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Abstract
Using molecular dynamics techniques, we simulate the vortex behavior in a type II superconducting strip in the presence of
triangular and two types of conformal pinning arrays, one with a pinning gradient perpendicular to the driving force (C1) and
the other parallel (C2), at zero temperature. A transport force is applied in the infinite direction of the strip, and the magnetic
field is increased until the rate between the density of vortices (nv) and pinning (np) reaches nv/np = 1.5. Our results show
a monotonic increase, by steps, of the vortex density with the applied magnetic field. Besides, each pinning lattice presents
a different vortex penetration delay. For the triangular pinning array, different than the case of infinite films, here the system
exhibits only one pronounced depinning force peak at nv/np = 1. However, the depinning force peak is present for only
one value of field, in the range of fields where nv/np = 1 is stable. For the case of conformal pinning arrays, in analogy to
what is observed in infinite films, no commensurability depinning force peaks were found. In the present case, the C1 array
is more efficient at low fields, all arrays are equivalent in the intermediate fields, and the C2 array is more efficient for high
fields. We also show that for the C1 array at high fields, vortices depin following the conformal arches, from the edge to
the center. For the C2 array, the depinning force is higher when compared to that of C1, because this particular conformal
structure prevents the formation of easy vortex flow channels.
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1 Introduction

Superconductors have attracted much attention from the
scientific community, since one of its main characteristics
is to flow a transport current without energy dissipation.
However, when type II superconducting films are submitted
to an external magnetic field, quantized flux lines penetrate
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the material characterizing the mixed state. Inside the
material, these vortices arrange themselves in a hexagonal
(or triangular) lattice, known as the Abrikosov lattice [1].
When a transport current density is applied, vortices move
through the material due to the Lorentz force, dissipating
energy and destroying the zero-resistance state [2], which is
not useful for technological applications [3]. Fortunately, it
had been discovered that defects inside the superconductor
could work as pinning centers, avoiding the vortex motion
and consequently the energy dissipation [4]. Since then,
several authors began to investigate pinning mechanisms in
type II superconductors [5–15].

Several works had investigated the effects of periodic
[12–40], quasi-periodic [41–48], and randomly distributed
[49–54] pinning centers in superconducting films. For
periodic pinning, such as square [12–21], triangular [30–
35, 55], honeycomb [27, 29, 30, 38], and Kagomé [27–
29, 32, 37], vortices tend to match the pinning lattice
in commensurate patterns, which greatly enhances the
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critical current density. However, these enhancements occur
at specific values of magnetic fields, resulting in high
oscillations of the critical current as a function of the
applied field [13, 14, 29, 33–40]. On the other hand, quasi-
periodic arrays, such as Penrose [43, 44, 48], hyperbolic
tessellations [47], and Archimedean tilings [41, 46], show
unusual commensurability effects for several values of
applied magnetic fields; besides that, for a wide range of
fields, the critical depinning currents are high. Recently,
Ray et al. [56] proposed conformal pinning arrays created
by a conformal angle-preserving transformation of a regular
pinning array. As a result, they demonstrated that the
conformal crystal strongly enhances the vortex pinning
due to the gradient of defects associated with the sixfold
symmetry of the lattice that the transformation preserves.
Moreover, it was shown that the conformal lattice presents
high values of critical depinning currents for a much wider
range of applied magnetic fields [56, 57]. Since then,
conformal crystals have been investigated both theoretically
[58–61] and experimentally [62, 63] for their unique
features.

Nowadays, there is a great technological interest in
superconducting devices with reduced dimensions. In these
cases, the size effects play an important role. With this
purpose, several authors investigated theoretically finite and
semi-finite size systems with diverse geometries, using
the Ginzburg-Landau [64–75] and London approach [76–
80]. However, there are still open questions about critical
depinning currents and vortex behavior in such systems,
specially under the influence of pinning arrays.

In samples where the width is comparable to the London
penetration depth, the Bean-Livingston surface barrier
effects [81] must be taken into account. In the theoretical
description of the system, the boundary conditions of the
surface are described by two interactions: the interaction
between the vortices and the shielding currents, which is
repulsive, and the interaction between vortices and their
images outside the sample, which is attractive [81]. The
competition between these two interactions satisfies the
boundary conditions of the surface.

For the particular case of superconducting strips, some
works had been conducted investigating vortex states,
critical currents, and magnetization curves [76–79, 82–90].
In strips, vortices arrange themselves in chains of straight
vortex lines due to the geometrical constraint [76], and the
magnetization curves present several peaks, indicating the
vortex lattice transitions with formation or destruction of
the vortex chains [78, 88]. However, there are only few
works investigating vortex dynamics under the influence of
pinning centers in strips [72, 77, 86].

