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Abstract Ricinus communis is one of the major commercial

non-edible oilseed crops grown in semiarid and arid envi-

ronments worldwide and is reported as a drought tolerant

species. Surprisingly, little is known about the mechanisms

achieving this tolerance, especially in relation to photopro-

tection. The aim of this study was to analyze the association

of the regulation of the photosynthetic electron transport and

photoprotective mechanisms with drought tolerance in R.
communis. Drought induced decreases in the relative water

content, water potential and growth in R. communis exposed
to 9 days of drought. After 6 days of rehydration, these

parameters were completely recovered, demonstrating a

potential of drought tolerance in this species. In addition,

drought inhibited photosynthesis by stomatal and metabolic

limitations (Vcmax, Jmax, and Rubisco activity), with partial

recovery after rehydration. Leaves displayed transient pho-

toinhibition after 6 days of drought, which was completely

recovered after 6 days of dehydration. The effective quantum

yields and the electron transport rates of PSII and PSI were

modulated to face drought avoiding the excess energy pro-

duced by decreases in CO2 assimilation. NPQ was increased

during drought, and it was maintained higher than control

after the recovery treatment. In addition, the estimated cyclic

electron flowwas induced under drought and decreased after

recovery. Photorespiration was also increased under drought

and maintained at higher levels after the recovery treatment.

Furthermore, antioxidative enzymes activities (SOD, APX,

and CAT) were increased under drought to avoid ROS

harmful effects. Altogether, we clearly showed that the

modulation of photoprotective mechanisms and antioxidant

enzymes are crucial to this species under drought. The

implication of these strikingly strategies to drought tolerance

is discussed in relation to agricultural and natural systems.
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Abbreviations
Ψw Water potential

APX Ascorbate peroxidase

CAT Catalase

CEF Cyclic electron flow

DM Dry matter

FM Fresh matter

GO Glycolate oxidase

LEF Linear electron flow

PET Photosynthetic electron transport

PPFD Photosynthetic photon flux density

PR Photorespiration

ROS Reactive oxygen species

RuBP Ribulose 1,5 bisphosphate

RWC Relative water content

PSI Photosystem I

PSII Photosystem II

SOD Superoxide dismutase

TBARS Thiobarbituric acid reactive substances

VPD Vapor pressure deficit
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Introduction

Drought negatively impacts plant growth and development

by disturbing several physiological process, such as pho-

tosynthesis and redox homeostasis (Flexas et al. 1999;

Noctor et al. 2014). In fact, photosynthetic responses to

drought are complex comprising a coordination of several

morphological and physiological processes at different

time scales and growth stage (Ogbaga et al. 2014). The

ability to maximize water extraction from the soil, mini-

mizing loss from leaves, is vital to plant tolerance to

drought. Therefore, physiological adaptations to drought

are related with changes in stomata density to maintain

water status (Chaves et al. 2009), the accumulation of

compatible solutes, as carbohydrates and amino acids, to

lower the water potential and improve water uptake (Mc-

dowell et al. 2008) and the maintenance of photosynthetic

efficiency by photoprotective mechanisms (Goh et al.

2011).

Photosynthetic responses to drought are influenced by

the intensity, duration, and rate of progression of this

stress (Zivcak et al. 2013). First, drought impairs photo-

synthesis through decreasing CO2 availability to

chloroplasts by stomatal and mesophyll restrictions. With

the progression of the stress, the Calvin–Benson cycle

reactions are affected leading to limitations on photo-

synthetic metabolism (Flexas et al. 2012). The CO2

assimilation by the Calvin–Benson reactions is the main

sink for the NADPH and ATP produced by the photo-

synthetic electron transport. Impairments on this

important sink commonly induces an imbalance in the

overall photosynthetic process, producing excessive

energy in the thylakoids that could lead to an overpro-

duction of reactive oxygen species (ROS) and eventually

to photoinhibition (Takahashi and Murata 2008). Absor-

bed excessive energy is defined when it exceeds the

capacity of photosynthesis to use it for assimilation

(Murchie and Niyogi 2011). Although excess energy is

potentially harmful, plants have several photoprotective

mechanisms to manage the absorbed light and avoid ROS

unbalance (Pérez-Torres et al. 2007).

The redox state in plant cells should be maintained in

adequate levels by a delicate balance between ROS pro-

duction and the scavenge system (Suzuki et al. 2012).

