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Abstract The main goal of this paper is to describe
the motion of a spacecraft around an artificial equilib-
riumpoint in the circular restricted three-bodyproblem.
The spacecraft is under the gravitational influence of
the Sun and theEarth, as primary and secondary bodies,
subjected to the force due to the solar radiation pres-
sure and some extra perturbations. Analytical solutions
for the equations of motion of the spacecraft are found
using several methods and for different extra perturba-
tions. These solutions are strictly valid at the artificial
equilibrium point, but they are used as approximations
to describe themotion around this artificial equilibrium
point. As an application of themethod, the perturbation
due to the gravitational influence of Jupiter and Venus
is added to a spacecraft located at a chosen artificial
equilibrium point, near the L3 Lagrangian point of the
Sun–Earth system. The system is propagated starting
from this point using analytical and numerical solu-
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tions. Comparisons between analytical–analytical and
analytical–numerical solutions for several kinds of per-
turbations are made to guide the choice of the best ana-
lytical solution, with the best accuracy.

Keywords Astrodynamics · Equilibrium points ·
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1 Introduction

The Lagrangian equilibrium points that appear in the
restricted three-body problem are convenient for astro-
nautical applications. They are good candidates to
place spacecraft, since their equilibrium conditions
help to reduce the fuel consumption for station-keeping
maneuvers. An interesting application is the use of one
of these points (L3) in the Sun–Earth system to place a
spacecraft. Such spacecraft could help to observe and
detect solar activities in the momentary opposite side
of the Sun from the perspective of the Earth. Combined
with the rotation of the Sun, these detections could
improve the prediction of coronal mass ejection in the
direction of the Earth weeks in advance. This advanta-
geous point can be useful for many others spacecraft
missions, such as collections of particles traveling in
space [1] or for parallax measurements. Even consid-
ering these benefits, there are only a few investigations
performed to explore this point. One of the reasons is
its instability. Another important problem is the strong
perturbations coming from other planets, in particular
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Jupiter and Venus [2]. This is specially true during the
times that they are closer to this point. The instability
problem exists not only for the point itself, but also
for the motion around this point [3]. This instability
is also present in the other two collinear equilibrium
points, called L1 and L2, but many real applications
are considered for these two points [4–8]. It is nec-
essary to study options to control this instability, but it
can be done using an adequate station-keeping strategy.
Among the few studies related to this particular point,
it can be mentioned in reference [9], which considers
motions around these points, and researches studying
transfer orbits [10,11].

Moreover, equilibrium points are not restricted to
the Lagrangian points. If some extra force is taken into
account, then families of equilibrium points can arise
[12,13]. These points are the so-called artificial equi-
librium points (AEP), which are points of equilibrium
obtained under a more complex dynamics, which has
the addition of more forces besides the gravity of the
bodies involved. These extra forces can shift the loca-
tion of the equilibriumpoint, but it can also play a role in
the stability of the point [14]. These AEP can be found
through a concept using reflectors to generate thrust
without the use of propellant, which origins goes back
to 1920s [15,16]. An interesting idea was patented and
published by Forward in 1990s [17], where an applica-
tion of the AEP allows a “statite” spacecraft to observe
regions near the poles of theEarth. Since the ideaofFor-
ward, several researches have been done to investigate
the AEP in the circular restricted three-body problem
[13] and in the elliptic restricted three-body problem
[18]. Stability of the AEP is also considered in the lit-
erature [19], including the stability of the AEP with the
primary body assumed to be an oblate spheroid [20].
Changing the equilibrium point L3 and turning it into
an AEP in a new position near L3 can be suitable for
many missions, since it can offer much more options
to choose a place for a “stationary” spacecraft or to
place a spacecraft that orbits this point. An application
of the idea of an extra force due to the solar radiation
pressure to shift the location of an equilibrium point is
mentioned in [21], to find places to locate a solar reflec-
tor around the Earth to redirect solar rays to slightly
increase the global temperature of the Earth. A similar
idea is already considered in [22], but to decrease the
global temperature of the Earth. Low-thrust systems
applied to AEP are studied in [23]. Attitude and tra-
jectory stability of solar sails have been recently stud-

ied in [24]. In order to generate thrust in a spacecraft
without the use of propellant, solar radiation pressure
is not the only option. Momentum flux of the solar
wind can also be used through the so-called electric
sail [25,26].

In this context, the present paper has the goal of
searching for solutions for the motion of a spacecraft
near an artificial equilibrium point. It is assumed that
the spacecraft is subjected to the force coming from
the solar radiation pressure, besides the forces given by
the circular restricted three-body problem Sun–Earth–
spacecraft. It is also considered that the spacecraft is
equipped with a solar sail. An adequate choice of the
parameters involved in the solar sail, like its attitude,
reflectance properties, area, can generate families of
locations for these new artificial equilibrium points
described before, with some of them lying even out-
side the orbital plane of the Earth. Of course, there is
an extra engineering work in building solar sails with
large ratio area to mass, but they can also be used in
scientific experiments, like producing energy or col-
lecting particles traveling in space [1]. Thus, a pertur-
bation is added to the problem through its equations of
motion; then, analytical solutions of these equations
are found. Analytical solutions for the equations of
motion are found for some different forms of perturba-
tions and through the use of different methods, either
direct analytical solution or the analytical solution of
the linearized equations of motion. From these ana-
lytical solutions, it is possible to study the motion of
the spacecraft in some detail. The method is applied
considering the important perturbations coming from
Jupiter and Venus or Jupiter only gravitational interac-
tionswith the spacecraft locatednear the L3 Lagrangian
point of the Sun–Earth system. These two planets rep-
resent the largest forces acting as perturbations over a
spacecraft in this location. Hence, specific values of the
parameters and perturbations are given. Results com-
ing from the different analytical methods are shown,
as well as coming from a numerical method. Thus, the
results are compared with each other. These compar-
isons guide the choice of the best model to be used, as
a function of the accuracy desired for the problem and
the time span involved.

