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A B S T R A C T

Herein, we demonstrate the efficiency of NbCl5 to promote a multicomponent reaction (MCR) for the synthesis of
a library of phthalonitrile-quinoline dyads, which are very useful and new functionalized building blocks for
phthalocyanine (PC) synthesis. Experimental mechanistic insights on the key MCR process are described, using a
deuterated reagent, clearly showing the pericyclic nature of a hetero-Diels-Alder reaction. Examples of phtha-
locyanine (PC) syntheses were performed in order to demonstrate the versatility of the phthalonitrile-quinoline
dyads. Preliminary photophysical measurements show that our phthalonitrile library is very promising for the
production of new molecular scaffolds of PC derivatives with potential applications.

1. Introduction

Phthalonitriles are the most widely used precursors for the synthesis
of phthalocyanine (PC) dyes, which are used in many technological and
medical applications, such as solar cells [1–3], liquid crystals [4,5],
semiconductors [6–11], in photodynamic therapy (PDT) [12–16], and
others [17–24]. Functionalized phthalonitriles are prepared by mod-
ifying pre-existing phthalonitriles using classical reaction approaches
[25,26]. Usually they are prepared via aromatic substitution reactions
(SNAr) from substrates with good leaving groups such as NO2, N2

+ and
halogens [25–31]. However, limitations on structural diversity are
found, mainly for the synthesis of polyfunctionalized phthalonitriles
and more sophisticated dyads. Another approach that has been used to
functionalize phthalonitriles involves the Stille [32], Heck–Mizoroki
[33,34], Suzuki–Miyaura [33,35–37], and Sonogashira reactions
[33,38,39]. Many advantages are found in these last approaches such as
high yields, wide substrate scope, and mild reaction conditions. How-
ever, they are not always cost competitive nor easily scaled up.

As part of our research interests on synthetic methodologies using
NbCl5 [40–50], we report a new approach for the functionalization of 4-
formylphthalonitrile (1) with substituted anilines and terminal pheny-
lacetylenes via a multicomponent reaction (MCR) promoted by NbCl5 in
the presence of p-chloranil.

Application of this strategy has enabled a facile and step efficient
access to a structurally diverse collection of phthalonitrile derivatives,

and in a low-cost methodology. Furthermore, we have studied and
present mechanistic insights based on experiments with a deuterated
phenylacetylene, demonstrating a plausible reaction mechanism not
previously presented in the literature for similar MCRs. We also report
the application of this methodology in the synthesis of three zinc
phthalocyanine-quinoline dyads in order to demonstrate the structural
variety of the compound collection. Preliminary photophysical prop-
erties of these phthalocyanine dyads were also studied.

2. Experimental

2.1. Chemicals and materials

The niobium pentachloride was supplied by Companhia Brasileira
de Metalurgia e Mineração (CBMM, Brazil) and used as received. All the
other reagents were purchased from Sigma-Aldrich or Synth (Brazil)
and used as supplied. Anhydrous potassium carbonate was dried at
110 °C for 12 h before use. Tetrahydrofuran was distilled over sodium/
benzophenone before use, degassed by bubbling argon through it and
stored over molecular sieves (4 Å). Aniline, acetonitrile, and N,N-di-
methylformamide were dried with calcium hydride and distilled fol-
lowing standard protocols [51] and stored over molecular sieves (4 Å)
under an argon atmosphere. Bis(trimethylsilyl)amine was distilled and
stored over molecular sieves (4 Å) under an argon atmosphere. Analy-
tical thin-layer chromatography (TLC) was performed on Merck
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aluminum sheets coated with silica gel 60 F254 and visualized with
ultraviolet light (254 or 366 nm) or heating with TLC stains. Gravity
column chromatography was performed on silica gel (70–230 mesh,
63–200 μM, pore size 60 Å, Merck), and flash column chromatography
was performed on silica gel (230–400 mesh, 40–63 μM, pore size 60 Å,
Merck).