Alterations in energy balance during drought in chloro-

plasts promote the generation of singlet oxygen (1O2) at

PSII by excited triplet-state chlorophyll when the photo-

synthetic electron transport (PET) chain is overreduced

(Nishiyama et al. 2006). In PSI, under excessive energy,

electron transfer to oxygen might cause the production of

H2O2 via radical superoxide (O2
· ) (Asada 2006). To avoid

oxidative stress, chloroplasts scavenge ROS effectively by

multiple enzymatic and non-enzymatic mechanisms

including superoxide dismutase (SOD), ascorbate peroxi-

dase (APX), ascorbate, carotenoids, among others

(Blokhina et al. 2003). However, these mechanisms are

energetically demanding, requiring the synthesis of high

amounts of antioxidants and enzymes (Stepien and Johnson

2009). An alternative strategy to avoid ROS burst is the

regulation of the photosynthetic electron transport (Goh

et al. 2011), avoiding photoinhibition and the excess

energy in the thylakoids membranes (Lima Neto et al.

2014).

The dissipation of excess absorbed light into heat by the

non-photochemical quenching (NPQ) represents a fast

response of the photosynthetic membrane to excess light

(Carvalho et al. 2015). A rapidly reversible component of

NPQ (qE) dissipates the excess absorbed light energy in the

light-harvesting antenna of PSII. qE is triggered by low

thylakoid lumen pH and high ΔpH generated by the pho-

tosynthetic electron transport (Johnson et al. 2011). The

low pH of the lumen activates qE by protonating the PsbS

protein (Li et al. 2000) or indirectly by activating the

xanthophyll cycle (Demmig-Adams and Adams 1993). In

addition, under limitation of CO2 assimilation, energy from

the PET chain can be, in part, redirected to photorespiration

(PR) (Maurino and Peterhansel 2010). Photorespiration

recovers the carbon diverted by the oxygenase activity of

Rubisco, transporting and reducing equivalents from the

chloroplast, mainly by the activity of malate shuttle. This

mechanism would possibly prevent the overreduction of

thylakoids and photoinhibition, as occurs in drought stress

(Peterhänsel and Maurino 2010). This allocation of

reducing equivalents by PR is also important for nitrate

assimilation in R. communis under salinity (Lima Neto

et al. 2014). Nevertheless, photorespiration produces a

great amount of H2O2 in the peroxisomes by the glycolate

oxidase (GO) and in a minor extent O2
· radical by peroxi-

somal superoxide dismutase (SOD) isoforms (Kangasjärvi

et al. 2012). Catalase is an important enzyme scavenging

the excess H2O2 in peroxisomes, mainly under high con-

centrations of H2O2 (Asada 2006).

The cyclic electron flow (CEF), activated in PSI, results

in the generation of a pH gradient across the thylakoid

membrane (ΔpH), driving ATP synthesis. Therefore, by

inducing qE, light harvesting is regulated, without the

accumulation of NADPH in chloroplasts (Joliot and

Johnson 2011) and possibly dissipating absorbed energy by

photosystem I (PSI) (Johnson 2011). CEF-PSI consists in

two pathways, PGR5 and PGRL1 proteins dependent,

whereas the minor pathway is mediated by NDH complex

(Yamori et al. 2016). However, the complex regulation of

the CEF in plants exposed to stress is not clearly yet. There

is controversy over the contribution and regulation of this

process as an effective photoprotective mechanism (Zivcak

et al. 2013).
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In view of this, it is pertinent to look critically at tol-

erance strategies of naturally drought tolerant plants to

understand strategies to maintain crop productivity (Og-

baga et al. 2014). The aim of this study was to examine the

physiological and biochemical responses of R. communis to
drought and its capacity of recovery. In particular, we have

focused identifying photoprotective mechanisms and

antioxidative metabolism responses that could possible

give rise to drought tolerance in this species. R. communis
is a species well adapted to arid and semiarid environments

as potential crop for biofuel production (Lima Neto et al.

2015).

Materials and methods

Plant material and growth conditions

Seeds of R. communis (L.), cultivar BRS 149, were pro-

vided by EMBRAPA, Brazil. Seeds were selected by size

and weight and germinated in washed sand. Fifteen days

after germination, the seedlings were transferred to plastic

pots (8 L) with vermiculite and sand (1:1) as substrate.