This article is divided as follows. In Sect. 2, math-
ematical models are presented. In Sects. 2.1, 2.2
and 2.3, solutions are found through different meth-
ods and different forms for the perturbation. In Sect. 3,
results are obtained for some specific cases shown in
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Sects. 3.1, 3.2, 3.3 and 3.4. Finally, Sect. 4 shows a
conclusion of the paper.

2 Mathematical models

Suppose a spacecraft under the gravitational influence
of the Sun and the Earth, subjected to a force due to
the solar radiation pressure over its sail, and to pertur-
bations from other sources. In a non-inertial rotating
frame of reference, that has the Sun fixed in its center
and the Earth fixed along the x axis, according to the
Coriolis theorem [27], the equation of motion of such
spacecraft is given by

d2rs
dt2

+ 2ω × drs
dt

+ ω × (ω × rs) + dω

dt
× rs

= −μs

r3s
rs − μe

r3e
re + 1

m
f p + a, (1)

where ω is the angular velocity of the rotating frame;
rs is the position of the spacecraft; re locates the space-
craft with respect to the Earth; f p is the force over the
solar sail due to the solar radiation pressure; a is the per-
turbative acceleration vector acting in the spacecraft;
μs is the gravitational parameter of the Sun; μe is the
gravitational parameter of the Earth.

The rotating frame of reference and the geometry of
the problem are shown in Fig. 1, from where it is pos-
sible to see the bodies involved (Sun, Earth and space-
craft). The Sun is placed in the center of the reference
system, not in the baricenter. For the purpose of this
work, the motion of the Earth around the Sun is circu-
lar and non-perturbed by any force, which indicates

ω = (0, 0, ω), (2)

where ω is a constant.

The equation of motion [Eq. (1)] now becomes

d2rs
dt2

+ 2ω × drs
dt

+ ω × (ω × rs)

= −μs

r3s
rs − μe

r3e
re + 1

m
f p + a. (3)

The artificial equilibrium point (AEP) is defined by
the condition given by

1

m
f p = ω × (ω × rs) + μs

r3s
rs + μe

r3e
re. (4)

The reason why this condition can be called an AEP
will be explained later in this section. If Eq. (4) is true,
then Eq. (3) becomes:

d2rs
dt2

+ 2ω × drs
dt

= a (5)

Using Eq. (2), the components of Eq. (5) can be
written as

d2x

dt2
− 2

dy

dt
ω − ax (x, y, z, t) = 0, (6)

d2y

dt2
+ 2

dx

dt
ω − ay(x, y, z, t) = 0, (7)

and

d2z

dt2
− az(x, y, z, t) = 0, (8)

where x , y and z are the components of the position vec-
tor rs and ax (x, y, z, t), ay(x, y, z, t) and az(x, y, z, t)
are the components of the perturbation vector a and
may depend on the position and time variables.

Equations (6)–(7) form a set of coupled ordinary dif-
ferential equations. Depending on the form of the per-
turbation vector a, analytical solutions for these equa-
tions may be easily obtained. In the case where the
components of the perturbation vector a = (ax , ay, az)
are given by

Fig. 1 Geometry of the
problem in the rotating
frame of reference
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ax = 1

2ω

dX (x)

dt
+ Y (y) + Tx (t) (9)

ay = X (x) − 1

2ω

dY (y)

dt
+ Ty(t) (10)

and

az = Z(z) + Tz(t), (11)

where X (x), Y (y) and Z(z) are any functions of x , y
and z only, respectively, and Tx (t), Ty(t) and Tz(t) are
any explicit functions of time only, then Eqs. (6)–(7)
can be rewritten as

d3x

dt3
+ 4ω2 dx

dt
− 2ωX − 2ωTy − 1

2ω

d2X

dt2

−dTx
dt

= 0, (12)

d3y

dt3
+ 4ω2 dy

dt
+ 2ωY + 2ωTx + 1

2ω

d2Y

dt2

−dTy
dt

= 0, (13)

and

d2z

dt2
− Z − Tz = 0. (14)

Equations (12)–(14) form a set of three uncoupled
ordinary differential equations. Depending on the form
of X,Y, Z , Tx , Ty, andTz , analytical solutions for these
equations may be obtained.

Supposing a perturbation caused by the gravitational
interaction of the spacecraft with another planet, it
depends on the relative position of the spacecraft with
respect to the planet, which means that it depends only
on the position of the spacecraft and the time t , since
the position of the perturbing planet is usually supposed
to be known as a function of time. The major variation
in the relative position between the spacecraft and the
perturbing planet is due to the variation in the position
of the planet itself in the frame of reference, because, in
comparison, the displacement of the spacecraft in this
same frame of reference is supposed to be small around
the AEP. Therefore, it is assumed here the approxima-
tion that the perturbing force may be calculated using
the relative position between the planet and the AEP.
Note that in this approximation, the advantage that the
perturbing force becomes only a function of time t is
used in the next solution.