2.2. Equipments

1H NMR, 13C NMR and DEPT-135 spectra were recorded on a Bruker
Avance III 400 (operating at 400.15 and 100.62MHz for 1H and 13C
respectively) or 600 (operating at 600.23 and 150.93MHz for 1H and
13C respectively) spectrometers with tetramethylsilane as the internal
reference and CDCl3 or CDCl3/DMSO-d6 as solvents. FT-IR spectra were
recorded on a Shimadzu IR Prestige-21 spectrophotometer using KBr
pellets in the range of 4000–400 cm−1. UV–Vis absorption spectra were
recorded on a Perkin Elmer Lambda 25 spectrophotometer using 1 cm
optical length quartz cuvettes at 25 °C and tetrahydrofuran (HPLC
grade) as the solvent. The fluorescence spectra were recorded on a
Shimadzu RF-5301PC spectrofluorophotometer using 1 cm optical
length cuvettes at 25 °C and degassed tetrahydrofuran (HPLC grade) as
the solvent. EI-MS spectra were acquired at 70 eV on a Shimadzu
GCMS-QP5000 mass spectrometer coupled with a Shimadzu GC-17A
gas chromatograph. HRMS (ESI-TOF) spectra were registered in a po-
sitive ion mode on a Bruker Daltonics (Impact HD) UHR-QqTOF (Ultra-
High Resolution Qq-Time-Of-Flight) mass spectrometer. HRMS
(MALDI-TOF) spectra were obtained on a Bruker Daltonics
Ultraflextreme MALDI-TOF/TOF mass spectrometer in positive reflector
mode using α-cyano-4-hydroxycinnamic acid as the matrix. All melting
points were determined on a Microquímica™ MQRPF-301 apparatus.
The organic solvents were evaporated using a Büchi Rotavapor R-215 at
40 °C.

2.3. Procedure for synthesis of 4-formylphthalonitrile (1)

Phthalonitrile 1 was prepared in three steps by previously reported
procedures [52,53]. Nitration of commercially available 4-bromo-
benzaldehyde with a mixture of H2SO4 and NaNO3 yielded 4-bromo-3-
nitrobenzaldehyde in 92% yield (11.58 g, 50.34mmol). 3,4-Di-
bromobenzaldehyde was then obtained in 83% yield (10.09 g,
38.23mmol) by the reduction with tin (II) bromide (generated in situ
from Sn0 and HBr), followed by diazotization and reaction with CuBr
(Sandmeyer reaction). Finally, 3,4-dibromobenzaldehyde was con-
verted into 1 by the Rosenmund-von Braun reaction (CuCN) in 60%
yield (1.57 g, 10.05mmol). Data for 1: M.p. 138–140 °C; Literature:
138 °C [54]. 1H NMR (CDCl3, 400.15MHz, ppm): δ 10.13 (s, 1H, CHO),
8.34–8.29 (m, 1H), 8.24 (dd, J = 8.0, 1.6 Hz, 1H), 8.04 (d, J = 8.0 Hz,
1H). 13C NMR (CDCl3, 100.62MHz, ppm): δ 188.3 (CHO), 138.8, 134.5,
133.8, 133.3, 120.3, 117.2, 114.6 (CN), 114.4 (CN). 13C NMR (DEPT-
135) (CDCl3, 100.63MHz, ppm): δ 134.5, 133.8, 133.3. FT-IR (KBr,
cm−1): ν=3105, 3071, 2878 (CHO), 2234 (C≡N), 1709 (C=O), 1597,
1381, 1194, 1096, 945, 851, 752, 530. EI-MS (m/z (%)): 156 (54)
[M+], 155 (100) [M+−H], 127 (38) [M+− CHO], 100 (21), 75 (20),
50 (25).

2.4. Procedure for synthesis of 4-(decyloxy)aniline (2g)

Aniline 2g was prepared in two steps following reported procedures
with some slight modifications [55,56].

