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Abstract Environmental contamination caused by
leakage of fuels and lubricant oils at gas stations is of
great concern due to the presence of carcinogenic com-
pounds in the composition of gasoline, diesel, and min-
eral lubricant oils. Chromatographic methods or non-
selective infrared methods are usually used to assess soil
contamination, which makes environmental monitoring
costly or not appropriate. In this perspective, the present
work proposes a methodology to identify the type of
contaminant (gasoline, diesel, or lubricant oil) and, sub-
sequently, to quantify the contaminant concentration
using attenuated total reflection Fourier transform infra-
red (ATR-FTIR) spectroscopy and multivariate
methods. Firstly, gasoline, diesel, and lubricating oil
samples were acquired from gas stations and analyzed
by gas chromatography to determine the total petroleum
hydrocarbon (TPH) fractions (gasoline range organics,
diesel range organics, and oil range organics). Then,
solutions of these contaminants in hexane were prepared
in the concentration range of about 5–10,000 mg kg−1.
The infrared spectra of the solutions were obtained and
used for the development of the pattern recognition
model and the calibration models. The partial least
square discriminant analysis (PLS-DA) model could
correctly classify 100% of the samples of each type of
contaminant and presented selectivity equal to 1.00,

which provides a suitable method for the identification
of the source of contamination. The PLS regression
models were developed using multivariate filters, such
as orthogonal signal correction (OSC) and general least
square weighting (GLSW), and selection variable by
genetic algorithm (GA). The validation of the models
resulted in correlation coefficients above 0.96 and root-
mean-square error of prediction values below the max-
imum permissible contamination limit (1000 mg kg−1).
The methodology was validated through the addition of
fuels and lubricating oil in soil samples and quantifica-
tion of the TPH fractions through the developed models
after the extraction of the analytes by the EPA 3550
method adapted by the authors. The recovery percentage
of the analytes was within the acceptance limits of
ASTM D7678 (70–130%), except for one sample
(69% of recovery). Therefore, the methodology pro-
posed here provides faster and less costly analyses than
the chromatographic methods and it is adequate for the
environmental monitoring of soil contamination by gas
stations.

Keywords Soil contamination . Fuel leakage . Infrared
spectroscopy. Partial least square . Genetic algorithm .

Multivariate filters

Introduction

Despite the development of technologies for the use of
renewable fuels, today’s society is still highly dependent
on petroleum-derived fuels (BP 2016). Due to the
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dangerous nature of these fuels to the environment and
health, the Environmental Company of the State of São
Paulo (Cetesb), in Brazil, configures the gas stations as
risky establishments. Although gasoline and diesel fuel
are mainly composed of saturated hydrocarbons, they
pose a high risk to human health, since the concentration
of aromatic hydrocarbons, substances with carcinogenic
properties, can reach up to 35% of the gasoline volume
and 11% of the diesel volume (Todd et al. 1999; Y.
Wang et al. 2016). According to Cetesb reports, gas
stations are the main responsible for environmental con-
tamination in the state of São Paulo, representing ap-
proximately 74% of the 5376 contaminated areas regis-
tered by the company (COMPANHIA AMBIENTAL
DO ESTADO DE SÃO PAULO 2016a).

In view of the environmental risk, gas station licens-
ing depends on the environmental analysis to verify fuel
contamination in soil and groundwater. The verification
is performed by the analysis of total petroleum hydro-
carbons (TPH), in which the concentration cannot ex-
ceed 1000 mg kg−1 in the soil and 600 μg L−1 in the
groundwater according to Brazilian regulatory
(COMPANHIA AMBIENTAL DO ESTADO DE
SÃO PAULO 2016b). Given the high complexity of
petroleum product composition, TPH are divided into
fractions according to the number of carbons in chain.
Hydrocarbons containing 6 to 10 atoms of carbon are
attributed to the gasoline range organics (GRO), 10 to
28 carbons to the diesel range organics (DRO), and up to
28 carbons to the oil range organics (ORO) (US
ENVIRONMENTAL PROTECTION AGENCY
2007a).

