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A B S T R A C T

The insulin and Brain-Derived Neurotrophic Factor (BDNF) signaling in the hippocampus promotes synaptic
plasticity and memory formation. On the other hand, aging is related to the cognitive decline and is the main risk
factor for Alzheimer's Disease (AD). The Protein-Tyrosine Phosphatase 1B (PTP1B) is related to several dele-
terious processes in neurons and emerges as a promising target for new therapies. In this context, our study aims
to investigate the age-related changes in PTP1B content, insulin signaling, β-amyloid content, and Tau phos-
phorylation in the hippocampus of middle-aged rats. Young (3months) and middle-aged (17months) Wistar rats
were submitted to Morris-water maze (MWM) test, insulin tolerance test, and molecular analysis in the hippo-
campus. Aging resulted in increased body weight, and insulin resistance and decreases learning process in MWM.
Interestingly, the middle-aged rats have higher levels of PTP-1B, lower phosphorylation of IRS-1, Akt, GSK3β,
mTOR, and TrkB. Also, the aging process increased Tau phosphorylation and β-amyloid content in the hippo-
campus region. In summary, this study provides new evidence that aging-related PTP1B increasing, contributing
to insulin resistance and the onset of the AD.

1. Introduction

Aging is the main risk factor for the development of Alzheimer's
Disease (AD), and the hippocampus is severely affected in this condition
(Fjell et al., 2014; Kawas et al., 2000). Recent studies have shown that
some pathogenic process behind aging-induced AD involves hippo-
campal insulin resistance (de la Monte and Wands, 2008; Lourenco
et al., 2013; Vieira et al., 2017). The aging changes are linked to the
inflammaging mechanism, which consists of increased levels of in-
flammatory proteins such as interleukin-1beta (IL1β) and tumor ne-
crosis factor alpha (TNFα) (Franceschi et al., 2000; Giunta et al., 2008).
Therefore, the inflammation connects the disruption of hippocampal

insulin signaling to the pathogenic molecular mechanism of the AD,
leading some researchers to refer to the AD as type 3 diabetes (de la
Monte and Wands, 2008).

Insulin plays a neurogenic, synaptogenic, and memory enhancer
role in the hippocampus (Takeda et al., 2011; Vieira et al., 2017). At the
molecular level, the appropriate hippocampal insulin signaling turns off
several proteins involved in the AD molecular mechanism (Takeda
et al., 2011; Vieira et al., 2017). A protein that is downstream to insulin
signaling is Glycogen Synthase Kinase 3 beta (GSK3β), which is phos-
phorylated and inactivated through the Phosphatidylinositol-4,5-bi-
sphosphate 3-kinase (Pi3k)/Protein Kinase B (Akt) pathway (Takeda
et al., 2011). When activated, the GSK3β is responsible for the Tau
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phosphorylation. A hallmark of the AD is the Tau hyperphosphorylation
(Takeda et al., 2011). Also, the increased circulating insulin competes
with β-amyloid for degradation by Insulin Degrading Enzyme (Qiu
et al., 1998; Qiu and Folstein, 2006; Takeda et al., 2011). Another
feature of the AD is the accumulation of β-amyloid oligomers that
disrupts the hippocampal insulin signaling and exerts a synaptotoxic
effect (Lourenco et al., 2013).

The knowledge of the key factors responsible for the hippocampal
insulin resistance is the interest to the scientific community. Several
studies demonstrated that inflammation may increase the content of
Protein Tyrosine Phosphatase-1B (PTP1B) in important targets of in-
sulin such as skeletal muscle (Ropelle et al., 2006), liver (de Moura
et al., 2013), and hypothalamus (Chiarreotto-Ropelle et al., 2013).
Therefore, PTP1B is one of the major tyrosine phosphatases of the In-
sulin Receptor (IR), the IR Substrate-1 (IRS1), and the Tyrosine Kinase
Receptor B (TrkB) (Chiarreotto-Ropelle et al., 2013; de Moura et al.,
2013; Ozek et al., 2014; Ropelle et al., 2006; Vieira et al., 2017). Mice
lacking PTP1B in the hippocampus present increased learning process
evaluated by Barnes Maze test (Fuentes et al., 2012), suggesting the role
of this protein as a negative regulator of memory (Vieira et al., 2017).
These findings place the PTP1B as a key protein in the AD (Vieira et al.,
2017).

However, the content of hippocampal PTP1B in middle-aged rats
has not yet been demonstrated. The PTP1B may play an important role
in the hippocampus during aging as a negative regulator of synapse
formation and memory acquisition/formation, creating favorable con-
ditions for the development of AD. Therefore, this study aims to in-
vestigate the insulin/Brain-Derived Neurotrophic Factor (BDNF) sig-
naling, the PTP1B content and the association of these molecular
mechanisms with spatial learning in middle-aged rats.