2.1 Analytical solution 1: perturbation linearly
dependent on time

If the gravitational forces (or accelerations) due to
Venus and Jupiter are used as an example of pertur-
bation, then this perturbation is a function of the posi-
tion of the spacecraft and time, because the motion of
Venus and Jupiter around the Sun can be predicted as a
function of time. The motion is close around the AEP;
then, the perturbation can be approximated by a func-
tion of time only, calculated at the initial position of
the spacecraft. More than that, the components of the
perturbation are assumed to be linear functions of time
in the following forms:

ax (x, y, z, t) = ax (x0, y0, z0, t) = ax (x0, y0, z0, 0)

+αx t, (15)

ay(x, y, z, t) = ay(x0, y0, z0, t) = ay(x0, y0, z0, 0)

+αyt, (16)

and

az(x, y, z, t) = az(x0, y0, z0, t) = az(x0, y0, z0, 0)

+αz t, (17)

where x0, y0 and z0 are the initial position components
and αx , αy and αz are assumed to be constants calcu-
lated as explained now. For a given time t = t f > 0,
the value of the constant αx is calculated using Eq. (15)
itself, because the perturbation ax (x0, y0, z0, t f ) at the
time t = t f and the perturbation ax (x0, y0, z0, 0) at the
time t = 0 are assumed to be known. In the same way,
Eqs. (16) and (17) can be used to calculate the values
of αy and αz , respectively. For brevity and simplicity,
instead of using the notation given by Eqs. (15–17), the
perturbation components are written by following the
notation given by

ax = ax0 + αx t, (18)

ay = ay0 + αyt, (19)

and

az = az0 + αz t, (20)

whereax0 = ax (x0, y0, z0, 0) andαx = 1
t f
[ax (x0, y0,

z0, t f ) − ax (x0, y0, z0, 0)
]
inEq. (18) and analogously

for Eqs. (19) and (19).
If the relations X (x) = 0; Y (y) = 0; Z(z) = 0;

Tx (t) = ax0 + αx t ; Ty(t) = ay0 + αyt ; and Tz(t) =
az0+αz t are put into Eqs. (9)–(11), the components of
the perturbation given by Eqs. (18)–(19) are satisfied.
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Therefore, using these relations, uncoupled Eqs. (12)–
(14) becomes

d3x

dt3
+ 4ω2 dx

dt
− 2ωTy − dTx

dt
= 0, (21)

d3y

dt3
+ 4ω2 dy

dt
+ 2ωTx − dTy

dt
= 0, (22)

and

d2z

dt2
− Tz = 0. (23)

Equations (21)–(22) form a set of uncoupled ordinary
differential equations. The analytical solution for these
equations can be easily obtained, and they are written
as functions of the initial positions and velocities as

x(t) =
sin(2tω)

(
− ay0

2ω + vx0 − αx
4ω2

)

2ω

+
cos(2tω)

(
− ax0

2ω − vy0 + αy

4ω2

)

2ω

+ t
(ay0
2ω

+ αx

4ω2

)
+ ax0

4ω2 + t2αy

4ω
+ vy0

2ω

+ x0 − αy

8ω3 , (24)

y(t) =
cos(2tω)

(
− ay0

2ω + vx0 − αx
4ω2

)

2ω

+
sin(2tω)

(
ax0
2ω + vy0 − αy

4ω2

)

2ω

+ t
( αy

4ω2 − ax0
2ω

)
+ ay0

4ω2 − t2αx

4ω

− vx0

2ω
+ αx

8ω3 + y0, (25)

and

z(t) = t2az0
2

+ t3αz

6
+ tvz0 + z0. (26)

where (x0, y0, z0) = (x(0), y(0), z(0)) and (vx0, vy0, vz0)

= (vx (0), vy(0), vz(0)) are the position and velocity
initial conditions of the motion.

The derivatives with respect to time are the respec-
tive velocity components, and they are written as

vx (t) = cos(2tω)
(
−ay0
2ω

+ vx0 − αx

4ω2

)

− sin(2tω)
(
−ax0
2ω

− vy0 + αy

4ω2

)
+ ay0

2ω

+ tαy

2ω
+ αx

4ω2 , (27)

vy(t) = − sin(2tω)
(
−ay0
2ω

+ vx0 − αx

4ω2

)

+ cos(2tω)
(ax0
2ω

+ vy0 − αy

4ω2

)
− ax0

2ω

− tαx

2ω
+ αy

4ω2 , (28)

and

vz(t) = taz0 + t2αz

2
+ vz0. (29)

2.2 Analytical solution 2: constant perturbation

In a simpler and more direct case, the perturbation a
is a constant vector, calculated at the AEP in the time
t = 0, being ax (x, y, z, t) = ax0, ay(x, y, z, t) = ay0
and az(x, y, z, t) = az0. This is a particular case of the
situation shown in Sect. 2.1, where αx = αy = αz = 0.
Therefore, using these relations, the solutions given by
Eqs. (24)–(29) become

x(t) = 1

2ω

(
− (vy0 + ax0

2ω
) cos(2ωt)

+ (vx0 − ay0
2ω

) sin(2ωt)

+ ay0t + (vy0 + ax0
2ω

) + 2ωx0

)
, (30)

y(t) = 1

2ω

(
(vx0 − ay0

2ω
) cos(2ωt)

+ (vy0 + ax0
2ω

) sin(2ωt)

− ax0t − (vx0 − ay0
2ω

) + 2ωy0

)
, (31)

z(t) = az0t2

2
+ vz0t + z0, (32)

vx (t) = (vy0 + ax0
2ω

) sin(2ωt)

+ (vx0 − ay0
2ω

) cos(2ωt) + ay0
2ω

, (33)

vy(t) = −(vx0 − ay0
2ω

) sin(2ωt)

+ (vy0 + ax0
2ω

) cos(2ωt) − ax0
2ω

, (34)
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and

vz(t) = az0t + vz0. (35)