Conventionally, TPH analysis is performed by gas
chromatography (GC) or mid-infrared (MIR) spectros-
copy. For methods based onMIR, TPH is defined as any
substance extractable by a solvent, which is not re-
moved by the cleanup step and can be detected by
MIR at specified wavelengths (Weisman 1998). Al-
though the conventional MIR methods provide rapid,
precise, and adequate screening information, they do not
provide information of the contaminant type that is
present in the environmental matrix, which may be
crucial to identify the source of leakage and perform a
rapid correction.

The first established MIR method for TPH analysis
was the Environmental Protection Agency (EPA) meth-
od 418.1, in which the quantification of hydrocarbons is
based on the wavenumber of the carbon-hydrogen bond
o f t h e C H 3 g r o u p ( 2 9 5 0 c m − 1 ) ( U S

ENVIRONMENTAL PROTECTION AGENCY
1978). Later, the EPA removed the method because of
the environmental risks of Freon or tetrachloromethane
used as extraction solvent; however, the method was
used for a long time in some countries (Schwartz et al.
2012). The EPAmethod 418.1 was adapted to the meth-
od 8440, in which the hydrocarbons are extracted by
supercritical carbon dioxide in solid samples; however,
it is a time-consuming and non-selective method and,
moreover, is not applicable for volatile petroleum frac-
tions such as gasoline (US ENVIRONMENTAL
PROTECTION AGENCY 1996a). As an alternative,
the ASTM (American Society for Testing andMaterials)
developed a similar method for determination of TPH in
water using cyclohexane as solvent (ASTMD7678), but
the method is also not specific (AMERICAN SOCIETY
FORTESTING ANDMATERIALS 2011). The limita-
tion of these methods lies in the univariate modeling
based only on the wavenumber related to the stretching
of the CH3 group (EPA methods) or angular deforma-
tion of the CH2 group (ASTM method).

In recent years, several studies have shown the pos-
sibility of measuring soil contaminants through multi-
variate analysis of fingerprints in visible-near (vis-NIR,
27,778–12,821–4000 cm−1) and mid (MIR, 4000–
400 cm−1) infrared ranges (Horta et al. 2015;
Okparanma and Mouazen 2013; Vershinin and Petrov
2016; Webster et al. 2016; Workman and Weyer 2007).
The diffuse reflectance spectroscopy has been widely
used to estimate soil properties, such as total carbon,
sand and clay contents, pH, and total nitrogen, due to the
lack of sample preparation, rapid analysis, and portabil-
ity provided by the technique. However, recent studies
showed a low accuracy for TPH analysis using MIR
diffuse reflectance due to the granulometric differences
between soil types, particle aggregates, and heteroge-
neous distribution of TPH in the sample (S. Forrester
et al. 2010; S. T. Forrester et al. 2013; Webster et al.
2016).

One way to improve the accuracy of the TPH quan-
tification is to bypass the soil interferences through
extraction of the analytes with a solvent, as is done in
EPA method 418.1 and ASTM D7678. Unlike these
methods based on univariate calibration, multivariate
analysis of MIR spectra allows the use of several sol-
vents for extraction since the contaminant quantification
is based on fingerprint analysis. Although sample prep-
aration makes the method laborious and time-consum-
ing, the use of attenuated total reflection Fourier
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transform infrared (ATR-FTIR) spectroscopy provides a
fast analysis (less than 1 min per sample) with a small
volume of sample (1 mL or less) (Pejcic et al. 2013).
Thus, the improvement in method accuracy will com-
pensate the sample preparation step if the extraction
method is adequate. Vershinin and Petrov, 2016, dem-
onstrated that ATR-FTIR allows a fast and accurate
analysis for the determination of hydrocarbon mixture
in residual water; however, the authors used tetrachlo-
romethane as the extraction solvent.

Pattern recognition methods associated with FTIR
spectroscopy have been extensively used in several
areas, including for fuel classification (Ballabio and
Consonni 2013; Da Silva et al. 2014; Worley et al.
2013); however, the identification of fuel or lubricating
oil type present in the environmental media has not yet
been explored by these methods. Although gasoline,
diesel, and lubricating oil are mainly hydrocarbons,
these products have different spectra in the infrared
region due to different carbon chains and additive in
composition. The spectral characteristics of each prod-
uct allow the identification of the origin of the contam-
ination in the environmental media using methods such
as partial least square discriminant analysis (PLS-DA).