I. Alkylation of the phenol: A mixture of 4-nitrophenol (3.48 g,
0.025mol), K2CO3 (13.8 g, 0.1mol) and 1-bromodecane (7.8 mL,
0.0375mol) in cyclohexanone (50mL) was stirred under reflux for 3 h.
The resultant reaction mixture was filtered to separate the K2CO3 and
then the cyclohexanone was distilled off under reduced pressure. The
residue obtained was purified by silica gel column chromatography
(hexane/EtOAc, 9:1 v/v) to afford a yellow oil that was crystallized

from ethanol to give 1-(decyloxy)-4-nitrobenzene in 93% yield (6.48 g,
23.2 mmol).

II. Hydrogenation of the aromatic nitro group: 1-(decyloxy)-4-
nitrobenzene (1 g, 3.58mmol) was dissolved in dry THF (5mL) and
10% Pd/C (0.1 g) was added. The reaction mixture was degassed and
stirred under H2 gas (1 atm) for 12 h at room temperature. The resultant
reaction mixture was filtered through a plug of Celite, which was wa-
shed with CH2Cl2. The solvents were removed under vacuum and the
remaining residue was purified by flash column chromatography (silica
gel, hexane/EtOAc, 8:2 v/v) to afford the desired aniline 2g in 97%
yield (869mg, 3.48mmol). Data for 2g: M.p. 40–41 °C. 1H NMR (CDCl3,
400.15MHz, ppm): δ 6.78–6.72 (m, 2H), 6.68–6.62 (m, 2H), 3.88 (t,
J=6.6 Hz, 2H), 3.46 (s, 2H), 1.75 (dt, J=14.8, 6.7 Hz, 2H), 1.50–1.39
(m, 2H), 1.39–1.20 (m, 12H), 0.89 (t, J=6.7 Hz, 3H). 13C NMR (CDCl3,
100.63MHz, ppm): δ 152.4, 139.8, 116.4, 115.7, 68.7, 31.9, 29.6, 29.5,
29.4, 29.3, 26.1, 22.7, 14.1.13C NMR (DEPT-135) (CDCl3, 100.63MHz,
ppm): δ 116.4, 115.7, 68.7, 31.9, 29.6, 29.5, 29.4, 29.3, 26.1, 22.7,
14.1. FT-IR (KBr, cm−1): ν=3385 (NH), 3312 (NH), 2955, 2918, 2849,
1516, 1474, 1246, 1030, 827, 766, 525. EI-MS (m/z (%)): 249 (7)
[M+], 109 (100), 80 (7), 58 (8), 43 (13), 41 (17).

2.5. General procedure for the MCRs, and the synthesis of phthalonitrile
derivatives 4

To a 15-mL glass pressure tube (Ace tube®, back seal, Aldrich
Z181064) with magnetic stirring, were added sequentially p-chloranil
(135.2 mg, 0.55mmol), NbCl5 (67.5mg, 0.25mmol, 50mol%) and
anhydrous CH3CN (1mL) under an argon atmosphere. To this mixture
was added a previously prepared solution of 4-formylphthalonitrile (1)
(78.1 mg, 0.50mmol), anilines (2a-g) (0.50 mmol) and phenylacety-
lenes (3a-i) (0.55mmol) in 4mL of anhydrous CH3CN under argon. The
tube was closed and the resulting mixture was stirred at 100 °C in an oil
bath for 24 h. After cooling to room temperature, the resultant reaction
mixture was quenched with H2O (5mL) and extracted with CH2Cl2
(3×20mL). The combined organic extracts were washed with sat.
aqueous NaHCO3 (3×20mL) and H2O (3×50mL), dried over
Na2SO4, filtered, and concentrated under vacuum. Two different
methods for purification were used:

Method 1: the residue was chromatographed on silica gel (70–230
mesh) and eluted with CH2Cl2/hexane (9:1, v/v). After solvent removal,
the product was sonicated with ethanol (10mL) for 20min, followed by
cooling in a refrigerator for 12 h, filtration, and dried under vacuum at
room temperature.