Now, an explanation is given for the reason why the
condition given by Eq. (4) defines anAEP. In a scenario
with no perturbation (ax0 = ay0 = az0 = 0), suppos-
ing that the initial velocity is given by (vx0, vy0, vz0) =
(0, 0, 0), then, if Eq. (4) is true, the solutions given by
Eqs. (30–35) are rewritten as

x(t) = x0 (36)

y(t) = y0 (37)

z(t) = z0 (38)

vx (t) = 0 (39)

vy(t) = 0 (40)

vz(t) = 0 (41)

Equations (36)–(41) show that if there is no pertur-
bation, the initial velocity is zero and f p is adjusted
such that Eq. (4) is satisfied at least in a single point
(X0,Y0, Z0), then all the components of the acceler-
ations are balanced and the spacecraft would be in a
stationary condition at the AEP. Despite the name, it is
important to note that an AEP is not only a point in the
3D space, because it also requires other variables (or
parameters) implicit in the force function f p to assume
values such that Eq. (4) is satisfied. In this sense, an
AEP is a set of conditions.

A more direct engineering application is found if
the force f p due to the solar radiation pressure over
the solar sail can be controlled such that Eq. (4) is true
along all the path. Therefore, the solutions given by
Eqs. (24)–(29) or (30–35) can describe the motion for
a linearly time dependent or a constant perturbation,
respectively. But, considering an engineering problem,
it is common that the force f p cannot be controlled
during all the time. It means that Eq. (4) cannot be true
along all the path and the solution given by Eqs. (24)–
(29) or (30)–(35) depends on this condition to be valid.
However, suppose that Eq. (4) is satisfied for a sin-
gle point, called AEP. If this AEP is the starting point
of the motion of a spacecraft, then it is expected that,
even if this condition is not satisfied outside the AEP,
Eq. (5) can describe themotion of the spacecraft around
the AEP with some degree of accuracy. The closer
the spacecraft is from the AEP, the higher the accu-
racy.

A similar approximation analysis can be made for
the perturbation. Equations (24)–(29) or (30)–(35) are

valid as solutions of Eqs. (6–7) only if the perturba-
tion is linearly dependent on the time or is a constant
vector. Even if this is not true, with the motion starting
at the AEP, it is expected that the analytical solution
given by Eqs. (24)–(29) or (30)–(35) can describe the
motion originated by Eqs. (6–7) if the perturbation is
approximated accordingly, being constant or linearly
dependent on time.

2.3 Linear analytical solution

Analytical solutions for Eqs. (6–7) strictly valid around
the AEP can also be obtained using a well-known
method presented in this subsection [28]. The sim-
pler case of a constant perturbation is used, but this
method could also be used to search for solutions in
the case of other forms of perturbations. On the other
side, as will be shown later, the method presented
in this subsection is highly expensive. It requires the
evaluation of the eigenvectors of a 6 × 6 matrix and
other expensive steps in order to find the final solu-
tion. Despite the costs, the solution obtained through
the use of this method will be useful in order to be
compared with and to validate the more direct ana-
lytical solutions previously presented. According to
Eq. (3), the equation of motion with no perturbation
is

d2rs
dt2

= −2ω × drs
dt

− ω × (ω × rs)

−μs

r3s
rs − μe

r3e
re + 1

m
f p. (42)

If the velocity components are defined as new vari-
ables, this system of three second-order ordinary dif-
ferential equations can be converted in a system of six
first-order ordinary differential equations as

dX
dt

= F(X), (43)

where X is the vector of the variables and F(X) is the
vector that represents the functions of each respective
component equation, which are functions of the vari-
ables X.

A vector Y is defined as a displacement δX in the
following way: Y = X − XAEP , where XAEP is the
vector X calculated at the AEP. Each component of
the function vector F(X) can be expanded in Taylor
series around the AEP. In this series expansion, if the
terms of the components of Y of order two or more are
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Spacecraft motion around artificial equilibrium points 1479

neglected, as well as crossed terms among the compo-
nents of Y, Eq. (43) is said to be linearized around the
AEP, and the result is written as

dY
dt

= A6×6Y, (44)

where A6×6 is a 6x6 matrix, representing the Jacobian
of the function vector F(X), calculated at the AEP. A
perturbation may be added to Eq. (44) and the result is
written as

dY
dt

= A6×6Y+ pa, (45)

where pa is the vector due to the perturbation of the
system that comes directly from a in Eq. (1). The per-
turbation pa is assumed to be constant for this kind of
solution.

Equation (45) is known as a system of
non-homogeneous coupled linear ordinary differential
equations of first order with constant coefficients. As
said before, this method is expensive; thus, a general
solution for general parameters could not be obtained
due to the large number of terms contained in the eigen-
values ofA6×6.On the other hand, if all the values of the
parameters are explicitly defined, the analytical solu-
tion Y(t) of Eq. (45) is obtained through the use of the
method of combinations of the eigenvectors of A6×6

plus a particular solution of this equation, taking into
account that the initial conditions are given at the AEP
(Y0 = 0).

Linear stability analysis for different explicit pos-
sible forms of f p could be done using A6×6. On the
other side, linear stability analysis of AEP in space
has already been done in the case of a radial propul-
sive acceleration [13] or a general propulsive acceler-
ation [19].

3 Results and analysis

In this section, the results of the solutions are shown for
several more realistic cases, that consider the gravita-
tional perturbations of Jupiter andVenus or just Jupiter.
In order to give an estimation of the accuracy of the
analytical solutions with the assumptions made by the
approximations, numerical simulations of the complete
equation of motion [Eq. (3)] are used for comparison
purposes.