Plants were grown in a greenhouse located in a semiarid

region (3°44′38″S and 38°34′11″W, 31 m altitude). The

environmental conditions during the experimental period

were: average air temperature of 29/24 °C (maximum/

minimum); average air relative humidity of 62%, maxi-

mum photosynthetic photon flux density (PPFD) of

1800 µmol m−2 s−1, and 12 h-photoperiod. Plants were

watered every other day with distilled water, until drainage,

and every 3 days with 400 mL of a half-strength nutrient

solution at pH 6.0 (Hoagland and Arnon 1950). For the

water deficit treatment, the irrigation of 45-day-old plants

was withdrawn for 9 consecutive days. After these periods,

a set of plants were harvested (drought) and another group

was rewatered for 6 days (recovery). The well-watered

plants (daily irrigated to near pot saturation) were used as

control during all the experiment. Throughout the experi-

mental period, the leaf gas exchange and chlorophyll

a fluorescence were measured every 3 days between 9 and

10 h. On the ninth day of drought and after 7 days of

recovery, full-expanded leaves were harvested, immersed

in liquid N2, and stored at −80 °C until biochemical

determinations.

Leaf dry matter, relative water content, water
potential, electrolyte leakage, and pigment content

The leaf fresh matter (FM) of each plant was measured just

after harvesting. The leaf relative water content (RWC)

was calculated from differences of fresh, turgid, and dry

weight in leaf discs, as previously described (Lima Neto

et al. 2015). Dry matter (DM) is the dry weight determined

after 48 h in an oven at 75 °C and the turgid weight was

measured after 6 h of saturation in deionized water at 4 °C
in dark condition. The leaf predawn water potential (Ψw)

was evaluated immediately after sampling using the pres-

sure chamber (3000 Scholander PWSC, ICT international,

Armidale, AUS) method (Scholander 1960). The elec-

trolyte leakage was assessed as described previously (Lima

Neto et al. 2015) and the photosynthetic pigments (chl a, b,
total, and carotenoids) contents were assessed (Lichten-

thaler and Wellburn 1983).

Leaf gas exchange, chlorophyll a fluorescence,
and P700 redox state measurements

For the assessment of gas exchange and photochemical

parameters, plants were transferred to a growth chamber,

with controlled conditions of 29 °C, RH 70%, and PPFD of

700 μmol m−2 s−1. After 1 h of plant acclimation to these

conditions, the measurements were performed in the third

full-expanded leaf. The net CO2 assimilation rate (PN),

stomatal conductance (gs), transpiration (E), and intercel-

lular CO2 partial pressure (Ci) were measured with a

portable infrared gas analyzer system, equipped with a

LED source (IRGA LI-6400XT, LI-COR, Lincoln, NE,

USA). During the measurements, the conditions inside the

IRGA chamber were set to PPFD of 1500 μmol m−2 s−1, air

CO2 partial pressure of 38 Pa, air vapor pressure deficit of

1.2 ± 0.5 kPa, and air temperature of 28 °C. The amount of

blue light was set to 10% of the PPFD to maximize

stomatal aperture (Flexas et al. 2007). Measuring condi-

tions were in accordance with the optimum one’s for

photosynthesis within the specie (Lima Neto et al. 2015).

The PN responses to changes in PPFD and CO2 concen-

tration were evaluated and fitted according to the models

proposed by Lieth and Reynolds (1987) and Sharkey et al.

(2007), respectively. From the photosynthetic response

curves to PPFD and chloroplastidial CO2 partial pressure

(Cc), we were able to estimate the maximum Rubisco

carboxylation rate (Vcmax), the maximum photosynthetic

rate (PNmax), day respiration (Rd), mesophyll conductance

(gm), and the maximum rate of photosynthetic electron

transport driving RuBP regeneration (Jmax).

In vivo chlorophyll a fluorescence was measured using

an LI-6400-40 Leaf Chamber Fluorometer (LI-COR, Lin-

coln, NE, USA) coupled to the IRGA. The fluorescence

measurements were taken using the saturation pulse

method (Klughammer and Schreiber 1994) in light and

dark-adapted (30 min) leaves. The intensity and duration of

the saturation light pulse were 8000 µmol m−2 s−1 and

0.7 s, respectively. The measurements of chlorophyll flu-

orescence in light-adapted samples were taken

simultaneously to the measurements of leaf gas exchange,
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under the same chamber conditions. The following

parameters were assessed: the maximum quantum effi-

ciency of PSII [Fv/Fm = (Fm − Fo)/Fm], the effective

quantum efficiency of PSII [ϕPSII = (F 0
m− Fs)/F 0

m], the non-

photochemical quenching [NPQ = (Fm − F 0
m)/F

0
m], and the

apparent electron transport rate through the photosystem II

[ETRII = (ϕPSII 9 PPFD 9 0.5 9 0.84)]. To estimate

ETRII, 0.5 was used as the fraction of excitation energy

distributed to PSII, and 0.84 was the fraction of incoming

light absorbed by the leaves. The Fm and Fo are the max-

imum and minimum fluorescence of dark-adapted leaves,

respectively; F 0
m, F

0
o, and Fs are the maximum, the mini-

mum, and the steady-state fluorescence in the light-adapted

samples (Maxwell and Johnson 2000). The estimation of

the photorespiratory rate (PR) was performed according to

Bagard et al. (2008), as PR = 1/12[ETRII − 4(PN + Rd)].