Method 2: the residue was sonicated with ethanol (10mL) for
20min, followed by cooling in a refrigerator for 12 h, and filtration.
This was repeated two more times with ethanol (10mL) and once with
pentane/EtOAc (7:3, v/v; 10mL). Finally, the product was dried under
vacuum at room temperature.

The same procedure was used when the multicomponent reaction
was performed in the absence of p-chloranil.

2.5.1. 4-(4-Phenylquinolin-2-yl)phthalonitrile (4a)
The MCR was carried out according to the general procedure with

aniline (2a) (46.6mg, 0.50mmol) and phenylacetylene (3a) (57.3 mg,
0.55mmol), and purified by method 1 to afford the phthalonitrile 4a in
40% yield (66.9mg, 0.202mmol). When the same reaction was carried
out in the absence of p-chloranil, compound 4a was obtained in 29%
yield (48.6 mg, 0.147mmol). A similar result (43.1 mg, 0.130mmol,
yield 26%) was observed when the MCR was performed in the absence
of p-chloranil at room temperature for 96 h. Data for 4a: M.p.
240–241 °C. 1H NMR (CDCl3, 400.15MHz, ppm): δ 8.77 (d, J=1.7 Hz,
1H), 8.59 (dd, J=8.3, 1.8 Hz, 1H), 8.26 (d, J=8.6 Hz, 1H), 7.97 (d,
J=8.2 Hz, 2H), 7.86–7.80 (m, 2H), 7.63–7.55 (m, 6H). 13C NMR
(CDCl3, 100.62MHz, ppm): δ 151.8, 150.5, 148.8, 144.3, 137.6, 133.9,
132.5, 131.4, 130.5, 130.4, 129.5, 128.9, 128.8, 127.9, 126.5, 125.9,
118.4, 116.5, 115.6, 115.4.13C NMR (DEPT-135) (CDCl3, 100.62MHz,

A.d.A. Bartolomeu et al. Dyes and Pigments 151 (2018) 391–402

392



ppm): δ 133.9, 132.5, 131.4, 130.5, 130.4, 129.5, 128.9, 128.8, 127.9,
125.9, 118.4. FT-IR (KBr, cm−1): ν=3115, 3076, 3051, 2234 (C≡N),
1589, 1489, 1416, 1362, 1217, 924, 887, 854, 766, 698, 579, 528.
HRMS (ESI-TOF): m/z calcd. for C23H14N3

+ [M + H]+: 332.1182;
Found: 332.1195.

2.5.2. 4-(6-Fluoro-4-phenylquinolin-2-yl)phthalonitrile (4b)
The MCR was carried out according to the general procedure with 4-

fluoroaniline (2b) (56.1 mg, 0.50mmol) and phenylacetylene (3a)
(57.3 mg, 0.55mmol), and purified by method 1 to afford the phtha-
lonitrile 4b in 76% yield (132.5 mg, 0.379mmol). When the same re-
action was carried out in the absence of p-chloranil, compound 4b was
obtained in 42% yield (74.1mg, 0.212mmol). Data for 4b: M.p.
238–239 °C. 1H NMR (CDCl3, 400.15MHz, ppm): δ 8.74 (d, J=1.8 Hz,
1H), 8.56 (dd, J=8.3, 1.8 Hz, 1H), 8.30–8.23 (m, 1H), 7.96 (d,
J=8.2 Hz, 1H), 7.85 (s, 1H), 7.63–7.51 (m, 7H). 13C NMR (CDCl3,
100.62MHz, ppm): δ 161.4 (J=250.4 Hz), 151.3, 150.0, 146.0, 144.0,
137.2, 134.0, 133.0, 132.9, 132.4, 131.3, 129.3, 129.2, 129.0, 127.5,
127.4, 121.0, 120.7, 118.9, 116.6, 115.7, 115.5, 115.4, 109.5,
109.3.13C NMR (DEPT-135) (CDCl3, 100.62MHz, ppm): δ 134.0, 133.0,
132.9, 132.4, 131.3, 129.3, 129.2, 129.0, 121.0, 120.7, 118.9, 109.5,
109.3. FT-IR (KBr, cm−1): ν=3115, 3076, 3049, 2234 (C≡N), 1626,
1591, 1493, 1364, 1234, 1198, 826, 773, 702, 527. HRMS (ESI-TOF):
m/z calcd. for C23H13FN3

+ [M + H]+: 350.1088; Found: 350.1098.