In this work, we numerically study the critical depinning
forces of vortices under the influence of a triangular pinning
lattice and two kinds of conformal pinning arrays as shown

Fig. 1 Pinning site locations for the a regular triangular array, b
conformal array 1 (C1), and c conformal array 2 (C2), where the open
circles represent the pinning centers. The dashed lines are guides to the
eye to see the arches of the conformal structure. The applied transport
force is always in the y direction in this work, and the lengths x and y

are in units of 4ξ

in Fig. 1 (which we refer to as C1 and C2) in type
II superconducting strips. Using Langevin dynamics, we
perform the calculations for values of the applied magnetic
field until the rate between the density of vortices and
pinning (nv/np) reaches the value of 1.5, for all pinning
landscapes and zero temperature. We show the effects of the
surface barrier and pinning in the critical depinning forces,
vortex trajectories, and dynamical phases and compare to
infinite films. It is necessary to point out that, as we are
working with very narrow strips, we do not expect to see
flux avalanches [91, 92].
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2Model

We consider a type II superconducting strip in the xy

plane, infinite along the y direction. The external magnetic
field is applied perpendicular to the strip surface and zero
temperature [76, 78]. Considering vortices as particles,
their dynamical properties can be modeled using a set of
Langevin equations:

η
d�ri(t)

dt
=

∑
j �=i

∇iUvv(rij ) −
∑

p
∇iUp(rip)

+∇iUH (ri) + ∇iUS(ri) + �FJ (1)

The left term of the equation represents the drag force,
where the velocity of the vortex i is multiplied by the
Bardeen-Stephen [93] friction η = �0Hc2/c

2ρn. We
modeled the interactions inside the strip following Carneiro
[76], where the first term on the right side is the vortex-
vortex interaction, described as
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The second term on the right is the vortex-pinning
interaction, which is described as a Gaussian function [32,
33, 37, 54, 77]:

Up(rip) = Cpe−(rip/ap)2
(3)

The third term is the energy related to the vortex
interaction with the screening Meissner supercurrents:
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The fourth term is the potential energy given by
the interaction of vortices with their self-images, which
represents the anti-vortices outside the strip included by
Bean and Livingston [81] to satisfy the boundary condition
at the surface:
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where the constant Cv is the vortex strength given by
Cv = [φ0/(4∗π∗λ)]2; Cp is the pinning strength, settled as
Cp = 0.2Cv; ap = ξ is the pinning range; H is the applied
magnetic field; Lx = 0.48λ is the strip width; Ly is the
length of the simulation box, where the periodic boundary
conditions are applied to simulate its infinite behavior; rij =∣∣rj = ri

∣∣ is the distance between vortex i and vortex j ; and
rip = ∣∣rp − ri

∣∣ is the distance between vortex i and pinning
center p. The Ginzburg-Landau parameter used is κ = 100.

The length scales are normalized by 4ξ , the time scale by
τ = 0.0016ηλ2/Cv , the magnetic field by �0/λ

2 , the
energy scales by Cv , and the force scales by 25Cv/λ, where
ξ is the coherence length, λ is the London penetration depth,
and �0 is the flux quantum. The last term is the driving force
due to the transport current �J :

�Fj =
(

�0

c

)
�J × ẑ (6)

We simulate the vortex behavior for several values of
applied magnetic field up to nv/np = 1.5, where nv is the
vortex density and np is the pinning density. In this work,
we simulate the vortex behavior under the influence of three
pinning arrays, illustrated in Fig. 1. For all cases in this
work, we set np = 156.25/λ2.

The vortex density and its correspondent vortex ground
state were obtained using the generalized simulated
annealing (GSA) method [94]. Then, the dynamical
properties were simulated with a transport force applied
in the infinite direction of the strip. This force started at
F = 0.0 and was slowly increased in steps of �F =
0.002 up to values as high as F = 1.0. For each value
of F , we let 100,000 time steps for equilibration and
80,000 time steps for evaluation of the time averages. To
determine the depinning forces, it is necessary to calculate

the time average vortex velocity V =
√

V 2
x + V 2

y , where

Vy = 〈Vy(t)〉 = 〈 1
Nv

∑
i
dyi

dt
〉 and Vx = 〈Vx(t)〉 =

〈 1
Nv

∑
i
dxi

dt
〉. The average vortex velocity is proportional to

the macroscopically measured voltage-current curve [15,
54]. The criterion used to determine the depinning forces is
that V < 0.001 corresponds to vortex fluctuations around
the equilibrium position [33, 37]. For the characterization

Fig. 2 The rate nv/np as a function of the applied magnetic field H

for all pinning distributions studied in this work. The horizontal dashed
line indicates the first matching field line
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of the different dynamic phases, we calculated the vortex
trajectories, the time average vortex velocity, and vortex
velocity derivative dV/dF , which is proportional to the
differential resistance dV/dF = ρ−1

f dE/dJ , where ρf is
the flux flow resistivity [54].

3 Density as a Function of the Applied
Magnetic Field and Vortex States

It is well known that in mesoscopic samples, the surface
effect provokes a delay in the vortex penetration [76, 78,
84, 89, 90]. However, the presence of pinning centers, and
the associated attractive interaction between them and the
vortices, makes that the field necessary for the nucleation of
a new vortex to be lower than in the absence of pinning [84].

Fig. 3 The rate nv/np for selected values of applied magnetic field
H to show in greater detail the vortex nucleation shown in Fig. 2,
for a low, b intermediate, and c high values of applied field. In a,
the triangular lattice shows the lowest barrier for vortex penetration.
In b, C1 is more favorable for vortex penetration. In c, C2 favors the
penetration of vortices in the strip

However, there is still an open question: for a given number
of pinning centers, how does their distribution influence
a new nucleation. With this purpose, in Fig. 2, we show
our results obtained for the vortex density as a function
of the applied magnetic field in strips with triangular and
conformal pinning arrays.