A spacecraft whose parameters and positions vari-
ables are such that the conditions of anAEPare satisfied

Table 1 Values of parameters used in the present paper

R = 1.495978707 1011 m = 1 au

pe = 4.56 10−6 N/m2 [29]

μs = 1.32712440041 1020 m3/s2 [30]

μe = μs/328,900.56 [30]

μ j = μs/1047.3486 [30]

μv = μs/408,523.71 [30]

Table 2 Parameter values of the artificial equilibrium point

A
m = 12 m2/kg

γe = 0.670259715053405 rad

x0 = −1.49152431572918 1011 m

y0 = 0 m

z0 = 1.0595 109 m

near the Lagrangian point L3 of the Sun–Earth sys-
tem is subjected to the perturbation of the gravitational
interaction of Jupiter and Venus in the Epoch Decem-
ber 16, 2016. The equation ofmotion of such spacecraft
is described by Eq. (3). An AEP implies that Eq. (4)
is satisfied. In order to show a more explicit example,
suppose that f p given in Eq. (4) is the force due to the
solar radiation pressure acting over the surface of the
solar sail of a spacecraft and it is given by [29]

f p = 2pe AR2 cos2(γe)

r2s
n, (46)

where R is the Sun–Earth distance, pe is the solar radi-
ation pressure at a distance R from the Sun, A is the
total area of the flat solar sail, n is the vector normal to
the solar sail and γe is the angle between n and rs.

The values of the parameters used for all the calcu-
lations are given in Table 1. If the force due to the solar
radiation pressure is given by Eq. (46), whose param-
eters and variables values are given in Table 2, then
Eq. (4) is satisfied and the spacecraft is located at an
AEP.

At this equilibrium point, Eq. (3) becomes Eq. (5).
For the analytical solution 2, the perturbations of
Jupiter and Venus are considered constant for the inte-
gration time, which is a whole day. This time is very
short compared to the orbital periods of Venus and
Jupiter, so their positions are considered constants for
the analytical solution 2 and also for the linear analyti-
cal solution. In the case of the analytical solution 1, the
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1480 A. K. de Almeida Jr. et al.

Table 3 Values of the positions of Jupiter and Venus [31] in
12/16/2016 in the rotating frame of reference

Coordinate Jupiter Venus

x − 166397914578 54185387000

y − 721781287016 93293222036

z 16846403798 − 4976020886
√
x2 + y2 + z2 740905050316 108002047323

The last line shows the total distance from the Sun. All values
are given in meters

perturbation of Venus and Jupiter is calculated at the
AEP, but it linearly varies with time. Then, the motion
of the spacecraft around the AEP can be determined
by the analytical solutions of the equations of motion,
which are Eqs. (30–35), (24–29) and (45). These solu-
tions are exact solutions at theAEP, but they are approx-
imations outside this point. The accuracy of each kind
of solution is shown, and it is expected to be better
when the spacecraft is positioned near the AEP.

For the examples shown here, the spacecraft under
the gravitational influence of the Sun, Earth, Venus and
Jupiter is positioned at the AEP according to Table 2,
with initial velocities given by vx0 = vy0 = vz0 =
0m/s at the time zero. The evolutions of their respec-
tive motion are determined and compared by the ana-
lytical solution 1 [Eqs. (24–29)], the analytical solu-
tion 2 [Eqs. (30–35)], the analytical solution of the lin-
ear expansion [solution of Eq. (45)] and the numerical
solution integrated via Runge Kutta of fourth order, as
shown in the next figures.

3.1 Case 1: Jupiter and Venus in date of 12/16/16

In this first case, the positions of Venus and Jupiter
relative to the frame of reference are calculated for the
approximated real data [31] in the date of 12/16/16.
These positions at the initial integration time (t = 0)
are given inTable 3. For the analytical solution 2 and the
linear analytical solution, the perturbation is assumed
to be constant and its value is calculated at the initial
conditions (the AEP and t = 0). For the analytical
solution 1, the perturbation is calculated at the AEP at
the time t = 0 and at the AEP at the time t = t f ,
where t f is the final integration time. Thus, two steps
are needed: one to calculate the values of α for each
component of perturbation and another to calculate the
values of the solutions. For the numerical solution, the
positions of Jupiter and Venus are updated for each

Table 4 Case 1—delta function of the components of the posi-
tion and velocity calculated at the time t f = 86,400 s for the
linear analytical solution, the analytical solution 1 and the ana-
lytical solution 2

Linear analytical Analytical sol. 2 Analytical sol. 1

�x −8.0141× 10−0 −8.0136× 10−0 −3.4466× 10−0

�y −1.6452× 10−0 −1.6454× 10−0 5.2743× 10−2

�z 0.4496× 10−0 0.4501× 10−0 0.3955× 10−0

�vx −2.3854× 10−4 −2.3851× 10−4 −7.9772× 10−5

�vy −5.6823× 10−5 −5.6832× 10−5 1.6736× 10−6

�vz 1.1041× 10−5 1.1062× 10−5 9.1654× 10−6

The perturbations are given by Jupiter and Venus with their
respective positions in the date 12/16/2016. The delta function
is the difference between the analytical and the numerical solu-
tions. The units are meters for the differences in positions and
m/s for the differences in velocities

step of the numerical integration, so this solution takes
into account the influence of the motions of Jupiter
and Venus around the Sun into the perturbation of the
system.