If the contaminant is identified by a classification
method, the quantification can be performed by a mul-
tivariate calibration method such as partial least square
(PLS) developed specifically for the type of contami-
nant. Although PLS models are very useful to resolve
various calibration problems, the predictive ability of
the model is highly influenced by the background inter-
ferences and spectrum noise (Bosch-Reig et al. 2017;
Zhang et al. 2009). To reduce the instrumental and
matrix influences, calibration data are often
preprocessed prior to data analysis. The baseline shifting
is usually corrected by applying the first or second
derivative, or by polynomials that correct the displace-
ment based on a standard spectrum (Burns and Ciurczak
2009; Gemperline 2006). When the analytes are present
in a similar solvent, e.g., gasoline solubilized in hexane,
the selectivity of the method is compromised by the
overlap of the bands inherent to the analyte by the
solvent bands. Nonetheless, the selectivity can be im-
proved using multivariate filters, such as orthogonal
signal correction (OSC), generalized least square
weighting (GLSW), and external parameter orthogonal-
ization (EPO), to remove signals from background and
interferences through identification of some unwanted
covariance structure (Eigenvector Research 2013; Laghi

et al. 2011; Roudier et al. 2017; Zhang et al. 2009).
These multivariate filters use samples with similar Y-
block (concentration of analyte) values to identify the
sources of variance in the X-block (spectra) to down-
weight and generate a multivariate regression with more
captured variance in the Y-block and, usually, using less
latent variables (Eigenvector Research 2013; Wold et al.
1998). Another way to improve the selectivity and,
consequently, the predictive ability of the chemometric
model is by the selection of variables (Vohland et al.
2014). The removal of variables, in which the noise
dominates over the information related to the analyte,
often leads to better accuracy and performance of the
analytical method and it is a technique widely accepted
(Mehmood et al. 2012; Xiaobo et al. 2010). The selec-
tion of variables can be performed based on the spectral
knowledge (manual approach) or through algorithms
that seek to minimize the prediction error of the model
such as genetic algorithm (GA). This algorithm is a
popular heuristic optimization technique that employs
a probabilistic, non-local search process that manipu-
lates binary strings (chromosomes) with the coded ex-
perimental variables (genes) (Xiaobo et al. 2010). Mix-
tures with almost identical spectra have been success-
fully calibrated using GA in addition to the better un-
derstanding of the chemical system provided by the
algorithm (Vohland et al. 2014; L. Wang et al. 2015;
Xiaobo et al. 2010).

Considering the large number of contaminations in
the environment caused by fuel leaks in gas stations, this
study aimed to develop an analytical method to identify
the type of contaminant present in environmental media
and quantify the TPH fractions (GRO, DRO, and ORO)
using ATR-FTIR spectroscopy associated with PLS-DA
for identification and GA-PLS for quantification. The
extraction of the contaminants and the preparation of the
calibration samples were carried out using non-
halogenated solvent and seeking to make the analytical
method simple and practical for a rapid assessment of
soil contaminated by petroleum-based fuels and
lubricants.

Materials and methods

Fuel and lubricant oil samples

The fuel samples were collected at gas stations located
in the state of São Paulo, Brazil. The samples collected
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were: one common-type gasoline (without additives),
one additive-type gasoline, one S10 diesel fuel, and one
S500 diesel fuel. Besides the fuel samples, two samples
of lubricant oil for light vehicles were purchased: one
mineral oil with SAE 50 viscosity grade and one semi-
synthetic oil with SAE 15W50 viscosity grade.