From Fig. 2, it is possible to see the monotonic increase,
by steps, of the vortex density as a function of the magnetic
field for all pinning landscapes, which is typical of finite
size samples [76, 84, 88, 90, 95]. Moreover, it is necessary
to notice that for each pinning array and given nv/np value,
the field for a new vortex penetration is different, as we can
see in Fig. 3. In Fig. 3a, we can see that in the range of fields

Fig. 4 Main simulation box, where the red open circles represent the
triangular pinning array and the black dots the vortices for a H = 168,
b H = 172, and c H = 177. As the applied magnetic field increases,
vortices are dislocated towards the center of the sample destroying the
commensurability. The pinning range used is ap = ξ and Cp = 0.2Cv .
The lengths x and y are normalized in units of 4ξ
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between 10 < H < 40, for the triangular pinning array,
the delay is smaller than for C1 and C2 arrays. However,
panels b and c of Fig. 3 show that the vortex penetration
delay is smaller for the conformal pinning array C1 in the
range of fields 85 < H < 125 and for C2 in the range
233 < H < 260, respectively.

The triangular pinning array exhibits a shorter delay
for lower magnetic fields because the pinning density is
higher close to the edge of the strip when compared to
the conformal arrays, as can be seen clearly in Fig. 1. The
attractive interaction associated to the pinning centers close
to the surface favors the penetration of vortices inside the
strip. Besides, for low values of magnetic field, vortices
stabilize close to the center of the strip, reducing the barrier
for a new vortex penetration. In the range of fields 85 <

H < 125, the C1 array exhibits a smaller vortex penetration
delay than the other arrays due to the low vortex density
close to the edge of the strip, favoring the vortex penetration.
For high values of field, the C2 array presents smaller delays
for the same reason.

Another interesting characteristic observed in Fig. 2 is
that the triangular array for nv/np = 1 is stable in a wider
range of fields than for other values of this ratio. In the
range of fields where nv/np = 1, the vortex lattice goes
from an ordered and commensurate to a disordered and

uncommensurate state, as the field is increased. In Fig. 4, it
is possible to see the vortex lattice evolution as the magnetic
field is increased.

In fact, this vortex lattice deformation is observed for all
pinning lattices. As an example, in Fig. 5 is illustrated the
case of C1 and C2 arrays at nv/np = 2/3 . As can be seen,
the vortex lattice can change from ordered to disordered
configuration (see Fig. 5a, b for C1) or vice versa (see
Fig. 5c, d for C2). These deformations of the vortex lattice
as a function of the applied field will directly influence the
depinning forces of the system as we will see in the next
section.

4 Critical Depinning Forces and Vortex
Motion

The dynamical properties are obtained by numerical
integration of the Langevin equations [see (1)] for several
values of applied magnetic field H . As a result, we obtained
the vortex positions for every time step t , which permits to
evaluate the vortex average velocity V , the depinning forces,
and the vortex trajectories along the strip. The results for the
depinning forces, FD , as a function of the applied magnetic
field, H , are plotted in Fig. 6.

Fig. 5 Main simulation box,
where the red open circles
represent the pinning centers
and the black dots the vortices
for nv/np = 2/3 at a H = 116
and b H = 121 for the C1 array,
c H = 119 and d H = 123 for
the C2 array. The pinning range
used is ap = ξ and Cp = 0.2Cv .
The lengths x and y are
normalized in units of 4ξ
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Fig. 6 Depinning forces FD as a function of the applied magnetic field
H for all pinning distributions studied in this work. The magnetic field
H is in units of �0/λ

2, and the force FD in units 25Cv/λ

As mentioned before, there is a commensurability effect
for the triangular pinning array at nv/np = 1 (see Fig. 4a)
which results in a pronounced critical depinning force
peak at H = 168 (see Fig. 6). This is the only peak
that we can associate to commensurability effects in the
superconducting strip. This result is different from what
is observed in infinite superconducting films, where clear
commensurability effects at submatching fields can be seen
at nv/np = 1/4, 1/3, 1/2, 2/3, and 3/4 [33, 35, 36, 41].
In strips, the surface barrier prevents the commensurability
force peaks at submatching fields by forcing vortices to
stabilize in interstitial positions towards the center of the
sample, lowering the pinning force.

In Fig. 6, is possible to see that the system exhibits
fluctuations in the depinning forces. From Fig. 2, we can
see that a given density of vortices remains stable between a
range of fields. However, the vortex configuration deforms
as the magnetic field is increased (see, for example, Figs. 4
and 5). The deformation in the vortex lattice induces
variations in the pinning force and, as a consequence,
provokes changes in the critical depinning forces. This
behavior can be seen in detail in Fig. 7, where we show the
magnification, for selected values of field, of Fig. 6. The

Fig. 7 Depinning forces FD as a function of the applied magnetic field
H for the triangular pinning array at nv/np = 1

depinning forces are plotted as a function of the applied
magnetic field for nv/np = 1. In this case, for H = 168,
the vortex lattice is fully commensurate and the depinning
force is the highest. As the magnetic field is increased, the
vortex lattice deforms destroying the commensurability (see
Fig. 4c) and leading to a decrease in the depinning forces.
For other values of nv/np, the critical depinning forces
may increase or decrease with the magnetic field depending
on the particular vortex configurations, which explains the
fluctuations in the critical forces.

