properties in coffee areas at a density of one point
every 4 ha and found that an intense sampling led to isoline capture due
to geomorphological limits. Some authors have proposed the use of

Fig. 3. Spatial pattern of magnetic susceptibility (MS), clay content, and base saturation (BS) at a density of one sample every 2.6 ha without considering secondary information. Class
intervals were identified according to data percentile.
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intensive sampling for capturing and understanding the spatial varia-
bility of properties and mapping units (Minasny and McBratney, 2007;
Silva et al., 2014). However, the costs of such studies hamper their use
in large areas (Demattê et al., 2007).

The use of stratifiers in modeling MS promoted an increase in the
accuracy of estimates, which ranged from 11.3% (one sample every
5 ha) to 39.6% (one sample every 14 ha) for geology and from 5.4%
(one sample every 14 ha) to 27.3% (one sample every 7 ha) for geo-
morphology. The use pedological information, in its turn, promoted a
decrease in the accuracy of estimates at all the assessed sampling
densities, ranging from 0.2% (one sample every 9 ha) to 112.0% (one
sample every 4 h). The greatest contribution of geology contrasts to its
smaller scale (1:500,000) when compared to the other maps (geomor-
phology with a scale of 1:100,000 and pedology with a scale of
1:12,000). However, in regions with the presence of litosequence,
geology represents the main effect on soil magnetic properties (Fialová
et al., 2006; Yang et al., 2016). The composition of parent material
(chemistry, mineralogy, texture, and permeability) and its structure
(bedding, vertical and lateral variations of layers, and fractures) guide
landscape evolution, being the relief characteristics a response to this
factor (Huggett, 2007). Thus, part of the variability promoted by the
transition between landscape shapes can also be expressed by geolo-
gical transition (Sinowski and Auerswald, 1999; Brevik and Miller,
2015).

In addition, the spatial patterns of the sampling density of one
sample every 5 ha, without considering auxiliary information, and a
density of one sample every 8 ha, considering the geology in the
modeling process, present similar results for MS. This indicates the
possibility of reducing by 37% the number of samples without changing
the accuracy of map obtained through the incorporation of secondary
information of open access (GEOBANK, 2014, available on http://
geobank.sa.cprm.gov.br). In its turn, the use of information on geo-
morphology at a density of one sample every 9 ha presents a similar

accuracy to the density of one sample every 5 ha without secondary
information, indicating the possibility of reducing by 44% the samples
necessary for modeling. According to Demattê et al. (2007), the great
number of samples needed to characterize agricultural areas at a de-
tailed level can derail the application of techniques such as the preci-
sion agriculture. McBratney et al. (2002) state that data collection is the
most difficult and costly stage in the process of soil modeling. Thus,
techniques that allow the reduction of sampling density have an im-
portant research activity (Kerry et al., 2010; Bilgili et al., 2011; Teixeira
et al., 2013; Siqueira et al., 2014; Brevik et al., 2016; Mirzaeitalarposhti
et al., 2017). In addition, this type of information can mark out the
collect planning of soil samples for locations without detailed knowl-
edge of variability or locations that require a higher level of details.

For clay content, the incorporation of auxiliary information pro-
moted smaller gains in accuracy when compared to those reported for
MS (Fig. 4), ranging from 6.9% (one sample every 14 ha) to 11.6% (one
sample every 4 ha) when geological information is considered and from
2.1% (one sample every 2.6 ha) to 8.4% (one sample every 4 ha) when
considering the geomorphological information in the modeling process.
A similar accuracy can also be observed between spatial patterns at the
sampling density of one sample every 2.6 ha without considering aux-
iliary information and at a density of one sample every 4 ha using the
geological and geomorphological information, indicating a reduction
by 35% in the number of collected samples without changing the ac-
curacy of the obtained map.