2. Materials and methods

2.1. Experimental animals

Male young (3months) and middle-aged (17months) Wistar rats
were used for the experimental procedures. The rats were obtained
from the Multidisciplinary Center for Biological Investigation on
Laboratory Animal Science (CEMIB) – University of Campinas
(UNICAMP), kept in collective cages (25 °C ± 1 °C) and fed with
standard chow diet (Nuvilab®) and water ad libitum. All procedures
were approved by Animal Ethics Committee (CEUA) of the Institute of
Biological Sciences, UNICAMP - Campinas-SP (case number 4257-1).
The number of animals used in each experiment is specified in the
figure legends.

2.2. Insulin tolerance test (ITT)

The ITT was performed after an 8 h fasting period, when the rats
received an intraperitoneal injection of insulin (Humalog®; 1.5 U/kg
body weight) followed by blood sampling at 0, 10, 15, 20, 25 and
30min. While blood glucose removal rate (kITT) was calculated using
the formula 0.693/t1/2, the blood glucose half-time (t1/2) was calcu-
lated from the least-squares regression slope of the blood glucose level
along the linear phase of decline (Bonora et al., 1989).

2.3. Morris water maze test (MWM)

The MWM protocol was adapted from previous studies (Diegues
et al., 2014; Li et al., 2014). The experiment was conducted in a circular
pool (diameter: 2 m; water depth: 70 cm; water temperature 25 ± 1 °C)
and a circular escape platform (diameter: 15 cm). Firstly, the animals
were adapted to the water environment during five days. During the
four days of the test, the animals performed four attempts (maximum of
the 60s each) starting in all quadrants (i.e., south, west, north and east).
The water was clear on the first day of the test and darkened by the dye

in the next days. The escape platform was placed in the center of the
north quadrant and kept 5 cm above the water level on the first day and
5 cm below on the next days. The time that the rats spent to find the
platform was recorded (latency escape time). If the rats did not find the
platform, it was gently placed on the platform and stayed there for 15 s.
For the Probe Test that was performed 24 h after the fourth experi-
mental day of MWM, the escape platform was removed from the pool
and the animal performed a single trial of 2 min. During the Probe Test,
the time the animal remained in the north quadrant (where the escape
platform was previously located) was recorded.

2.4. Tissue collection and Western Blotting analyses

After the 8 h fasting period, the rats were anesthetized with in-
traperitoneal injection of ketamine chlorhydrate (80mg/kg) and xyla-
zine (12mg/kg). After the corneal reflexes loss, the rats were stimulated
with insulin (10−6 mol/L) through the hepatic portal vein. Five minutes
later, the euthanasia was performed by decapitation, and the hippo-
campus was extracted. The tissue homogenization, the Western Blotting
(SDS-PAGE polyacrylamide gel electrophoresis) protocol, and the vi-
sualization of bands [enhanced chemiluminescence and densitometry
(UN-SCAN-IT gel 6.1)] were performed as recently described by our
research group (Botezelli et al., 2016; Muñoz et al., 2017). Ni-
trocellulose membranes were incubated overnight at 4 °C with the fol-
lowing specific antibodies: Santa Cruz Biotechnology=PTP1B (rabbit,
sc-14021), pAKTs473 (rabbit, sc-33437), Akt (rabbit, sc-8312), GSK3β
(rabbit, sc-9166), BDNF (rabbit, sc-546), pTrkBy706 (rabbit, sc-135645),
TrkB (rabbit, sc-8316), β-amyloid (mouse, sc-374527), pTAUs726 (goat,
sc-16945); Cell Signaling Technology=GAPDH (rabbit, #2118),
pGSK3βs9 (rabbit, #5558s), pmTORs2448 (rabbit, #5536), mTOR
(rabbit, #2983); Life Technologies= pIRS1Y612 (rabbit, #44816G).

2.5. Statistical analysis

For the body weight, kITT and Western Blot data, a t-test was used.
For the ITT data (main factors: group and time) and MWM data (main
factors: group and day, we considered the mean of the 4 attempts of
each animal per day), Anova two-way with Bonferroni post-hoc test was
used. The significance level was established in 0.05. The software
GraphPad Prism 5.0® was utilized for the analysis.