The results observed for the conformal arrays (C1 and
C2) show that there are no pronounced force peaks for
any values of applied magnetic field. This is in agreement
with observations of infinite superconducting films with
conformal pinning distributions [56–59, 62, 63]. The main
characteristic of this distribution is the stability of the
depinning forces for a wide range of fields. In fact,
we observe this characteristic for both arrays, where the
depinning forces fluctuate, but in general, we observe the
absence of critical depinning force peaks as the magnetic
field is varied. In the range 0 < nv/np < 1, we observe
that at low fields the depinning forces are higher for the C1
than the C2 array. This can be explained by the association
of surface and pinning density effects. In strips with the
absence of pinning centers, vortices usually stabilize close
to the center of the strip, forming rows of vortices [76,
78]. In the C1 case, the pinning density is always higher at
the center of the strip. Thus, the pinning is very effective
for low values of field, where the vortex rows stabilize in
the central region of the strip matching with the pinning
lattice and enhancing the depinning forces. However, as the
magnetic field increases, the vortex rows begin to stabilize
in peripheric regions, where the pinning is reduced. As a
consequence, the depinning forces decrease rapidly.

For values of 32 ≥ H ≥ 152, C1 and C2 arrays exhibit
similar behavior concerning to depinning forces. However,
for H > 152, the C2 array is more efficient than C1 due to
the formation of easy vortex flow channels in the C1 array.
In previous simulations with infinite samples [57], it has
been shown that the conformal distribution is very efficient
to prevent the formation of channels of easy vortex flow, for
several transport force angles. However, in our case, the size
effects seem to favor the formation of these easy channels
for the C1 array. In order to verify the formation of these
easy channels in our superconducting strip, we analyze the
vortex dynamical phases and trajectories for nv/np > 1,
where H > 152. First, we analyze the vortex motion in the
C2 array for the case of H = 205, where nv/np = 1.14.
Figure 8 shows the vortex velocity, Vy , as a function of the
transport force, Fy . As a result, it is possible to see that the
system presents only one dynamical transition, from static
to the moving phase, i.e. all vortices begin to move at the
same time.
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Fig. 8 Vortex velocity Vy as a function of the applied transport force
Fy for the C2 array with H = 205, where nv/np = 1.14

In Fig. 9, we plot the snapshots of the vortices for some
transport force values. Figure 9a illustrates the static phase.
When the transport force reaches its critical depinning
value, all vortices depin at the same time and flow along
the strip by tortuous channels with interconnectivity (see
Fig. 9b). Due to the absence of weak spots, the C2
array is efficient to prevent easy vortex flow channels
for high applied field values. As the transport force
increases, vortices begin to form narrow channels without
interconnectivity (see Fig. 9c).

Fig. 10 Vortex velocity Vy as a function of the applied transport force
Fy for the C1 array with H = 200, where nv/np = 1.11

The efficiency of the C1 array is especially reduced when
nv/np > 1, where vortices stabilize closer to the sample
edge. In Fig. 10 is plotted the average vortex velocity, Vy ,
as a function of the transport force, Fy , for the case of
H = 200 where nv/np = 1.11. In Fig. 11, we show the
vortex trajectories along the strip.

The vortex ground state (see Fig. 11a) remains static
until reaching the critical depinning force, FD = 0.126.
Above the critical depinning force (see Fig. 11b), vortices
close to the edge of the strip depin and flow in the direction

Fig. 9 Main simulation box,
where the red open circles
represent the C2 pinning array
and the black dots the vortices
for H = 205. In a, the applied
force is Fy = 0.196, b
Fy = 0.288, and c Fy = 1.000
In this case, all vortices depin at
the same time and the formation
of vortex channels occurs slowly
as the transport force increases.
The pinning range used is
ap = ξ and Cp = 0.2Cv The
lengths x and y are normalized
in units of 4ξ
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Fig. 11 Main simulation box,
where the red open circles
represent the C1 pinning array
and the black dots the vortices
for H = 200. In a, the applied
force is Fy = 0.100, b
Fy = 0.130 c Fy = 0.182, d
Fy = 0.194, e Fy = 0.318, f
Fy = 0.450, g Fy = 0.700, and
h Fy = 1.000 As the transport
force increases, vortices form
channels from the edge of the
sample to the center of the
sample. The pinning range used
is ap = ξ and Cp = 0.2Cv The
lengths x and y are normalized
in units of 4ξ
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of the transport force, forming a tortuous narrow channel.
It is clear from Fig. 11a that there are weak spots close
to the edge of the sample, which enables the formation

of easy vortex flow channels. As the transport force is
increased, at Fy = 0.182 (see Fig. 11c), more vortices depin
resulting in curved tortuous vortex channels following the
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pinning arches of the conformal array close to the edge.
Note that the two internal pinning arches still maintain
the vortices trapped. After further increasing of the drive,
at Fy = 0.194 (see Fig. 11d), part of the vortices from
the intermediary pinning arches depin in complex vortex
trajectories. Above F = 0.318, more vortices depin from
the intermediary arches (see Fig. 11e). When the transport
force reaches Fy = 0.334, vortices from the central arches
of the conformal lattice depin in a regime which shows
several fluctuations in the velocity curve and disordered
vortex lattice (see Figs. 10 and 11f). When the transport
force reaches Fy = 0.334, the system reorders in narrow
channels. However, two vortices are still trapped, each one
to the almost overimposed pinning sites in the extremes
of the central arches (see Fig. 11g). Above Fy > 0.690,
vortices depin and the system goes to a regime where all
vortices flow though the strip (see Fig. 11h). It can be
seen in Fig. 11h that vortices flow following the arches
of the conformal landscape. Thus, the C1 array is able
to guide the vortex motion through the strip. A similar
kind of guidance was observed in infinite superconducting
bulks with conformal pinning by Ray et al., where vortices
were more likely to move in regions with low pinning
density [57].