These results contradict the great similarity between the spatial
patterns (Fig. 3) and between the variograms (Fig. 2) of these properties
due to the incorporation of auxiliary information. Castrignanò et al.
(2009) found no differences between the accuracy of clay maps when
topographical and pedological information (soil mapping units) were
considered. Benedetto et al. (2012) used auxiliary information from two
geophysical sensors (ground-penetrating radar and electromagnetic
induction) to predict soil clay content. However, these authors failed to

Fig. 4. Relative root mean square error (RRMSE) estimated from the external validation as a function of the assessed densities with and without (conventional) the use of secondary
information (geology, geomorphology, and pedology).
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capture a large portion of clay variability, demonstrating the great
complexity of this property. Hengl et al. (2014), when mapping soil
properties on a global scale by means of models with secondary in-
formation, found that the texture properties are more difficult to map
than physical and chemical soil properties. However, models that
consider auxiliary information and provide results similar or slightly
lower than those presented by other models that not consider it may
have a greater potential of use for the composition of environmental
models (Odeh et al., 2007).

The difference between variable responses (MS and clay) due to the
incorporation of auxiliary information is related to (i) lower variability
of clay content in relation to MS (Table 1), resulting in a lower response
to compartment changes; (ii) greater influence of surface entrainment
of clay, promoting a relative homogenization of its contents in transi-
tion regions between compartments; and (iii) higher error involved in
its determination in the laboratory. According to Cantarella et al.
(2006), particle size analyses present errors ranging from 15 to 32% in
Brazilian laboratories. In contrast, MS determination presents a more
accuracy for being a simple, fast, and secure methodology (Dearing,
1994). Therefore, due to the high correlation between these variables
and the high error in determining clay content, the use of MS in de-
termining clay content can be an interesting alternative technique to
decrease the overall error (Siqueira et al., 2010; Peluco et al., 2013).

Small differences were observed between spatial patterns of BS
before and after considering the information from stratifiers. This small
influence also indicates that the anthropogenic factor is the promoting
and/or controlling agent of the variability of this property. Holmes
et al. (2005) assessed the multi-scale variability of nutrients in tropical
soils and found that the change in soil use is the main active factor in
the variability at a large scale.

Due to the higher geology contributions found at all stages of this
study, especially in relation to MS and clay content, this might be the
main factor controlling the variability of the assessed properties.
Although in this study this high association is used to provide in-
formation aiming at mapping soil properties, in some cases the reverse
path can be followed. Brevik and Miller (2015) pointed out that in-
formation on soil spatial patterns can be used in geological mapping
when at detailed scales, producing maps with a more accuracy and less
use of resources and time than traditional methodologies.

The results found in this study present a potential to be extrapolated
to about 44,000 ha of the São Paulo State, Brazil (Siqueira et al., 2014),
which have the same geological transition discussed in this study, and
also to other regions with similar geological transitions. In addition, for
regions with large geological transitions, their spatial continuity and
limits could present greater influence on the spatial variability under-
standing of soil properties than the limits of geomorphological and
pedological compartments (Nanni et al., 2011; Liu et al., 2013; Matias
et al., 2014; Yang et al., 2016). However, for regions with a soft geo-
logical transition or under the same geology, the limits of geomor-
phological compartments could describe more precisely the variability
of soil properties (Siqueira et al., 2010; Sanchez et al., 2013).

Recently, Hengl et al. (2014) proposed a first approach to the global
mapping of some properties and mapping units with a resolution of
1 km. However, despite the high-resolution map presented by the au-
thors, the low validation values for some properties and the scarcity of
soil information at detailed scales for regions in Asia, Africa, and Latin
America indicate that the regional or local models still need to be de-
veloped (Grunwald, 2009). In this sense, the results presented in this
study can assist in identifying the variables used as secondary in-
formation for mapping soil properties at regional and local scales, as
well as provide information for sample planning of soil properties and
further details of spatial estimates.

4. Conclusions

The use of auxiliary information reduces the effect of reducing the

sampling density of soil properties. Incorporating geology and geo-
morphology information into MS and clay content estimates reduce the
number of samples required for an accurate spatial representation and
it should be considered at the time of sample planning. For BS, the
incorporation of this information does not provide a reduction in
sampling density. The greatest gains in MS spatial continuity in relation
to clay content and BS, when auxiliary information is considered, are
due to its high response to pedoenvironmental changes such as those
caused by geological and geomorphological transitions.

The pedological information allows identifying regions with similar
properties, but its delineation is not adequate to compose spatial
models. This reinforces the need to include the information about the
spatial variability of soil properties in the composition of maps of
mapping units.

The results presented in this study may assist in determining sample
planning for locations without prior knowledge of variability, as well as
assist in detailing the variability of studies at small scales that require
local or regional sample planning.
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