The collected samples were analyzed by gas chroma-
tography to quantify the GRO and DRO fractions and
subtract the biofuel content present in the samples. In
Brazil, the addition of biofuels in gasoline and diesel is
mandatory and the concentration of biofuels varies ac-
cording to Brazilian legislation. Currently, the anhy-
drous ethanol must be present in gasoline at 27% (v/v)
and biodiesel in diesel at 8% (v/v). The analysis was
performed by a gas chromatograph with flame ioniza-
tion detector (GC-FID), model Trace GC Ultra (Thermo
Fisher Scientific), equipped with split/splitless injector
and Triplus autosampler. The separation of GRO com-
pounds was performed according to ASTM D5769
(AMERICAN SOCIETY FOR TESTING AND
MATERIALS 2015) using a Thermo Scientific TR-1
capillary column of dimensions 60 m × 0.25 mm i.d.
and 1.0 μm of s ta t ionary phase th ickness
(dimethylpolysiloxane). The DRO compounds were
separated by an Agilent HP-1 capillary column
(100 m × 0.25 mm× 0.5 μm) using a chromatographic
method adapted from ASTM D6209 (AMERICAN
SOCIETY FOR TESTING AND MATERIALS 2013).
The quantification of the GRO and DRO fractions was
performed by external calibration according to the EPA
8015C method and the retention times were determined
using the certified reference materials GRO Mix
(Supelco) and TPH Mix (RTC).

Solution preparation

Hexane was chosen as the extraction solvent because of
its high affinity with nonpolar compounds and lower
toxicity relative to the halogenated solvents used in EPA
3 5 1 0 , 3 5 4 0 , a n d 3 5 5 0 m e t h o d s ( U S
ENVIRONMENTAL PROTECTION AGENCY
1996b, 1996c, 2007b, 2010). The common-type gaso-
line, the diesel S10, and the mineral lubricant oil were
used to prepare 108 solutions (36 solutions for each type
of contaminant in hexane P.A. 99%) in the concentration
range of 5–10,000 mg kg−1, approximately. The fraction
concentration of each solution was subsequently
corrected by the values determined in the chromato-
graphic analysis.

Spectrum acquisition

The infrared spectra were acquired by a Nicolet 6700
FTIR (Thermo Scientific, Waltham, USA) spectrometer
using 32 scans, 4 cm−1 resolution, and spectral range of
4000–650 cm−1. A Smart ARK ATR accessory of ZnSe
crystal with 45° of incidence was used for sampling. The
conditions of temperature and relative humidity during
the analysis were, respectively, 22.7 °C ± 0.1 °C and
49% ± 2%.

Chemometric analysis

The chemometric analysis was performed using
MATLAB software (version R2013a) and PLS toolbox
(version 7.9.3). The first step was to separate 66% of the
solutions for model development (calibration set) and
34% for model validation (test set). The identification of
contaminant type was performed by the PLS-DA meth-
od and the quantification of the GRO, DRO, and ORO
fractions by the PLS regression method. The number of
latent variables (LV) was chosen based on root mean
square errors of calibration (RMSEC), cross-validation
(RMSECV), and root-mean-square error of prediction
(RMSEP) values to avoid model overfitting (Hawkins
2004).

To provide the best predictive ability to the model,
different preprocessing data were evaluated. The tested
preprocessing data were: mean center, first and second
derivatives, smoothing, standard normal variate (SNV),
multiplicative scatter correction (MSC), orthogonal sig-
nal correction (OSC), and generalized least squares
weighting (GLSW). After verification of the most ap-
propriate preprocessing for each model, the genetic
algorithm (GA) was applied for variable selection. Since
the GA from the PLS toolbox is limited to 200 genera-
tions, the algorithm was executed twice for each model.
Both executions were performed with population size of
128 models, initial terms of 30%, mutation rate of 0.5%,
double crossover, and PLS regression method. The first
execution was performed using windowwidth with four
variables and the second with one variable. The optimi-
zation in the model provided by GA was statistically
evaluated through an F-test (Eq. 1):

F ¼ RMSEP2
1

RMSEP22
ð1Þ

where RMSEP1 > RMSEP2 (Rocha et al. 2012). If the
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calculated F value was greater than the F tabulated, the
use of GA significantly optimized the prediction ability
of the model.

The efficiency of the calibration models was evalu-
ated by the values of RMSEC and RMSEP, determina-
tion coefficients (R2), bias of the test set, and correlation
coefficients (r). The equations of these figures of merit
are widely described in the literature and can be found in
detail in ASTM E1655 (AMERICAN SOCIETY FOR
TESTING AND MATERIALS 2012).