There are two sources of errors in the analytical solu-
tions. The first one comes from the displacement of
the spacecraft from the AEP, since the analytical solu-
tions are obtained with the assumption that Eq. (4) is
always true. The second source of error comes from
the acceleration due to the perturbation, since the ana-
lytical solution 2 and the linear analytical solution are
obtained assuming a constant perturbation, while the
analytical solution 1 assumes that this perturbation lin-
early varies with time. In order to know which solution
is better to describe the motion of the spacecraft, the
numerical calculations are made considering the per-
turbation due to the gravitational forces of Jupiter and
Venus and updating their values for each integration
step for the respective position of the spacecraft, as
the solution evolves in time. The updating of the posi-
tion of Jupiter and Venus in time is obtained through
an algorithm given in [31]. Due to this step update,
the numerical solution is closer to reality, among these
models.

In order to give an idea of the differences in the solu-
tions at the end of the integration time, a delta function
is defined as the analytical minus the numerical solu-
tion, for each analytical solution and for each of the
components of the position and velocity as functions of
time, as shown in Eq. (47). Their respective values are
shown in Tables 4, 5, 6 and 7, always calculated at the
final time of the integration interval (t f = 86,400 s).
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Table 5 Case 2—delta function of the components of the posi-
tion and velocity calculated at the time t f = 86,400 s for the
linear analytical solution, the analytical solution 1 and the ana-
lytical solution 2

Linear analytical Analytical sol. 2 Analytical sol. 1

�x −3.3263× 10−0 −3.2793× 10−0 −3.5030× 10−0

�y −1.9969× 10−0 −1.9972× 10−0 4.7333× 10−2

�z 0.3896× 10−0 0.3890× 10−0 0.3994× 10−0

�vx −7.4608× 10−5 −7.2433× 10−5 −7.9996× 10−5

�vy −6.9422× 10−5 −6.9441× 10−5 1.5703× 10−6

�vz 8.8993× 10−6 8.8704× 10−6 9.2303× 10−6

The perturbations are given by Jupiter and Venus ini-
tially positioned at t = 0 in (−740905050316, 0, 0) and
(−108002047323, 0, 0), respectively. The delta function is the
difference between the analytical and the numerical solutions.
The units are meters for the differences in positions and m/s for
the differences in velocities

Table 6 Case 3—delta function of the components of the posi-
tion and velocity calculated at the time t f = 86,400 s for the
linear analytical solution, the analytical solution 1 and the ana-
lytical solution 2

Linear analytical Analytical sol. 2 Analytical sol. 1

�x −3.4025× 10−0 −3.4481× 10−0 −3.4800× 10−0

�y 2.5986× 10−0 2.5989× 10−0 3.8396× 10−2

�z 0.3948× 10−0 0.3949× 10−0 0.3949× 10−0

�vx −7.8135× 10−5 −8.0242× 10−5 −8.1607× 10−5

�vy 9.0268× 10−5 9.0286× 10−5 1.3852× 10−6

�vz 9.1397× 10−6 9.1438× 10−6 9.1433× 10−6

The perturbations are given by Jupiter and Venus ini-
tially positioned at t = 0 in (740905050316, 0, 0) and
(108002047323, 0, 0), respectively. The delta function is the dif-
ference between the analytical and the numerical solutions. The
units are meters for the differences in positions and m/s for the
differences in velocities

�x = (x − x0)
∣∣
analytical − (x − x0)

∣∣
numerical

�vx = vx
∣∣
analytical − vx

∣∣
numerical

�y = (y − y0)
∣∣
analytical − (y − y0)

∣∣
numerical

�vy = vy
∣∣
analytical − vy

∣∣
numerical

�z = (z − z0)
∣∣
analytical − (z − z0)

∣∣
numerical

�vz = vz
∣∣
analytical − vz

∣∣
numerical. (47)

The differences between the values of the positions
as functions of t and their values in the initial condi-
tions are shown in Fig. 2 with the respective values
of �. The values of the components of the velocity

Table 7 Case 4—delta function of the components of the posi-
tion and velocity calculated at the time t f = 86,400 s for the
linear analytical solution, the analytical solution 1 and the ana-
lytical solution 2

Linear analytical Analytical sol. 2 Analytical sol. 1

�x −8.0470× 10−0 −8.0449× 10−0 3.8823× 10−0

�y −1.6990× 10−0 −1.6992× 10−0 3.2995× 10−0

�z 0.4558× 10−0 0.4563× 10−0 0.1840× 10−0

�vx −2.3969× 10−4 −2.3858× 10−4 1.7505× 10−4

�vy −5.8687× 10−5 −5.8697× 10−5 1.1368× 10−4

�vz 1.1255× 10−5 1.1277× 10−5 1.8235× 10−6

The perturbation is given only by Jupiter with its respective posi-
tion in the date 12/16/2016. The delta function is the difference
between the analytical and the numerical solutions. The units are
meters for the differences in positions andm/s for the differences
in velocities

are shown in Fig. 3 also with the respective values of
�. The total components of the perturbation a at the
AEP are ax = 9.1 10−11 m/s2, ay = −2.4 10−7 m/s2

and az = 5.1 10−9 m/s2. The large differences among
these components explain why the motion is larger in
the y axis, as shown in Fig. 2. It can be noted, from
this figure, that the analytical and numerical solutions
apparently diverge faster for x . They are almost iden-
tical for y, and they are slightly divergent for z. It can
also be noted that, as expected, the solutions are almost
coincident for low values of t , starting from a perfect
match at t = 0. The range of the validity of the ana-
lytical solutions depends on the accuracy required. For
the example shown in Fig. 2, the major difference is in
the x component. In the worst case of the x-axis, the
errors (differences between analytical and numerical
solutions) are below 0.2m in position and 10−4 m/s
in velocity in the first 20,000 s, which is more than
5h. This means a result good enough to consider that
the analytical equations are useful, even if Eq. (4) is
true only in a single point, which is the starting point
of the motion. Figure 2 also shows that the analytical
solution 2 and the linear solution are almost coincident
with each other and the analytical solution 1 approxi-
mates the numerical solution more than the other two
options. The solution is better when the curve that rep-
resents � shown in the right side of Figs. 2 and 3is
closer to zero. The comparisons among the curves in
these figures also indicates that, for the x coordinate,
approximately almost half of the error of the analytical
solution 2 and the linear solution is due to the assump-