3. Results

3.1. Middle-aged rats had lower insulin sensitivity and impaired spatial
learning

There was a significant increase in body weight (t=7.459, df=10,
p < 0.0001) of middle-aged Wistar rats (Fig. 1A). As demonstrated by
the insulin tolerance test (ITT), this phenomenon was associated with
reduced insulin sensitivity when compared to young rats (Fig. 1B). The
Anova two-way revealed a main effect of group (F (1, 8)= 11.10,
p=0.0104) and time (F (5, 40)= 268.4, p < 0.0001). Also, the kITT
(t=2.917, df=8, p=0.0194) was lower in the middle-aged than
young rats (Fig. 1C). All these parameters suggest an impairment of the
insulin action in the middle-aged rats. Also, we investigated the cog-
nition (spatial learning task) of these rats on MWM test. As expected, we
found that both middle-aging and impaired insulin action were asso-
ciated with learning deficit (F (1, 11)= 5.159, p=0.442) (Fig. 1D).
Besides the main group effect, we also found the main effect of time (F
(3, 33)= 4.184, p=0.129), indicating that the stimulus was enough
for the rats to learn the task over the testing days. Moreover, the
middle-aged animals presented deficits in memory retention (t=2.697,
df=8, p=0.0272) evaluated by the Probe Test (Fig. 1E).
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3.2. Increased PTP1B content, reduced insulin/BDNF signaling and changes
related to AD in the hippocampus of middle-aged rats

Interestingly, the molecular analyses showed an increased hippo-
campal PTP1B (t=3.013, df=7, p=0.0196) content (Fig. 2A), a well-
known marker responsible for the disruption of insulin/BDNF signaling
pathway through dephosphorylation of IR, IRS1, and TrkB.

In accordance, middle-aging was associated with significant reduc-
tion in the phosphorylation of IRS1 (t=2.595, df=7, p=0.0357), Akt
(t=2.396, df=7, p=0.0479) and GSK3β (t=2.968, df=7,
p=0.0209) (Fig. 3A–D). Although there was no significant difference
in the content of hippocampal BDNF (t=1.576, df=7, p=0.159), the
middle-aged rats was showed reduced phosphorylation of TrkB
(t=2.571, df=7, p=0.037) and mammalian target of rapamycin
(mTOR) (t=4.042, df=7, p=0.0049) (Fig. 3A, E–G).

Increased hippocampal β-amyloid (t=4.536, df=7, p=0.0027)
content combined with higher phosphorylation of Tau (t=6.046,
df=7, p=0.0005) (Fig. 4) were verified, suggesting that the

molecular changes related to AD occur parallel to aging.

4. Discussion

The hippocampal insulin signaling promotes synaptic plasticity,
neurogenesis, and memory formation (De Felice et al., 2014; Grillo
et al., 2015). We found that middle-aged Wistar rats presented higher
body weight and decreased insulin sensitivity. These changes are as-
sociated to impaired spatial learning compared to young rats. It is al-
ready known that the downregulation of IR specifically in the hippo-
campus resulted in deficits in the synaptic transmission associated with
impairments in the spatial learning (Grillo et al., 2015). Several studies
investigating insulin resistance/insufficiency described similar spatial
learning deficits in diabetic (Diegues et al., 2014), obese (Liang et al.,
2015) and aged (Gallagher et al., 2015) animals. An interesting study
reviewed several transgenic AD models with a focus on performance in
MWM and other behavioral assays (Puzzo et al., 2014). It is common for
studies with transgenic models for the APP, presenilin and Tau to use

Fig. 1. The middle-aged rats had higher body weight (g) (A) than young rats at the end of the experiment. During the ITT, the middle-aged presented reduced insulin sensitivity (B) and
kITT (C). Aging-associated with elevated body weight resulted in impaired spatial learning (D) and memory retention through the Probe Test trial (E). *p < 0.05 vs young. A t-test was
performed for the body weight, kITT, and Probe Test analyses. Anova two-way with Bonferroni post-hoc test was performed for ITT and MWM. (n=5–7 animals per group).

Fig. 2. Western Blot bands (A) and quantification data (B) representing the elevated PTP1B content in the hippocampus of insulin-stimulated middle-aged rats. *p < 0.05 vs young. A t-
test was performed for this analysis. (n=4–5 animals per group).
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MWM to investigate cognitive dysfunctions and possible treatments for
AD (Puzzo et al., 2014). Previously, reduced insulin signaling and in-
creased inflammation mediators in postmortem human AD brains were
verified (Bomfim et al., 2012; Vieira et al., 2017), connecting the de-
fective insulin action to development of AD. Considering that aging is
strongly associated with AD development, we showed that this natural
process is accompanied by increased hippocampus PTP1B content, in-
dicating the role of this phosphatase in the disruption of insulin sig-
naling pathway in the later stages of life.