Method validation

The analytical method developed for the quantification
of TPH fractions was validated by analysis of soil sam-
ples spiked with gasoline, diesel, and lubricant oil.
Three validation samples for each contaminant type
were prepared using the fuel and lubricant oil samples
that were not used in the calibration and test sets. The
soil sample was collected at the northern state of Paraná,
Brazil (23°18′60″S 51°39′55″W). It was classified as
red latosol and presented 18.4% of clay, 3.9% of silt, and
77.7% of coarse sand in the granulometric analysis.

The extraction of the contaminants was performed
according to the EPA 3550 (US ENVIRONMENTAL
PROTECTION AGENCY 2007b) adapted by the au-
thors. The adaptations include 4 g of samples, 22 mL
headspace vials, 30 s of stirring before sonication, a
polypropylene syringe filled with NaSO4 and silica gel
for cleanup, and filtration by a 5-μm porosity filter
connected to the syringe. After the extraction, the solu-
tion was taken to the spectrometer for infrared spectrum
acquisition and the TPH fractions were quantified using
the developed models.

Results and discussion

Characterization of the fuel samples

The analytical method was developed using com-
mercial fuel samples rather than analytical standards
to better represent the reality. Therefore, it was es-
sential to characterize the fuel samples to avoid false
positives caused by the presence of biofuels in the
composition. The common-type and additive-type
gasoline samples presented GRO content, respec-
tively, 61.92 ± 1.81% (w/w) and 78.60 ± 6.45% (w/
w); and the S10 and S500 diesel samples presented

DRO content, respectively, 75.56 ± 1.99% (w/w) and
73.19 ± 3.36% (w/w). The determined values of
GRO and DRO contents were used to correct the
concentrations of the samples prepared in hexane.

Spectral features

Hexane is an extractive solvent that exhibits high inter-
action with the hydrocarbons of gasoline, diesel, and
lubricating oils, which provides a high partition coeffi-
cient; however, the use of this solvent in the conven-
tional analyses of TPH presents some obstacles. In
univariate MIR methods, for example, the major obsta-
cle is the high spectral similarity between hexane and
the extracted analytes. The spectra of the hexane P.A.
and contaminant solutions at high concentration (about
10,000 mg kg−1) are shown in Fig. 1.

The choice of a specific wavelength for quantifi-
cation of analytes becomes difficult due to the great
spectral similarity; however, the standard deviation
of each spectral variable reveals regions where there
is a greater difference between the solvent and the
classes of contaminant (Fig. 2). The main differ-
ences between the classes were related to the vibra-
tions of the CH group, more specifically to the axial
deformation of CH2 at 2889 cm−1 and CH3 at
2917 cm−1, and to the angular deformation of CH2

in 1465 cm−1 and CH3 in 1375 cm−1 (Silverstein
et al. 2005). This fact presents two reasons: first,
these bands are the most intense; therefore, the var-
iations of absorbance are more sensitive and gener-
ated greater standard deviation; secondly, fuels and
lubricant oils are complex mixtures of hydrocarbons
and, consequently, proportion of CH, CH2, and CH3

groups may vary considerably according to the con-
taminant composition. Low-intensity bands in Fig. 1
could be observed in the standard deviation plot in
Fig. 2. The deviations close to 3500 cm−1 and
1700 cm−1 were related, respectively, to the hydrox-
yl from the anhydrous ethanol present in the gaso-
line and to the carbonyl from the biodiesel present in
the diesel oil. In addition, the deviation in the fin-
gerprint region (1000–650 cm−1) was further indic-
ative of the spectral difference between the solutions
and the pure solvent. Although the abovementioned
absorbance variations do not permit univariate
modeling, the identification and quantification of
the interest groups can be performed by multivariate
techniques.
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Identification of the type of contaminant

The classification of the type of contaminant is valuable
information in the environmental monitoring at gas
stations since it makes possible the identification of the
contamination source. PLS-DA is a pattern recognition
method based on the PLS regression method; however,
coded classes are used as the vector y to develop the
prediction model instead of a property of interest

(Brereton and Lloyd 2014). This multivariate method
maximizes the spectral (X-block) covariance with the
classes through the decomposition of x variables into
latent variables (LVs) (Rajalahti et al. 2009).