123



1482 A. K. de Almeida Jr. et al.

Fig. 2 Case 1—components of the differences between the posi-
tion and the initial position are shown in the three figures of the
left side as functions of time evaluated numerically (red), ana-
lytically via solution 1 (blue), analytically via solution 2 (green)
and analytically via linearized equations of motion (black). The
functions � defined in Eq. (47) are shown in the figures of the

right side for the components of the position. At the time t = 0,
the spacecraft is located at the AEP given in Table 2 with veloc-
ities vx0 = vy0 = vz0 = 0m/s. The motion of the perturbing
planets Jupiter andVenus around the Sun is calculated using [31].
Note that overlays of the curves may arise hiding firstly the red
one in the figures of the left side. (Color figure online)
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Fig. 3 Case 1—components of the velocity are shown in the
three figures of the left side as functions of time evaluated numer-
ically (red), analytically via solution 1 (blue), analytically via
solution 2 (green) and analytically via linearized equations of
motion (black). The functions � defined in Eq. (47) are shown
in the figures of the right side for the components of the velocity.

At the time t = 0, the spacecraft is located at the AEP given in
Table 2 with velocities vx0 = vy0 = vz0 = 0m/s. The motion
of the perturbing planets Jupiter and Venus around the Sun is
calculated using [31]. Note that overlays of the curves may arise
hiding firstly the red one in the figures of the left side. (Color
figure online)
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Fig. 4 Case 2—components of the differences between the posi-
tion and the initial position are shown in the three figures of the
left side as functions of time evaluated numerically (red), ana-
lytically via solution 1 (blue), analytically via solution 2 (green)
and analytically via linearized equations of motion (black). The
functions � defined in Eq. (47) are shown in the figures of
the right side for the components of the position. At the time

t = 0, the spacecraft is located at the AEP given in Table 2
with velocities vx0 = vy0 = vz0 = 0m/s. Jupiter and Venus
are initially positioned at the nearest position to the spacecraft
at (−740905050316, 0, 0) and (−108002047323, 0, 0), respec-
tively. Note that overlays of the curves may arise hiding firstly
the red one in the figures of the left side. (Color figure online)
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Fig. 5 Case 3—components of the differences between the posi-
tion and the initial position are shown in the three figures of the
left side as functions of time evaluated numerically (red), ana-
lytically via solution 1 (blue), analytically via solution 2 (green)
and analytically via linearized equations of motion (black). The
functions � defined in Eq. (47) are shown in the figures of
the right side for the components of the position. At the time

t = 0, the spacecraft is located at the AEP given in Table 2 with
velocities vx0 = vy0 = vz0 = 0m/s. The position of Jupiter
and Venus at t = 0 is (x, y, z) = (740905050316, 0, 0) and
(x, y, z) = (108002047323, 0, 0), respectively. Note that over-
lays of the curvesmay arise hiding firstly the red one in the figures
of the left side. (Color figure online)
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Fig. 6 Case 4—components of the differences between the posi-
tion and the initial position are shown in the three figures of the
left side as functions of time evaluated numerically (red), ana-
lytically via solution 1 (blue), analytically via solution 2 (green)
and analytically via linearized equations of motion (black). The
functions � defined in Eq. (47) are shown in the figures of the

right side for the components of the position. At the time t = 0,
the spacecraft is located at the AEP given in Table 2 with veloci-
ties vx0 = vy0 = vz0 = 0m/s. The perturbation is given by only
the gravitational force of Jupiter calculated using [31]. Note that
overlays of the curves may arise hiding firstly the red one in the
figures of the left side. (Color figure online)
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tion that the perturbations from Venus and Jupiter over
the spacecraft are constants.

Table 4 indicates that the delta of the analytical
solution 1 is the function that tends to get closer to
zero, which means that this is the solution closer to the
numerical solution, for the given perturbation.

3.2 Case 2: Jupiter and Venus at (−RJ , 0, 0) and
(−RV , 0, 0), respectively

In order to continue the analysis of the influence of
the perturbations over the differences between the four
kinds of analytical and numerical solutions for more
situations, Jupiter is set to be in the nearest position of
the spacecraft (located near L3) in the initial position in
the frame of reference (x, y, z) = (−RJ , 0, 0). Venus
is also set to be in the nearest position of the space-
craft, so its positions is (x, y, z) = (−RV , 0, 0), where
RJ and RV are the distance of these planets from the
Sun at 12/16/16. The values of RJ and RV are given
by

√
x2 + y2 + z2 in Table 3, for each planet. Their

motion is assumed to be circular around the Sun with
the constant angular velocity given by

√
μs/R3

J−w for

Jupiter and
√

μs/R3
V −w for Venus during the interval

of integration time, which is a day (t f = 86,400 s).
The results are shown in Fig. 4 and Table 5 as the dif-
ference in the positions as functions of time and the �

functions.

3.3 Case 3: Jupiter and Venus at (RJ , 0, 0) and
(RV , 0, 0), respectively

The same analysis can be made by changing the posi-
tion of Jupiter in the frame of reference to (x, y, z) =
(RJ , 0, 0) = (740905050316, 0, 0) and Venus to
(x, y, z) = (RV , 0, 0) = (108002047323, 0, 0). Their
motions around the Sun are also assumed to be circular
with constant angular velocity during the integration
time. The results are shown in Fig. 5 and Table 6 as the
difference in the positions as functions of time and the
� functions.