The redox state of the PSI was measured using a DUAL-

PAM 100 (Walz, Effeltrich, Germany). The photochemical

quantum efficiency of PSI (ϕPSI) and the electron transport

rate through PSI (ETRI) were assessed. The estimation of

the cyclic electron flow (CEF) was estimated by the ETRI/

ETRII ratio (Yamori et al. 2011). Photochemical activity of

PSI was measured under the same conditions described

previously for measurements of PSII activity and leaf gas

exchange.

Lipid peroxidation and hydrogen peroxide content

The lipid peroxidation was assessed evaluating the thio-

barbituric acid reactive substances (TBARS) in accordance

to Cakmak and Horst (1991), with modifications described

by Bonifacio et al. (2011). Readings were taken by the

difference in absorption of 660 and 532 nm. The concen-

tration of TBARS was assessed by the absorption

coefficient of 155 mM−1 cm−1 and the results expressed as

nmol MDA-TBA g−1 FM. Hydrogen peroxide content was

measured by the titanium tetrachloride (TiCl4) method

according to Brennan and Frenkel (1977). Fresh leaf discs

were macerated with liquid N2 containing 5% (w/v) TCA

and centrifuged at 12,000g (4 °C), and the supernatant was

used for the H2O2 determination. The measurement was

performed after reaction of TiCl4 with hydrogen peroxide

and the H2O2 concentration was calculated from a H2O2

standard curve (Sigma). Readings were taken at 415 nm

with a spectrophotometer and expressed as μmol H2O2 g
−1

FM.

Preparation of leaf extract and enzyme activity
assays

For preparation of leaf extracts, fresh leaf samples were

grounded in liquid N2 with a mortar and pestle and

extracted with cold 100 mM Tris–HCl buffer, pH 8,

0.1 mM EDTA, 1 mM ascorbic acid, 20% glycerol, 3%

PEG-6000 and 30 mM DTT. The enzymatic extract was

stored at −20 °C until the determinations.

Total ascorbate peroxidase (APX) activity (EC 1.11.1.

11) was measured by the ascorbate oxidation following the

decreases in absorbance at 290 nm (Nakano and Asada

1981), with minor modifications described in Bonifacio

et al. (2011). The activity was assayed with 0.5 mM

ascorbate and 0.1 mM EDTA dissolved in 100 mM K-

phosphate buffer pH 7.0 and leaf extract. The reaction

started by adding 30 mM H2O2. The enzyme activity was

measured by the decrease in absorbance at 290 nm and 25 °
C over a 300 s period, being expressed as μmol ascorbate

(mg protein min)−1.

Total superoxide dismutase (SOD) activity (EC

1.15.1.1) was measured by the inhibition of the blue for-

mazan by the nitroblue tretazolium chloride (NBT)

photoreduction. The SOD activity was measured with the

leaf extract in a mixture of 50 mM potassium phosphate

buffer (pH 7.8), 0.1 mM EDTA, 13 mM L-methionine,

2 μM riboflavin, and 75 μm p-nitroblue tetrazolium chlo-

ride (NBT) in the dark. The reaction was exposed to

illumination (30 W fluorescent lamp) at 25 °C for 6 min.

The absorbance was measured at 540 nm (Giannopolotis

and Ries 1977). A SOD activity unit (U) was defined as the

amount of enzyme able to inhibit 50% of the NBT pho-

toreduction. The activity was expressed as U (mg protein

min)−1.

Total catalase (CAT) activity (EC 1.11.1.6) was asses-

sed by the oxidation of H2O2 at 240 nm. CAT activity was

determined after the reaction of the enzymatic leaf extract

in the presence of 50 mM potassium phosphate buffer (pH

7) with 20 mM H2O2. The absorbance at 240 nm was

measured over 300 s (Havir and McHale 1987), and the

catalase activity was calculated with the molar extinction

coefficient of H2O2 (36 mM−1 cm−1) and expressed as μmol

H2O2 (mg protein min)−1.