The C1 array presents a higher density of pinning centers
at the center of the strip, which enhances the pinning in that
region and avoids the vortex movement. However, in regions
next to the edge of the sample, the pinning is reduced giving
rise to weak spots and vortices are more likely to move. We
also observe that the depinning occurs via vortices in the
same pinning arch, starting from arches close to the edge
and moving to those close to the center.

5 Conclusions

In summary, we have shown the vortex behavior in type II
superconducting strips with the presence of triangular and
two kinds of conformal pinning arrays (C1 and C2) at zero
temperature.

Our results show that in strips there is a monotonic
increase, by steps, of the vortex density as a function of the
applied magnetic field, in analogy with previous works in
the absence of pinning centers [76, 78, 88–90, 95]. However,
the pinning distribution in the sample influences the vortex
nucleation. For the case of triangular arrays, it was observed
that for low values of applied magnetic field, the vortex
penetration delay is smaller than for C1 and C2 arrays. This
is a consequence of the higher pinning density present close
to the edge of the strip when compared to both conformal
arrays. Besides, for low values of field, vortices stabilize in
the central region of the strip, reducing the vortex-vortex
repulsion. However, for intermediate values of magnetic

field, the C1 array exhibits a smaller delay when compared
to the other lattices. This may be understood by the low
vortex density close to the edge of the strip when compared
to other lattices, which enables the vortex penetration. For
high field values, the C2 landscape exhibits smaller delays
to vortex penetration for the same reason. We also show
that for a given value of nv/np, the vortex configuration
may change due to surface effects. This change can go
from ordered to a disordered lattice, or vice versa. As a
consequence, these changes directly influence the depinning
forces, resulting in fluctuations with the magnetic field.

Concerning to critical depinning forces, our results show
that for the triangular pinning array, there is a clear
commensurability effect at nv/np = 1. However, that
commensurability peak is not present in all the range of
magnetic field where nv/np = 1 . The peak appears
only for H = 168, where the vortex lattice is ordered
and commensurate. As the magnetic field increases for
the same value of nv/np, the lattice deforms and the
commensurability is lost, as can be seen in Fig. 4.
However, this is the only pronounced depinning force
peak that can be associated with commensurability in our
calculations. This result is very different to that observed
in infinite superconducting films with triangular pinning,
where several matching and submatching features were
found [33, 35, 36, 41]. This is a consequence of the
surface barrier pushing vortices to stabilize in interstitial
positions towards the center of the sample, destroying the
commensurability. For C1 and C2 arrays, we observed
fluctuations in the depinning forces, but a complete absence
of pronounced force peaks for any values of magnetic fields,
in agreement with observations for infinite samples [56–
59, 62, 63]. Our results show that at low fields the C1
array is more efficient that C2, while at high fields C2 is
more efficient than C1. The C1 array exhibits high pinning
density in the central region of the strip, which matches
the vortex lattice for low values of field and enhances the
depinning forces. However, at high fields, vortices stabilize
close to the edge of the strip, where the pinning density is
lower. Hence, the depinning forces are greatly reduced as
the magnetic field is increased. For the C2 case, at high
field values, the gradient of pinning centers associated to
the arching structure of the conformal landscape prevents
the formation of easy vortex flow channels, enhancing the
depinning forces.

In order to investigate the formation or not of easy vortex
flow channels, we analyzed the vortex dynamics for both
conformal arrays when nv/np > 1. Our analysis shows
that the depinning transition in the C2 array occurs with all
vortices moving at the same time, indicating that there are
no weak spots and the easy vortex channels were avoided.
In contrast, we observed that in the C1 array there are weak
spots close to the edge of the strip giving rise to easy vortex
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flow channels, resulting in the depinning of the arch closer
to the edge. Moreover, vortices flow following the pinning
arch structures, which may be used as a guide for the vortex
motion.

Funding Information N.P.V. and M.C. acknowledge Capes-Brazil
for financial support. L.G.V. acknowledges the support from the
Brazilian Government’s Science Without Borders Programme (Grant:
206419/2014-7). This research was supported by the Center for
Scientific Computing (NCC/GridUNESP) of the São Paulo State
University (UNESP).

References

1. Abrikosov, A.: On the magnetic properties of superconductors of
the second group. Sov. Phys. JETP. 5, 1174–1182 (1957)

2. Tinkham, M. Introduction to Superconductivity, Second Edition.
Dover Publications, Mineola, NY (2004)

3. Pool, R.: Superconductivity: is the party over? Science 244, 914–
916 (1989). https://doi.org/10.1126/science.244.4907.914

4. Pool, R.: Superconductivity: party time again. Science 246, 1243–
1243 (1989). https://doi.org/10.1126/science.246.4935.1243

5. Brandt, E.H.: Computer simulation of flux pinning in type-ii
superconductors. Phys. Rev. Lett. 50, 1599–1602 (1983). https://
doi.org/10.1103/PhysRevLett.50.1599

6. Buzdin, A., Feinberg, D.: On the theory of electromagnetic
pinning of vortices. Phys. C Supercond. 235, 2755–2756 (1994).
https://doi.org/10.1016/0921-4534(94)92598-4

7. Matsumoto, K., Mele, P.: Artificial pinning center technology to
enhance vortex pinning in YBCO coated conductors. Supercond.
Sci. Technol. 23, 014001 (2010). https://doi.org/10.1088/0953-
2048/23/1/014001

