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SHORT COMMUNICATION

Drought‑induced proline synthesis depends on root‑to‑shoot 
communication mediated by light perception
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Abstract
Proline accumulation in roots and shoots is one of the most evident responses to environmental stresses such as drought, 
which is currently one of the main threats for agriculture. Based on this response, in this work, we hypothesize that proline 
accumulation is dependent on root-to-shoot communication through light perception. Thus, we used exaggerated light 
response (hp1) and phytochrome-deficient (au) mutants of tomato, which were combined through self-grafting and reciprocal 
grafting and subjected to drought stress, for posterior determination of shoot and root growth and proline content. Light-
affected proline metabolism, as hp1, had the highest accumulation, while au presented the lowest proline values. Recipro-
cal grafting showed that hp1 and MT as scion or rootstock improved MT and au proline content, respectively, indicating 
shoot-to-root and root-to-shoot communication modulate the metabolism of this compatible osmolyte. Dry weight, leaf area, 
and root area presented similar patterns to proline content, indicating the importance of this compound for plant growth 
under stress conditions. These results provide a new perspective on light mediation of long-distance proline translocation 
in stressed plants.
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Introduction

One of the main strategies for drought tolerance in plants 
is the production of compatible osmolytes, such as free 
proline, an amino acid that benefits plants by maintaining 
ideal osmotic conditions and as a non-enzymatic antioxi-
dant agent (Rejeb et al. 2014; Fillipou et al. 2014). Proline 
synthesis and accumulation are regulated by several envi-
ronmental factors, including light (Dong et al. 2014; Fich-
man et al. 2015; Feng et al. 2016). However, the underlying 
mechanisms of proline biosynthesis mediated by light are 
still poorly understood, especially under drought stress. An 
alternative to further comprehension of these pathways is the 
use of photomorphogenic mutants, which allows the study 

of phytochromes and their involvement in light perception 
and signaling in plants (Kendrick et al. 1997).

As leaves are considered the main site for proline syn-
thesis (Bojórquez-Quintal et al. 2014), it is speculated that 
this amino acid can be transported from shoots to roots for 
osmotic regulation, growth, and other functions (Girousse 
et al. 1996; Sharma and Dietz 2006; Bundig et al. 2016). 
Nevertheless, it is still unclear how light perception by 
shoots really influences root proline homeostasis, which sup-
ports root growth under stress conditions and, consequently, 
water and nutrient uptake (Bundig et al. 2016). For this pur-
pose, this work was carried out with grafted photomorpho-
genic tomato mutants to elucidate the relationship between 
shoots and roots on drought-induced proline accumulation.

Materials and methods

Seeds of tomato (Solanum lycopersicum L.) mutants aurea 
or au (phytochrome-deficient) (Muramoto et al. 2005) and 
high pigment 1 or hp1, with enhanced responses to light 
(Liu et al. 2004), as well as its near isogenic line cv Micro-
Tom (MT) were germinated in plastic trays containing a 
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mixture of 1:1 (by volume) commercial pot mix (BioPlant, 
Brazil) and vermiculite. Fifteen days after sowing, seedlings 
were transferred to pots filled with the same sowing mix-
ture. Grafting was then performed with the splice method 
combining MT, au and hp1 in self- and reciprocal grafting 
combinations (MT/MT, au/au, hp1/hp1, MT/au, au/MT, 
MT/hp1, and hp1/MT) with the first genotype indicating 
the scion and the second the rootstock. Grafted plants were 
immediately placed in a moist chamber and remained there 
during 15 days (i.e until complete healing of the grafting 
region). After this period, they were transferred to a green-
house with average mean temperature of 23.2 °C and relative 
humidity of 77%. All plants were watered daily for 1 week, 
maintaining the maximum holding capacity of the substrate, 
and then, irrigation was suspended for some of the pots, 
while daily watering was continued for the control plants for 
another 7 days. After this period under the respective growth 
conditions, well-watered and drought-stressed plants were 
harvested for analysis.