The glycolate oxidase (GO) activity (EC 1.1.3.15) was

assayed by measuring the rate of glyoxylate-phenylhydra-

zone complex formation at 324 nm (Baker and Tolbert

1966). The GO activity was estimated from the molar

extinction coefficient of the glyoxylate-phenylhydrazona

complex (17 mM−1 cm−1). The results were expressed as

μmol glyoxylate (mg protein min)−1.

Rubisco (EC: 4.1.1.39) activity was measured following

the oxidation rate of NADH at 340 nm (Reid et al. 1997).

The initial Rubisco activity was assessed from the extract

added with 900 μL of the assay mixture, and the reaction

was initiated with the addition of 0.5 mM RuBP. Total

activity was measured when the reaction was started after

15 min of incubation of the mixture reaction in the absence

of RuBP. Thereafter, 0.5 mM RuBP was added, and the

total activity was measured following the oxidation NADH
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at 340 nm. Both activities were expressed as μmol CO2 m
−2

s−1. The Rubisco activation state was calculated by the

initial activity/total activity ratio and expressed as per-

centage (%).

Statistical and experimental design

The experiments were arranged in a completely random-

ized design with five independent replicates, each one

represented by an individual plant per pot. Data were

analyzed using ANOVA and the means were compared

using the Tukey’s test (P\ 0.05).

Results

Growth, water relations, and photosynthetic
pigments content

Drought decreased the relative water content (RWC) and

the water potential (Ψw) in R. communis leaves (Table 1).

After 6 days of rehydration (recovery), the RWC reached

the control level, whereas the Ψw was lower than control

(Table 1). The electrolyte leakage, an indicator of the cell

membrane integrity, was statically significant increased by

two-fold in leaves exposed to drought. However, this

parameter was completely recovered to control levels after

6 days of rehydration. The leaf dry matter was decreased

by drought with a slightly increase after the recovery per-

iod (Table 1). The total chlorophyll content was decreased

under drought and after the recovery was increased to

higher levels compared with control. However, the

chlorophyll a/b ratio was statically significant decreased by

drought, with full recovery to control levels after the

rehydration (Table 1). The total carotenoid content

increased in leaves of R. communis under drought and this

parameter was maintained after the recovery treatment

(Table 1).

Gas exchange, fluorescence of chlorophyll,
photorespiration, and P700+ redox state

Net photosynthesis (PN) was strongly decreased in R.
communis plants exposed to drought, but after 6 days of

rehydration, PN was increased, but this increase was not

able to reach control levels (Fig. 1a). Stomatal conductance

(gs) and transpiration (E) followed the same trend of PN.

However, these parameters were completely recovered

after 6 days of rehydration (Fig. 1b, c). The internal partial

pressure of CO2 (Ci) was decreased during drought, and as

gs and E, it was completed recovered after rehydration

(Fig. 1d). Regarding the PN − PPFD and PN − Cc response

curve parameters, it was shown that R. communis presented
metabolic limitation of photosynthesis after 9 days of

continuous drought, as showed by the decreases in the

maximum photosynthetic rate (PNmax), the maximum car-

boxylation rate of Rubisco (Vcmax), and the maximum

photosynthetic electron transport rate driving RuBP

regeneration (Jmax). After the recovery treatment, these

parameters were not completely recovered (Table 2). The

mesophyll conductance (gm), estimated from the PN − Cc

modelling, was decreased after drought, and after the

recovery treatment gm was higher than control (Table 2).

It was possible that R. communis displayed both stom-

atal and metabolic limitation of photosynthesis during the

drought treatment. In addition, the rehydration period could

not be able to completely recover the metabolic limitation

of PN. To complement these results, we performed an

in vitro activity of Rubisco (Fig. 2). The initial activity of

Rubisco decreased by 62% in plants exposed to drought

and it was not completely recovered, corroborating the

previous data. In contrast, the activation state of Rubisco

was maintained at control level for drought as well as for

the recovery treatment (Fig. 2).

Ricinus communis plants displayed photoinhibition after

6 days of drought, as showed by decreases in Fv/Fm

(Fig. 3a). In contrast, the effective yield of PSII (ϕPSII) and
the electron transport rate at PSII (ETRII) were decreased

from the third day of drought, and these parameters were

completely recovered after the rehydration (Fig. 3b). It is

plausible to note that this efficient modulation of the

electron transport chain at PSII under drought could be

modulated by the increase in the non-photochemical

quenching, which, in some extent, was maintained after the

recovery period (Fig. 3d). The effective quantum yield of

PSI (ϕPSI) and the electron transport rate at PSI (ETRI)

were decreased by drought, and these parameters presented

complete recover after the rehydration period (Fig. 4a).