Firstly, the PLS-DA model was developed with the
full spectral range and mean centered data. The resulting
PLS-DA model required many latent variables (10
LVs), which can be justified by the great spectral simi-
larity between the classes and several variables with
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large variation and small correlation with the y vector, so
the covariancewith the response is usually spread across
several PLS components (Rajalahti et al. 2009). There-
fore, the number of variables uncorrelated to the y vector
was reduced by the exclusion of the range 2500–
2000 cm−1 since this region presents variations from
the absorption of carbon dioxide present in the atmo-
sphere (Fig. 2). Afterwards, the GLSW preprocessing
was applied with the objective to down-weight the var-
iables that were poorly correlated with the response. The
use of GLSWand the exclusion of the 2500–2000 cm−1

band provided a PLS-DA model with lower RMSE
values and higher correlation coefficients using less
latent variables (6 LVs). The analytical parameters of
the final PLS-DA model are shown in Table 1.

The application of the model can be evaluated
through the values of sensitivity (true positive rate)
and selectivity (true negative rate). Sensitivity and
selectivity equal to 100% indicate that the model
correctly classified all samples without any false
positive. Therefore, the PLS-DA model correctly
classified 100% of the calibration and validation
samples and presented correlation coefficients above
0.95. The prediction of the blank samples showed
lower RMSE values and higher correlation coeffi-
cients, so the discrimination between uncontaminat-
ed and contaminated samples presented the best fit
and, therefore, higher analytical reliability. Figure 3
is the graphical representation of class separation
across the discrimination threshold. The samples
above the threshold belong to the class predicted
by the model. Thus, the better discrimination of
the blank samples and the absence of false positives
and false negatives in the classification of each class
are notable.

Quantification of GRO, DRO, and ORO

Unlike the conventional infrared methods for the quan-
tification of TPH (EPA 418.1, EPA 8440, and ASTM
D7678), the methodology proposed in this work makes
possible the quantification of the total petroleum hydro-
carbon fractions—GRO, DRO, and ORO—after the
identification of the type of contaminant by the PLS-
DA model. The PLS regression method was chosen for
the development of calibration models since it is widely
used for the analysis of complex mixtures, especially
related to spectroscopic techniques (Nespeca et al. 2017;
Yin et al. 2016).

Spectral data are usually treated with preprocessing
such as first and second derivatives, SNV, and MSC to
correct baseline displacement, especially SNVandMSC
to correct deviations caused by different particle sizes
and diffuse radiation scattering, and smoothing to re-
duce instrumental noise (Gemperline 2006). Although
the mathematical transformations mentioned have gen-
erated PLS models with better predictive abilities, the
multivariate filters (OSC and GLSW) provided the low-
est values of RMSE and higher correlation coefficients.
The main statistical parameters of the PLS regression
models with full spectra and variables selected by GA
are presented in Table 2. Except for the ORO prediction
model, the models with the full spectra had good line-
arity (R2 > 0.91) and correlation coefficients above 0.95.
The variable selection through GA provided models
with better prediction results for all TPH fractions, that
is, models with lower RMSEC and RMSEP values,
better correlations between the reference values and
the values predicted by the model (r > 0.96), higher
linearity (R2 > 0.92), and less bias. In Fig. 4, the plots
of reference versus predicted values were indications of
the good linearity of the calibration (black circles) and
validation (red triangles) sets. Although the prediction
model for ORO showed a positive bias for the validation
set, the high positive residues were related to samples
with measured concentration of ORO above
1000 mg kg−1; therefore, the model presented no risk
of false positives for samples below the limit of contam-
ination established by the legislation.