3.4 Case 4: Jupiter only

In order to analyze the behavior of the analytical solu-
tions for a gravitational perturbation caused by only a

single planet, the same results obtained before with the
perturbations coming from Jupiter andVenus (Figs. 2, 3
and Table 4) are shown neglecting the Venus gravita-
tional influence over the spacecraft. Thismeans that the
perturbation is caused only by the gravitational influ-
ence of Jupiter. The results are shown in Fig. 6 and in
Table 7.

4 Conclusions

Three kinds of solutions were developed analytically
with the objective to describe the motion of a space-
craft around an AEP. The three solutions are analytical
1 [Eqs. (24–29)], analytical 2 [Eqs. (30–35)] and the
linear analytical [given by the solution of Eq. (45)]. All
of them can describe the motion around the AEP.

The numerical solution is the closest to the reality
among the solutions, because it does not use approx-
imations for the condition given by Eq. 4 outside the
AEP and the values of the perturbations are updated in
each small step of the integration time. This means that
the definitions given by Eq. (47) for the delta functions
allow them to describe the error associated with each
one of the analytical solutions found in this research.
Of course, this error decreases with the decreasing time
and it tends to zero for shorter integration times. Thus,
all the solutions are able to describe the motion of the
spacecraft around the AEP with some degree of accu-
racy, which also means that an error is associated with
each one of the analytical solutions outside the AEP. In
this research, these errors are estimated for some cases,
allowing the reader to analyze the behavior of the error
when the system is evolved for a day.

Tables 4, 5, 6 and 7 show that themaximum absolute
values of the delta function are of the order of 1 m
for the components of the position and of the order
of 10−4 m/s for the components of the velocity, if the
systems are propagated for a whole day. This means
that a day of integration time can associate any of the
solutions obtained in this researchwith errors that could
fit in the design of some spacecraft missions.

The analytical solution 2 and the linear analytical
solution are always practically coincident for all the
positions of Jupiter and Venus used in Sect. 3, as shown
inFigs. 2, 3, 4, 5 and 6 andTables 4, 5, 6 and 7. This is an
expected result, since both of them consider the pertur-
bation as a constant of motion. On the other hand, both
solutions are obtained through two completely different
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methods. Linear analytical solutions require very com-
plex steps, inwhich the final solutionY(t) is only found
if the parameters are explicit, while analytical solution
2 takes the advantage of a general solution obtained in
a closed form for all values of the parameters.

Tables 4, 5, 6 and 7 show that the absolute val-
ues of the delta function for analytical solution 1 are
the one among all analytical solutions that tends to be
closer to zero, but there are some exceptions. For the
first case, shown in Sect. 3.1, the absolute values of
the delta functions for analytical solution 1 are smaller
than both linear analytical and analytical solution 2 for
every position and velocity components. For the sec-
ond case, shown in Sect. 3.2, Table 5 shows that the
absolute values of the delta function are slightly larger
for the analytical solution 1 than others, both for x and z
axis components, but all these errors are small if com-
pared to the respective axis displacement. The errors
are about 0.5% of the displacement for x and about
2% for z position components. Otherwise, an analysis
in the y position components shows that the error is
larger for the analytical solution 2 and the linear ana-
lytical solution. These errors are larger if compared to
the displacement, about 25% of the displacement for
the analytical solution 2 and for the linear analytical
solution. On the other hand, the comparative error for
the analytical solution 1 shows that the error is only
about 0.05% of the displacement in y position compo-
nents. This fact indicates that, for this case, analytical
solution 1 is the best choice. For the third case, shown
in Sect. 3.3, an analysis of Table 6 shows quite simi-
lar results compared to the second case, except that all
the solutions show significant errors for the z position
component. The error is about 33% in the displace-
ment, but the z displacement is much smaller for this
case than for the other two situations shown before. For
the fourth case, shown in Sect. 3.4, Table 7 shows that
the absolute values of the delta function for analytical
solution 88 is smaller for x and z components posi-
tion and it is larger for y component position. For the
linear analytical solution and analytical solution 2, the
errors are: about 26% of the displacement for x coordi-
nate, about 0.17% of the displacement for y coordinate
and about 2.3% of the displacement for z coordinate.
This same table shows that the errors for the analytical
solution 88 are about 12.6% of the displacement for
x coordinate, about 0.33% of the displacement for y
coordinate and about 0.9% of the displacement for z
coordinate. Again, when the relative error is large, the

analytical solution 1 is much better than the other two
analytical solutions. All these results can be also ana-
lyzed through Figs. 2, 3, 4, 5 and 6, because they show
the differences between the analytical solutions for all
the interval of the integration, not only in the final time.
Thus, the conclusion is that the errors of the analytical
solution 1 tend to be smaller than the errors of the ana-
lytical solution 2, which in turn are quite similar to the
errors of the linear analytical solution.

If Eq. (4) is satisfied along all the path, then analyt-
ical solutions 1 and 2 are exact ones for their respec-
tive given perturbations. Moreover, all kinds of analyt-
ical solutions presented in this paper can be considered
as approximated ones in more realistic cases, where
Eq. (4) is satisfied only in the initial conditions of the
motion and the perturbations are approximated as con-
stants or linearly dependent on time. In thesemore real-
istic cases, the numerical solution is closer to reality.
On the other hand, for the numerical calculations, more
than a million operations are needed in order to reach
the results, while the analytical calculations could be
made for any timewith less than a thousand operations.
An analytical solution can be useful formany purposes,
including to lower time computation costs or analytical
calculations of station-keeping costs, trajectories.
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