Leaf area was measured using an Image Analysis System 
(Delta-T Devices, Cambridge, UK), whereas root area was 
measured using a Hewlett Packard 125C scanner, and then, 
the image of each plant was analyzed by the Delta-T Scan 
software. After this, they were oven-dried at 60 °C for 72 h. 
Plant dry weight was determined using an analytical balance 
(Denver Instrument Company AA-200).

Free proline content was determined according to Bates 
et al. (1973). Root and shoot samples (0.5 g) from each 
group were homogenized in 3% (w/v) sulfosalicylic acid 

and the homogenate filtered through filter paper. After the 
addition of ninhydrin and glacial acetic acid, the resulting 
mixture was heated at 100 °C for 1 h in a water bath. The 
reaction was then interrupted by immersing the tubes in an 
ice bath. The mixture was extracted with 4 mL of toluene, 
and the absorbance of the solution was read at 520 nm in 
a spectrophotometer. The results were expressed as µmol 
proline g−1 FW.

The experimental design was completely randomized, 
with three replicates in a 7 × 2 factorial scheme represent-
ing seven combinations of grafting and two conditions (well-
watered and drought stress). Data were subjected to analy-
sis of variance (ANOVA), and means were compared using 
Tukey’s HSD test (at p ≤ 0.05).

Results and discussion

When well-watered, all self-grafted plants (MT/MT, au/au, 
and hp1/hp1) exhibited similar proline accumulations in 
shoots and roots. Furthermore, we observed that scion pro-
line content in well-watered conditions was not affected by 
different rootstocks when compared to the respective scion 
genotypes of self-grafted plants (Fig. 1a). Nevertheless, MT 
scions showed higher proline accumulation when grafted 
onto hp1 than onto au rootstock (Fig. 1a). After water stress 
exposure, there was an evident increase of shoot and root 
proline contents, evidencing higher and lower enhance-
ment in self-grafted hp1/hp1 and au/au, respectively, when 

Fig. 1   Proline content in 
shoots (a) and roots (b) of 
grafted photomorphogenic 
tomato mutants grown in 
well-hydrated or drought-
stressed condition. The same 
lowercase letter within hydric 
conditions and the same capital 
letter within grafting schemes 
do not significantly differ from 
each other by Tukey’s HSD test 
(p < 0.05)
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compared to MT/MT (Fig. 1a), indicating the importance 
of light signaling for proline accumulation during drought 
stress. Indeed, it is known that light influences proline levels 
through positive regulation of ∆1-pyrroline-5-carboxylate 
synthase (P5CS), a key enzyme of the proline biosynthesis 
pathway (Ábrahám et al. 2003), and also inhibits proline 
dehydrogenase (PDH), which catalyzes proline degrada-
tion (Feng et al. 2016). Therefore, the exaggerated light 
response in hp1 and deficient light perception in au, specifi-
cally through the phytochromes, could explain their greater 
and lower respective accumulations of proline under water 
deprivation. However, the physiological and biochemi-
cal pathways through which au and hp1 can affect proline 
metabolism seem to be complex. For example, it has been 
reported that au has higher antioxidant enzyme activity 
under drought stress (Alves et al. 2016), which may be a 
necessity due to lower proline accumulation. Monteiro et al. 
(2012) also reported that hp1 has higher transpiration even 
outside of stressful conditions, a condition in which higher 
proline content could be helpful against excessive water loss.

Furthermore, MT grafted onto au resulted in higher pro-
line content in the latter genotype when compared to self-
grafted au/au (Fig. 1b). In addition, when hp1 was used as 
scion, it improved proline accumulation in MT rootstock. 
On the other hand, the MT and au scions reduced proline 
contents in hp1 and MT rootstocks, respectively. Together, 
these results indicate a positive light-dependent shoot-to-
root communication regarding proline accumulation, pos-
sibly due to long-distance transport of this amino acid. 
Rootstock also had a noticeable influence on scion proline, 
indicating that root-to-shoot communication may also occur 
during drought stress modulation of proline biosynthesis.