8. Morgan, D.J., Ketterson, J.B.: Asymmetric flux pinning in a
regular array of magnetic dipoles. Phys. Rev. Lett. 80, 3614–3617
(1998). https://doi.org/10.1103/PhysRevLett.80.3614
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62. Guénon, S., Rosen, Y.J., Basaran, A.C., Schuller, I.K.: Highly
effective superconducting vortex pinning in conformal crystals.

https://doi.org/10.1016/j.ssc.2007.04.037
https://doi.org/10.1016/j.ssc.2007.04.037
https://doi.org/10.1103/PhysRevB.64.104505
https://doi.org/10.1103/PhysRevB.64.104505
http://dx.doi.org/10.1590/1980-5373-mr-2016-0696
http://dx.doi.org/10.1103/PhysRevB.95.075303
https://doi.org/10.1103/PhysRevB.63.054510
https://doi.org/10.1103/PhysRevB.63.054510
https://doi.org/10.1016/j.physc.2009.05.206
https://doi.org/10.1016/j.physc.2009.05.206
https://doi.org/10.1140/epjb/e2017-80260-y
https://doi.org/10.1140/epjb/e2017-80260-y
http://dx.doi.org/10.1103/PhysRevB.79.134501
https://doi.org/10.1209/epl/i2006-10013-1
https://doi.org/10.1209/epl/i2006-10013-1
https://doi.org/10.1103/PhysRevB.74.174512
https://doi.org/10.1103/PhysRevB.74.174512
https://doi.org/10.1088/0953-2048/27/6/065002
https://doi.org/10.1088/0953-2048/27/6/065002
https://doi.org/10.1103/PhysRevLett.97.147003
https://doi.org/10.1103/PhysRevLett.97.147003
http://dx.doi.org/10.1103/PhysRevB.74.024522
https://doi.org/10.1103/PhysRevLett.95.177007
https://doi.org/10.1103/PhysRevLett.95.177007
https://doi.org/10.1103/PhysRevB.82.184512
https://doi.org/10.1103/PhysRevB.82.184512
http://dx.doi.org/10.1088/0953-2048/27/7/075006
http://dx.doi.org/10.1103/PhysRevB.85.184506
http://dx.doi.org/10.1063/1.2361172
http://dx.doi.org/10.1103/PhysRevB.61.R3811
https://doi.org/10.1103/PhysRevB.64.024518
https://doi.org/10.1103/PhysRevB.64.024518
http://dx.doi.org/10.1103/PhysRevB.64.140502
http://dx.doi.org/10.1103/PhysRevLett.77.5114
http://dx.doi.org/10.1103/PhysRevLett.89.227001
https://doi.org/10.1103/PhysRevLett.83.3061
https://doi.org/10.1103/PhysRevLett.83.3061
http://dx.doi.org/10.1063/1.1690971
http://dx.doi.org/10.1103/PhysRevLett.110.267001
http://dx.doi.org/10.1103/PhysRevB.90.094502
http://dx.doi.org/10.1016/j.physc.2016.05.024
https://doi.org/10.1016/j.physc.2014.04.038
https://doi.org/10.1016/j.physc.2014.04.038
https://doi.org/10.1103/PhysRevB.93.064508
https://doi.org/10.1103/PhysRevB.93.064508
https://doi.org/10.1063/1.4974000
https://doi.org/10.1063/1.4974000


1992 Journal of Superconductivity and Novel Magnetism (2018) 31:1981–1992

Appl. Phys. Lett. 102, 252602 (2013). https://doi.org/10.1063/1.
4811413

63. Wang, Y.L., Latimer, M.L., Xiao, Z.L., Divan, R., Ocola, L.E.,
Crabtree, G.W., Kwok, W.K.: Enhancing the critical current of
a superconducting film in a wide range of magnetic fields with
a conformal array of nanoscale holes. Phys. Rev. B. 87, 220501
(2013). https://doi.org/10.1103/PhysRevB.87.220501

64. Barba-Ortega, J., Sardella, E., Aguiar, J.A.: Superconducting
boundary conditions for mesoscopic circular samples. Supercond.
Sci. Technol. 24, 015001 (2011). https://doi.org/10.1088/0953-
2048/24/1/015001

65. Barba-Ortega, J., Sardella, E., Albino Aguiar, J., Peeters, F.M.:
Non-conventional vortex configurations in a mesoscopic flat disk.
Phys. C Supercond. 487, 47–55 (2013). https://doi.org/10.1016/
j.physc.2013.01.021

66. Barba-Ortega, J., Sardella, E., Albino Aguiar, J.: Temperature-
dependent vortex matter in a superconducting mesoscopic
circular sector. Phys. C Supercond. 470, 1964–1967 (2010).
https://doi.org/10.1016/j.physc.2010.08.008

67. Lisboa-Filho, P.N., Malvezzi, A.L., Sardella, E.: Minimum size
for the occurrence of vortex matter in a square mesoscopic
superconductor. Phys. B Condens. Matter. 403, 1494–1496
(2008). https://doi.org/10.1016/j.physb.2007.10.247

68. Mel’nikov, A.S., Nefedov, I.M., Ryzhov, D.A., Shereshevskii,
I.A., Vinokur, V.M., Vysheslavtsev, P.P.: Vortex states and
magnetization curve of square mesoscopic superconductors. Phys.
Rev. B. 65, 140503 (2002). https://doi.org/10.1103/PhysRevB.65.
140503

69. Sardella, E., Brandt, E.H.: Vortices in a mesoscopic supercon-
ducting disk of variable thickness. Supercond. Sci. Technol. 23,
025015 (2010). https://doi.org/10.1088/0953-2048/23/2/025015