Previous studies demonstrated that aging increases the PTP1B
content in several target tissues of insulin action such as liver (de Moura
et al., 2013), skeletal muscle (González-Rodríguez et al., 2012), and
hypothalamus (Morrison et al., 2007). However, this is the first study
showing the increased PTP1B content in the hippocampus of middle-
aged rats. PTP1B is the main phosphatase of tyrosine residues of IR,
IRS1, and TrkB (de Moura et al., 2013; Ozek et al., 2014; Ropelle et al.,
2006; Vieira et al., 2017), disrupting the insulin/BDNF signaling
pathway and contributing to the decline of cognitive functions in
middle-aged rats.

Next, we evaluated the key proteins of the insulin signaling cascade.
Middle-aged animals showed remarkable reductions in the Akt and
GSK3β phosphorylation. This process can be explained partially due to
the increased β-amyloid content. The β-amyloid is a synaptic toxin that
activates the TNF-α/PKR/eIF2α pathway, inducing the endoplasmic
reticulum stress and resulting in the inhibition, internalization, and
degradation of IR (Lourenco et al., 2013). Another downstream effect of

the reduced hippocampal insulin signaling is the activation of GSK3β
and enhanced phosphorylation of Tau protein, a hallmark of the AD
molecular mechanism and a trigger to neuronal apoptosis (Schubert
et al., 2004). Our findings indicate that the decreased GSK3β phos-
phorylation occurs parallel to increased Tau phosphorylation in the
hippocampus of middle-aged rats. The insulin signaling seems to exert
an important protective effect against AD in the hippocampus. The
intracerebral injection of streptozotocin, a pro-diabetic drug, resulted in
deficits in the hippocampal insulin signaling pathway, increased both
Tau phosphorylation and gene expression of the amyloid precursor
protein (Lester-Coll et al., 2006). This process is also accompanied by
impaired spatial learning (de la Monte et al., 2006). It is also currently
proposed that these molecular mechanisms are also linked to aging
(Herrup, 2010; Palmeri et al., 2013), suggesting that the pathogenesis
of Alzheimer's Disease in aging is associated with hippocampal insulin
resistance.

In addition, the middle-aged rats presented a non-significant
(p=0.159) decrease in hippocampal BDNF concentration. BDNF is a
growth factor that exerts important effect (like insulin) stimulating
synaptic plasticity, memory formation, and neurogenesis (Vieira et al.,
2017). This process begins with the binding of BDNF to its receptor
(TrkB), triggering the Pi3k/Akt pathway (Ozek et al., 2014). Another
relevant protein stimulated by the BDNF signaling is the mTOR, which
is important to the synthesis of synaptic proteins and memory con-
solidation (Bekinschtein et al., 2007; Slipczuk et al., 2009). Although
there was limited evidence about age-related effects on mTOR

Fig. 3. Impaired hippocampal insulin/BDNF signaling in the insulin-stimulated middle-aged rats. Western Blot bands (A) and quantification data representing the pIRS1y612 (B), pAkts473

(C), pGSK3βs9 (D), BDNF (E), pTrkBy706 (F) and pmTORs2448 (G) in the hippocampus of middle-aged rats. *p < 0.05 vs young. A t-test was performed for these analyses. (n= 4–5 animals
per group).

Fig. 4. Alterations in the content of the proteins involved in the AD pathogenesis. Western Blot bands (A) and quantification data representing the β-amyloid (B) and pTaus726 (C) in the
hippocampus of insulin-stimulated middle-aged rats. *p < 0.05 vs young. A t-test was performed for these analyses. (n= 4–5 animals per group).
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phosphorylation, an interesting study showed that the activity of mTOR
and its upstream signaling in hippocampus declined with aging (Yang
et al., 2014). In our study, mTOR had lower phosphorylation (like TrkB)
in the middle-aged rats, suggesting an additional molecular mechanism
to explain the impaired spatial learning. A possible trigger for this
process is the increased PTP1B content and the resulting depho-
sphorylation of TrkB.

Thus, PTP1B was associated with impaired spatial learning and in-
sulin/BDNF signaling in the hippocampus through dephosphorylation
of IR, IRS-1, and TrKB. Herein, we showed new evidence about the age-
related effect increasing the PTP1B content and reducing the insulin/
BDNF signaling in the hippocampus. Further research is relevant to
assess whether inhibition of PTP1B in the hippocampus of middle-aged
animals alters spatial learning and memory retention. Moreover, it is
important to note that the deletion of PTP1B in the hippocampus re-
sulted in better performance of young animals in the Barnes Maze test
(Fuentes et al., 2012). However, it has not been described whether the
inhibition or deletion of this protein in the hippocampus of aged ani-
mals is able to prevent or attenuate the deficits and the pathogenesis of
AD.

In summary, the current data provided new insights into the hip-
pocampal molecular mechanism related to cognitive decline and AD
pathogenesis. Also, interventions to modulate PTP1B activity in the
hippocampus may be an attractive strategy to decelerate or prevent AD
development in aged individuals.
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