To evaluate how the differential proline accumula-
tion due to signaling between root and shoot affected 
plant growth, we assessed leaf and root area, which are 
important descriptive traits of drought tolerance (Comas 
et al. 2013; Scoffoni et al. 2014). Considering self-grafted 
plants, both MT/MT and hp1/hp1 had similar leaf areas, 
while au/au exhibited smaller leaves under well-watered 
condition; nevertheless, grafting with hp1 and au mutants 
did not affect MT scion leaf area (Fig. 2a). In the same con-
dition, MT/MT presented the largest root area, followed 
by hp1/hp1 and au/au, among self-grafted plants (Fig. 2b). 
Furthermore, MT root area was positively affected by the 
hp1 scion; likewise, the MT scion increased the root areas 
of au and hp1. Evidently, irrigation withholding resulted 
in smaller leaves in almost all treatments (Fig. 2a). Fur-
thermore, unlike in control conditions, hp1/hp1 exhib-
ited the largest root area under water-limiting conditions 

among self-grafted plants, followed by MT/MT and au/au 
(Fig. 2b). A smaller root area was observed when the au 
scion was grafted onto MT rootstock, while the hp1 scion 
improved MT root growth compared to the self-grafted 
value. Although the hp1 root system was not affected by 
the MT scion, MT in turn when employed in the MT/au 
combination improved the au root system. Interestingly, 
these results were similar to the proline content observa-
tions. As a compatible osmolyte, proline can reduce cell 
osmotic potential under water deficit and help to preserve 
turgor, a key factor for cell growth and enlargement (Chen 
et al. 2015) and consequently for leaf and root expansion.

Shoot dry weight, among self-grafted plants, exhibited 
the same pattern as leaf area, meaning that MT/MT and 
hp1/hp1 displayed higher values than au/au, under both 
well-watered and drought conditions (Fig. 2c). Despite 
this clear difference between self-grafted plants, there 
was no distinction in the reciprocal-grafted ones in the 
absence of stress (Fig. 2d). Regarding root dry weight 
(Fig. 2d), in control conditions, there was no difference 
between grafted plants. On the other hand, water depriva-
tion impaired dry mass accumulation of roots in almost 
all plants. All self-grafted plants showed a similar root 
dry weight. Nevertheless, although MT root dry weight 
was not affected by the scion, it showed enhanced au root 
growth after drought stress exposure. Drought stress also 
modified shoot dry weight responses; although the au root-
stock did not influence shoot dry weight accumulation in 
MT, the hp1 rootstock improved this parameter in the MT 
scion. In addition, when used as rootstock, MT increased 
the shoot dry weight of the au scion under drought stress. 
These data reinforce our evidence of root-to-shoot and 
shoot-to-root communication on proline biosynthesis, 
considering that this amino acid helps drought-stressed 
plants to accumulate dry weight through stabilization of 
several metabolic processes (Rejeb et al. 2014). However, 
all treatments exhibited a reduction in shoot dry weight, 
except au/MT, suggesting that enhanced proline levels are 
not sufficient to provide drought tolerance.

In this work, we found that the enhanced response to 
light in hp1 induced higher proline accumulation in both 
shoot and root in hp1/hp1 self-grafted plants in compari-
son with MT/MT. Furthermore, self-grafted plants of au, 
deficient in phytochrome chromophores (and consequently 
with impaired phytochrome function), exhibited lower 
proline content overall. Together, these results illustrate 
the importance of phytochrome-mediated light perception 
for proline biosynthesis. In addition, our results provide 
insights into both shoot-to-root and root-to-shoot signaling 
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Fig. 2   Leaf and root area (a, b, respectively) and shoot and root 
dry weight (c, d, respectively) of grafted photomorphogenic tomato 
mutants  grown in well-hydrated  or drought-stressed  condition. The 

same lowercase letter within hydric conditions and the same capital 
letter within grafting schemes do not significantly differ from each 
other by Tukey’s HSD test (p < 0.05)
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in light-controlled proline biosynthesis under water stress 
and show that the amplification of light signaling could 
favor adaptation to drought events.
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