70. Sardella, E., Malvezzi, A.L., Lisboa-Filho, P.N., Ortiz, W.A.:
Temperature-dependent vortex motion in a square mesoscopic
superconducting cylinder: Ginzburg-landau calculations. Phys.
Rev. B. 74, 014512 (2006). https://doi.org/10.1103/PhysRevB.74.
014512

71. Hernández, A.D., Baelus, B.J., Domı́nguez, D., Peeters, F.M.:
Effects of thermal fluctuations on the magnetic behavior of
mesoscopic superconductors. Phys. Rev. B. 71, 214524 (2005).
https://doi.org/10.1103/PhysRevB.71.214524

72. Berdiyorov, G., Harrabi, K., Maneval, J.P., Peeters, F.M.: Effect of
pinning on the response of superconducting strips to an external
pulsed current. Supercond. Sci. Technol. 28, 025004 (2015).
https://doi.org/10.1088/0953-2048/28/2/025004

73. Berdiyorov, G.R., Chao, X.H., Peeters, F.M., Wang, H.B.,
Moshchalkov, V.V., Zhu, B.Y.: Magnetoresistance oscillations in
superconducting strips: a Ginzburg-Landau study. Phys. Rev. B.
86, 224504 (2012). https://doi.org/10.1103/PhysRevB.86.224504

74. Berdiyorov, G.R., Elmurodov, A.K., Peeters, F.M., Vodolazov,
D.Y.: Finite-size effect on the resistive state in a mesoscopic
type-II superconducting stripe. Phys. Rev. B. 79, 174506 (2009).
https://doi.org/10.1103/PhysRevB.79.174506

75. Berdiyorov, G., Harrabi, K., Oktasendra, F., Gasmi, K., Mansour,
A.I., Maneval, J.P., Peeters, F.M.: Dynamics of current-driven
phase-slip centers in superconducting strips. Phys. Rev. B. 90,
054506 (2014). https://doi.org/10.1103/PhysRevB.90.054506

76. Carneiro, G.: Equilibrium vortex-line configurations and critical
currents in thin films under a parallel field. Phys. Rev. B. 57,
6077–6083 (1998). https://doi.org/10.1103/PhysRevB.57.6077

77. Reis, J.D., Venegas, P.A., Mello, D.F., Cabrera, G.G.: Surface
effects on moving vortices in superconducting stripes. Phys. C
Supercond. 454, 15–19 (2007). https://doi.org/10.1016/j.physc.
2007.01.002

78. de Souza Silva, C.C., Cabral, L.R.E., Aguiar, J.A.: Flux
penetration, matching effect, and hysteresis in homogeneous

superconducting films. Phys. Rev. B. 63, 134526 (2001).
https://doi.org/10.1103/PhysRevB.63.134526

79. de Souza Silva, C.C., Cabral, L.R.E., Albino Aguiar, J.: Vortex
configurations and metastability in mesoscopic superconductors.
Phys. C Supercond. 404, 11–17 (2004). https://doi.org/10.1016/j.
physc.2003.11.060

80. Venegas, P.A.: Size effects in the magnetization of a superconduct-
ing wire. J. Appl. Phys. 85, 6049 (1999). https://doi.org/10.1063/1.
369078

81. Bean, C.P., Livingston, J.D.: Surface barrier in type-II supercon-
ductors. Phys. Rev. Lett. 12, 14–16 (1964). https://doi.org/10.1103/
PhysRevLett.12.14

82. de Souza Silva, C.C., Albino Aguiar, J.: Irreversible matching
effects in homogeneous and layered superconducting films.
Phys. C Supercond. 354, 232–236 (2001). https://doi.org/10.1016/
S0921-4534(01)00070-3

83. Benkraouda, M., Clem, J.R.: Magnetic hysteresis from the
geometrical barrier in type-II superconducting strips. Phys. Rev.
B. 53, 5716–5726 (1996). https://doi.org/10.1103/PhysRevB.53.
5716

84. Bronson, E., Gelfand, M.P., Field, S.B.: Equilibrium configura-
tions of Pearl vortices in narrow strips. Phys. Rev. B. 73, 144501
(2006). https://doi.org/10.1103/PhysRevB.73.144501

85. Kramer, R.B.G., Ataklti, G.W., Moshchalkov, V.V., Sil-
hanek, A.V.: Direct visualization of the Campbell regime in
superconducting stripes. Phys. Rev. B. 81, 144508 (2010).
https://doi.org/10.1103/PhysRevB.81.144508

86. Silva, C.C., de, S., Raes, B., Brisbois, J., Cabral, L.R.E.,
Silhanek, A.V., Van de Vondel, J., Moshchalkov, V.V.: Prob-
ing the low-frequency vortex dynamics in a nanostructured
superconducting strip. Phys. Rev. B. 94, 024516 (2016).
https://doi.org/10.1103/PhysRevB.94.024516

87. Sánchez-Lotero, P., Domı́nguez, D., Aguiar, J.A.: Flux flow in cur-
rent driven mesoscopic superconductors: size effects. Eur. Phys. J.
B. 89, 141 (2016). https://doi.org/10.1140/epjb/e2016-70047-1