Table 1 Leaf relative water content (RWC), leaf water potential

(Ψw), electrolyte leakage, leaf dry matter (DM), and photosynthetic

pigments content in Ricinus communis plants under well-watered

conditions for 15 days (control), exposed to 9 days of water with-

holding (drought) and exposed to 9 days of drought plus 6 days of

rehydration (recovery)

Traits Control Drought Recovery

RWC (%) 82.2a 65.8b 79.2a

Ψw (MPa) −0.71c −2.34a −1.12b

Electrolyte leakage (%) 20.3b 46.5a 21.15b

Leaf DM (g plant−1) 8.34a 4.36b 5.26b

Total chlorophyll (mg g−1 DM) 6.02b 5.63c 6.78a

Chlorophyll a/b 2.1a 1.1b 1.89a

Carotenoids (mg g−1 DM) 0.36b 1.29a 1.23a

Different letters represent significant difference between treatments

by Tukey’s test (P\ 0.05)
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Interesting to note that the relative decrease of ETRII was

higher than the relative decrease of ETRI in plants exposed

to drought, suggesting an increment of the cyclic electron

flow (CEF) around PSI. To estimate the CEF, we calculate

the ETRI/ETRII ratio (Yamori et al. 2011). This ratio

clearly shows that the CEF was induced in plants exposed

to drought and decreased during the recovery treatment

(Fig. 4c).

Drought increased the estimated photorespiration (PR)

approximately by two-fold (Fig. 5a). Accordingly, there

was a large increase in GO and CAT activities in R.
communis under drought (Fig. 5b, c). These activities were
maintained at higher levels after the recovery, compared

with control. The glycolate oxidation to glyoxylate in

higher plants is catalyzed by GO. The enzyme is present in

the peroxisome and performs an essential step in PR. Thus,

GO activity is commonly used as a biomarker of PR

(Zelitch et al. 2009). CAT is located in the peroxisomes

and virtually absent from chloroplasts, scavenging H2O2 by

catalyzing its decomposition into O2 and H2O (Foyer et al.

2009). Therefore, CAT activity could be assessed as an

indirect measure of PR.

Lipid peroxidation, H2O2 content, and antioxidative
enzymes

Drought increased the content of TBARS and H2O2 in R.
communis leaves (Table 3). However, these parameters

Fig. 1 Leaf gas exchange parameters in R. communis plants under

well-watered conditions for 15 days (control), exposed to 9 days of

water withholding (drought) and exposed to 9 days of drought plus 6

days of rehydration (recovery). Photosynthesis (a), stomatal

conductance (b), transpiration (c), and CO2 internal partial pressure

(d). Down arrow represents rehydration to near pot capacity. Data are

the means of five replicates ± standard deviation (SD)

Table 2 Photosynthetic parameters derived from PN − PPFD and

PN − Cc curves and Rubisco activity in R. communis under well-

watered conditions for 15 days (control), exposed to 9 days of water

withholding (drought) and exposed to 9 days of drought plus 6 days of

rehydration (recovery)

Traits Control Drought Recovery

PNmax (μmol m−2 s−1) 34.2a 8.18c 22.5b

Vcmax (μmol m−2 s−1) 123a 21c 86b

Jmax (μmol m−2 s−1) 131a 43c 112b

gm (mol m−2 s−1) 0.075b 0.063c 0.082a

Different letters represent significant difference between treatments

by Tukey’s test (P\ 0.05)

PNmax maximum photosynthetic rate, Vcmax maximum carboxylation

rate of Rubisco, Jmax maximum photosynthetic electron transport rate

driving RuBP regeneration, gm mesophyll conductance
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were maintained at higher levels, compared with control,

after the recovery period. Probably, the regulation of the

photosynthetic electron transport chain and the photopro-

tective mechanisms were not able to maintain the H2O2 at

control level, leading to lipid peroxidation and membrane

damage. Nevertheless, the activities of APX and SOD,

important antioxidative enzymes, were increased under

drought, and these enzymes activities were maintained at

higher levels after the recovery treatment (Table 3).