Since the selection of variables by GA can make the
computational processing time-consuming, approxi-
mately 4 h for each model with the settings used in this
work, an F-test was performed to verify if the reduction
of RMSEP values was statistically significant. The F
value was calculated by Eq. 1 and compared with the F

Table 1 Parameters of the PLS-DA model

Parameter Blank Gasoline Diesel Lubricant oil

RMSEC 0.04 0.09 0.10 0.08

RMSEP 0.06 0.16 0.14 0.14

r (cal) 0.98 0.96 0.95 0.97

r (pred) 0.97 0.95 0.96 0.96

Sensitivity (cal) 100% 100% 100% 100%

Specificity (cal) 100% 100% 100% 100%

Sensitivity (pred) 100% 100% 100% 100%

Specificity (pred) 100% 100% 100% 100%
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Table 2 Main statistical parameters of the developed PLS regression models

GRO DRO ORO

Full spectra GA Full spectra GA Full spectra GA

#Variables 1738 62 1738 63 1738 66

Preprocessing OSC OSC OSC OSC GLS + MC + 2ªder + smooth GLS

#LVs 2 6 5 12 4 10

RMSEC 63 85 212 21 632 262

RMSEP 451 136 837 217 1915 938

Bias (pred) − 37 40 143 − 10 701 462

R2 (cal) 0,9988 0,9978 0,9942 0,9999 0,9562 0,9925

R2 (pred) 0,9383 0,9957 0,9123 0,9941 0,6340 0,9285

r (cal) 0,9994 0,9989 0,9971 1,0000 0,9778 0,9962

r (pred) 0,9687 0,9979 0,9551 0,9971 0,7963 0,9636
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tabulated for 11° freedom and 95% confidence level.
According to the values presented in Table 3, the genetic
algorithm provided a significant improvement in the
prediction ability of the TPH fraction models.

Results of the method validation

The extraction process described in item 2.5 was carried
out using the soil samples spiked with the contaminants
to verify the application of the developed method. The

acceptance limits of 70–130% for the percent recovery
were based on ASTM D7678. Except for the sample
Bsoil/diesel-2^, all samples had recovery value within
the accepted limits (Table 4). Therefore, hexane was a
suitable solvent for the extraction of the TPH fractions
in soil by the adapted EPAmethod 3550. In addition, the
use of sealed vials in the extraction attenuated the loss of
volatile compounds and provided recovery values above
69%.

Although the method proposed in this work requires
a sample preparation step, the extraction by vortex
followed by sonication was simple and fast when com-
pared to other extraction techniques such as Sohxlet,
which requires a large volume of solvent and time of
extraction. Since several samples could be sonicated
simultaneously, the total time of extraction and clean
up was about 5 min per sample.
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Fig. 4 Plots of reference versus predicted values from the GA-PLS models

Table 3 F-test results to evaluate the GA variable selection

GRO DRO ORO

F calculated 10.94 14.95 4.16

F tabulated 2.82
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Extraction of TPH fractions in groundwater can also
be performed using hexane; however, the specified
maximum limit of 600 μg L−1 is too low to quantify
TPHwithout preconcentrating the sample. Since hexane
has a boiling point close to the gasoline and diesel
compounds, it is not possible to concentrate the sample
without loss of volatile compounds. Therefore, the
method would be limited to contaminations in ground-
water at high concentrations.

Conclusion

In this work, we present a methodology for identifica-
tion and quantification of contaminants, such as gaso-
line, diesel, and lubricant oil, in soil samples by extrac-
tion with hexane and subsequent ATR/FTIR analysis
associated with multivariate methods. The PLS-DA
model was sensitive and selective with no false positive
or negative. The regression models to quantify the
GRO, DRO, and ORO fractions presented high correla-
tion coefficients (r > 0.96) and sufficient accuracy
(RMSE values) to quantify values below the maximum
limit of contamination (1000 mg kg−1). The use of
multivariate filters (OSC and GLSW) provided better
fitness to the PLS models and the selection of variables
by the genetic algorithm significantly reduced the values
of the prediction errors, which was essential for the
prediction ORO fraction. Extraction of contaminants
from the spiked samples using the adapted EPA 3550
method and quantification of the fractions by the GA-
PLS models resulted in recovery values between 69 and

129%; therefore, the determined concentrations were
within the limits established by ASTM D7678, except
for one soil sample spiked with diesel. Therefore, the
methodology proposed here is adequate for the moni-
toring of soil contamination caused by gas stations and,
in addition, provides faster and less costly analyses than
the chromatographic methods and more selective quan-
tification than mid-infrared methods currently used in
environmental monitoring.
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