88. Kuit, K.H., Kirtley, J.R., van der Veur, W., Molenaar, C.G.,
Roesthuis, F.J.G., Troeman, A.G.P., Clem, J.R., Hilgenkamp, H.,
Rogalla, H., Flokstra, J.: Vortex trapping and expulsion in thin-
film YBa2Cu3O7−δ strips. Phys. Rev. B. 77, 134504 (2008).
https://doi.org/10.1103/PhysRevB.77.134504

89. Palacios, J.J.: Vortex lattices in strong type-II superconducting
two-dimensional strips. Phys. Rev. B. 57, 10873–10876 (1998).
https://doi.org/10.1103/PhysRevB.57.10873

90. Barba, J.J., Aguiar, J.A.: Bi-dimensional chain-like vortex
structure in a mesoscopic superconductor. J. Phys. Conf. Ser. 150,
052015 (2009). https://doi.org/10.1088/1742-6596/150/5/052015

91. Denisov, D.V., Shantsev, D.V., Galperin, Y.M., Choi, E.-
M., Lee, H.-S., Lee, S.-I., Bobyl, A.V., Goa, P.E., Olsen,
A.A.F., Johansen, T.H.: Onset of dendritic flux avalanches in
superconducting films. Phys. Rev. Lett. 97, 077002 (2006).
https://doi.org/10.1103/PhysRevLett.97.077002

92. Mints, R.G., Rakhmanov, A.L.: Critical state stability in type-II
superconductors and superconducting-normal-metal composites.
Rev. Mod. Phys. 53, 551–592 (1981). https://doi.org/10.1103/
RevModPhys.53.551

93. Bardeen, J., Stephen, M.J.: Theory of the motion of vortices
in superconductors. Phys. Rev. 140, A1197–A1207 (1965).
https://doi.org/10.1103/PhysRev.140.A1197

94. Tsallis, C., Stariolo, D.A.: Generalized simulated annealing.
Phys. Stat. Mech. Its Appl. 233, 395–406 (1996). https://doi.org/
10.1016/S0378-4371(96)00271-3

95. Stan, G., Field, S.B., Martinis, J.M.: Critical field for complete
vortex expulsion from narrow superconducting strips. Phys. Rev.
Lett. 92, 097003 (2004). https://doi.org/10.1103/PhysRevLett.92.
097003

https://doi.org/10.1063/1.4811413
https://doi.org/10.1063/1.4811413
http://dx.doi.org/10.1103/PhysRevB.87.220501
https://doi.org/10.1088/0953-2048/24/1/015001
https://doi.org/10.1088/0953-2048/24/1/015001
https://doi.org/10.1016/j.physc.2013.01.021
https://doi.org/10.1016/j.physc.2013.01.021
http://dx.doi.org/10.1016/j.physc.2010.08.008
http://dx.doi.org/10.1016/j.physb.2007.10.247
https://doi.org/10.1103/PhysRevB.65.140503
https://doi.org/10.1103/PhysRevB.65.140503
http://dx.doi.org/10.1088/0953-2048/23/2/025015
https://doi.org/10.1103/PhysRevB.74.014512
https://doi.org/10.1103/PhysRevB.74.014512
http://dx.doi.org/10.1103/PhysRevB.71.214524
http://dx.doi.org/10.1088/0953-2048/28/2/025004
http://dx.doi.org/10.1103/PhysRevB.86.224504
http://dx.doi.org/10.1103/PhysRevB.79.174506
http://dx.doi.org/10.1103/PhysRevB.90.054506
http://dx.doi.org/10.1103/PhysRevB.57.6077
https://doi.org/10.1016/j.physc.2007.01.002
https://doi.org/10.1016/j.physc.2007.01.002
http://dx.doi.org/10.1103/PhysRevB.63.134526
https://doi.org/10.1016/j.physc.2003.11.060
https://doi.org/10.1016/j.physc.2003.11.060
https://doi.org/10.1063/1.369078
https://doi.org/10.1063/1.369078
https://doi.org/10.1103/PhysRevLett.12.14
https://doi.org/10.1103/PhysRevLett.12.14
https://doi.org/10.1016/S0921-4534(01)00070-3
https://doi.org/10.1016/S0921-4534(01)00070-3
https://doi.org/10.1103/PhysRevB.53.5716
https://doi.org/10.1103/PhysRevB.53.5716
http://dx.doi.org/10.1103/PhysRevB.73.144501
http://dx.doi.org/10.1103/PhysRevB.81.144508
http://dx.doi.org/10.1103/PhysRevB.94.024516
http://dx.doi.org/10.1140/epjb/e2016-70047-1
http://dx.doi.org/10.1103/PhysRevB.77.134504
http://dx.doi.org/10.1103/PhysRevB.57.10873
http://dx.doi.org/10.1088/1742-6596/150/5/052015
http://dx.doi.org/10.1103/PhysRevLett.97.077002
https://doi.org/10.1103/RevModPhys.53.551
https://doi.org/10.1103/RevModPhys.53.551
http://dx.doi.org/10.1103/PhysRev.140.A1197
https://doi.org/10.1016/S0378-4371(96)00271-3
https://doi.org/10.1016/S0378-4371(96)00271-3
https://doi.org/10.1103/PhysRevLett.92.097003
https://doi.org/10.1103/PhysRevLett.92.097003

	Surface Effects on the Dynamic Behavior of Vortices in Type II Superconducting Strips with Periodic and Conformal Pinning Arrays
	Abstract
	Abstract
	Introduction
	Model
	Density as a Function of the Applied Magnetic Field and Vortex States
	Critical Depinning Forces and Vortex Motion
	Conclusions
	Funding Information
	References