Discussion

The better understanding of physiological traits triggered

by drought tolerant plants is crucial to crop yield, so that

these can be transferred into new varieties. In this study, R.
communis plants, an oilseed species, commonly used to

biofuel production in arid and semiarid were studied. R.
communis is a Euphorbiaceae described as drought tolerant

triggering osmotic adjustment to avoid the harmful effects

of drought (Babita et al. 2010). In addition, it was shown

that R. communis has a high photosynthetic capacity under

high humidity and a pronounced sensitivity to high water

vapor pressure deficit (VPD) (Dai et al. 1992), displaying

high transpiration rate and stomatal conductance (Barbour

and Buckley 2007).

In the current study, we show that drought impacts some

important physiological traits in R. communis, but after

rewatering, this species could continue growth and devel-

opment. Drought induced decreases in leaf dry matter,

relative water content (RWC), water potential, and mem-

brane damage in R. communis leaves, with decreases in

chlorophyll content and increases in carotenoids concen-

tration. However, 6 days of rehydration could recover the

water status and membrane integrity in this species

(Table 1). These data clearly show that R. communis has a
potential to recover growth after short drought period.

Interesting to note that after the recovery treatment, R.
communis leaves presented higher content of total chloro-

phyll and carotenoids compared with control. Possibly,

these increases in photosynthetic pigments were important

to avoid the excess energy (Ogbaga et al. 2014) produced

by the stomatal closure during drought leading to lower

CO2 assimilation rate (Fig. 1). Commonly, changes in

chlorophyll concentration and composition are related with

a reorganization of the photosynthetic apparatus in

response to drought (Ogbaga et al. 2014). In addition,

increases in carotenoid content are commonly reported as a

photoprotector mechanism acting on singlet oxygen

quenching within the reaction center complex (Ballottari

et al. 2014; Finazzi et al. 2004).

R. communis plants displayed stomatal limitation of

photosynthesis during drought as shown by decreases in gs,
E, and Ci (Fig. 1). However, the stomatal control was

efficient in R. communis recovery after rehydration (Fig. 1),
showing increases in gs, E, and accumulation in Ci. It was

previously shown that R. communis has high photosyn-

thetic capacity under low vapor pressure deficit (VPD)

conditions which was comparable to maize (Dai et al.

1992). In contrast, under drought, this species maintains a

significant level of transpiration (Fig. 1c), resulting in a low

water use efficiency which is in accordance with Barbour

and Buckley (2007) and Babita et al. (2010). Nevertheless,

after rehydration, the CO2 assimilation rate was not com-

pletely recovered (Fig. 1a), possibly due to metabolic

limitation of photosynthesis, as showed by decreases in

Vcmax, Jmax (Table 2), in vitro Rubisco activity and

increases in Ci (Fig. 2). It was previously demonstrated that

increases in Ci at moderate-to-severe drought are closely

related to metabolic impairment in photosynthesis,

reflecting the impairment on Rubisco activity and regen-

eration of RuBP content (Flexas 2002). As stomata close,

Ci primarily declines with the stress and then increases as

drought becomes more severe (Chaves et al. 2009).

Fig. 2 Rubisco initial activity (a) and Rubisco activation state (b) in
R. communis plants under well-watered conditions for 15 days

(control), exposed to 9 days of water withholding (drought) and

exposed to 9 days of drought plus 6 days of rehydration (recovery).

Data are the means of five replicates ± standard deviation (SD) and

different letters represent a significant difference between treatments

by Tukey’s test (P\ 0.05)
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However, the effects of drought on the mechanisms that

control Rubisco activity are unclear (Galmés et al. 2011).

Interesting to note that the activation state of Rubisco

was not affected by drought under the experimental con-

ditions applied (Fig. 2b). Rubisco activation by reaction

with CO2 resulting in the carbamylation of a lysyl residue

in its active site is crucial to the activity of this enzyme

(Sage et al. 2009). Drought through changes in stomatal

and mesophyll conductance induces a decrease in CO2

concentration in leaves and in the amount of activator CO2

bound by carbamylation to Rubisco (Ristic et al. 2009).

Galmés et al. (2011) show that the activation state of

Rubisco is maintained under mild-to-moderate water stress,

depending on the species and declining under severe water

stress, which is in accordance with our data.

Inhibition of CO2 assimilation by drought resulted in

down-regulation of PSII yield and ETRII, with increases in

NPQ (Fig. 3b–d). NPQ is an important photoprotective

mechanism related with the dissipation of excess energy as

heat (qE) produced by the decreases in CO2 assimilation

(Ruban 2016). In addition, decreases in ϕPSI and ETRI

(Fig. 4) were lower compared with PSII (Fig. 3), probably

by increases in the CEF (Fig. 4). The cyclic electron flow is

important to sustain a ΔpH across the thylakoids mem-

branes maintaining NPQ (Zivcak et al. 2014) and possibly

preventing photoinhibition of PSII (Goh et al. 2011) and

PSI. Overreduction of both photosystems can lead to ROS

production (Joliot and Johnson 2011; Sejima et al. 2016;

Takagi et al. 2016). It is interesting to note that after the

recovery period, the NPQ was maintained at higher levels

compared with control (Fig. 3d) with a concomitant

decrease in CEF (Fig. 4c). This could be plausible due to

increases in the linear electron flow (LEF) and increases in

CO2 assimilation after recovery, sustaining the ΔpH nec-

essary for the NPQ development (Johnson 2011). In

addition to the CEF, an NAD(P)H dehydrogenase (NDH)

and plastid terminal oxidase (PTOX) could be involved in

the chlororespiratory pathway, alleviating the electron

pressure on PSI acceptors by recycling electrons to the PQ

and ultimately to PTOX (Rumeau et al. 2007). Chlorores-

piration helps avoiding the overreduction of the electron

acceptors of PSI removing ROS and protecting PSI

Fig. 3 Potential quantum yield of PSII (a), effective quantum yield of

PSII (b), electron transport rate at PSII (c), and non-photochemical

quenching in R. communis plants under well-watered conditions for

15 days (control), exposed to 9 days of water withholding (drought)

and exposed to 9 days of drought plus 6 days of rehydration

(recovery). Arrows represent rehydration to near pot capacity. Data

are the means of five replicates ± standard deviation (SD)
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(Saroussi et al. 2016). However, due to the low abundance

of the complex, NDH-mediated electron flows bioener-

getically insignificant to ATP production (Joliot and Joliot

2005).

In addition, we show that photorespiration (PR) could be

an important photoprotective mechanism in R. communis
under drought (Fig. 5). Drought induced increases in PR,

and even after the recovery treatment, PR were at higher

level compared with control. Photorespiration is difficult to

be measured (Busch 2013). Nevertheless, we performed

GO and CAT activities to corroborate the estimated PR

from fluorescence and gas exchange measurements

(Fig. 5b, c). PR has the potential to sustain photons in a

non-assimilatory pathway, protecting the photosynthetic

apparatus against photoinhibition (Peterhänsel and Mau-

rino 2010). In addition, PR is very important in biochemical

recycling, particularly to N-compounds under restrictive

metabolic conditions such as drought consuming NADH

and reduced ferredoxin (Kangasjärvi et al. 2012). Recently,

Fig. 4 Effective quantum yield of PSI (a), electron transport rate at

PSI (b), and ETRI/ETRII ratio (c) in R. communis plants under well-
watered conditions for 15 days (control), exposed to 9 days of water

withholding (drought) and exposed to 9 days of drought plus 6 days of

rehydration (recovery). Arrows represent rehydration to near pot

capacity. Data are the means of five replicates ± standard deviation

(SD)

Fig. 5 Estimated photorespiration (a), glycolate oxidase activity (b),
and catalase activity (c) in R. communis plants under well-watered

conditions for 15 days (control), exposed to 9 days of water

withholding (drought) and exposed to 9 days of drought plus 6 days

of rehydration (recovery). Data are the means of five replicates ± s-

tandard deviation (SD) and different letters represent significant

difference between treatments by Tukey’s test (P\ 0.05)
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photorespiration was described as an important mechanism

providing the CEF to operate for the redox-regulation of

P700 in sunflowers leaves (Takagi et al. 2016), preventing

PSI photoinhibition and reducing ROS burst at PSI level.

The enzymatic ROS scavenging system was induced in

R. communis plants under drought (Table 3; Fig. 5). The

activities of APX, SOD, and CAT, important antioxidative

enzymes, were increased by drought, and were maintained

in higher levels compared to control after the rehydration

treatment. Altogether, the data presented show that R.
communis trigger diverse photoprotective mechanisms to

maintain the integrity of the photochemical apparatus,

preventing the harmful damages of the excess energy in the

thylakoids produced by drought. An efficient stomatal

control in accordance with increases in NPQ, CEF, and PR

is important to drought acclimation in this species. In

addition, antioxidative enzymes are responsive to drought,

scavenging the excess of ROS produced by the overre-

duced PET chain (Foyer et al. 2012).
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