2.5.3. 4-(6-Chloro-4-phenylquinolin-2-yl)phthalonitrile (4c), and the
scale-up experiment

The MCR was carried out according to the general procedure with 4-
chloroaniline (2c) (65.1mg, 0.50mmol) and phenylacetylene (3a)
(57.3 mg, 0.55mmol), and purified by method 1 to afford the phtha-
lonitrile 4c in 80% yield (147.4 mg, 0.403mmol). When the same re-
action was carried out in the absence of p-chloranil, compound 4c was
obtained in 49% yield (90.5 mg, 0.247mmol). In the absence of NbCl5,
phthalonitrile 4c was obtained in 6% yield (11.0mg, 0.03mmol).

The same procedure was used to scale up this MCR. In this case, a
100-mL glass pressure tube (Ace tube®, back seal, Aldrich Z566241) was
used, and the following amounts of reagents were used: 4-chloroaniline
(2c) (325.4 mg, 2.50mmol), 4-formylphthalonitrile (1) (390.4mg,
2.50mmol), phenylacetylene (3a) (286.6 mg, 2.75mmol), p-chloranil
(676.2 mg, 2.75mmol), NbCl5 (337.7 mg, 1.25mmol), and CH3CN
(25mL). Yield: 70% (640.2 mg, 1.75mmol). Data for 4c: M.p.
261–262 °C. 1H NMR (CDCl3, 400.15MHz, ppm): δ 8.75 (d, J=1.7 Hz,
1H), 8.57 (dd, J=8.2, 1.8 Hz, 1H), 8.20 (d, J=9.0 Hz, 1H), 7.97 (d,
J=8.2 Hz, 1H), 7.92 (d, J=2.3 Hz, 1H), 7.86 (s, 1H), 7.76 (dd,
J=9.0, 2.3 Hz, 1H), 7.67–7.58 (m, 3H), 7.57–7.51 (m, 2H). 13C NMR
(CDCl3, 100.62MHz, ppm): δ 152.0, 149.8, 147.2, 143.9, 137.0, 134.0,
132.4, 132.0, 131.5, 131.4, 129.3, 129.2, 129.0, 127.2, 124.7, 119.1,
116.6, 115.8, 115.4, 115.3.13C NMR (DEPT-135) (CDCl3, 100.62MHz,
ppm): δ 134.0, 132.4, 132.0, 131.5, 131.4, 129.3, 129.2, 129.0, 124.7,
119.1. FT-IR (KBr, cm−1): ν=3117, 3080, 2235 (C≡N), 1587, 1483,
1362, 1152, 883, 822, 777, 706, 527. HRMS (ESI-TOF): m/z calcd. for
C23H13ClN3

+ [M + H]+: 366.0793; Found: 366.0802.

2.5.4. 4-(6-Methoxy-4-phenylquinolin-2-yl)phthalonitrile (4d)
The MCR was carried out according to the general procedure with 4-

methoxyaniline (2d) (61.6mg, 0.50mmol) and phenylacetylene (3a)
(57.3 mg, 0.55mmol), and purified by method 1 to afford the phtha-
lonitrile 4d in 75% yield (135.1mg, 0.374mmol). When the same re-
action was carried out in the absence of p-chloranil, compound 4d was
obtained in 52% yield (94.5 mg, 0.261mmol). Data for 4d: M.p.
197–198 °C. 1H NMR (CDCl3, 600.23MHz, ppm): δ 8.73 (d, J=1.8 Hz,
1H), 8.55 (dd, J=8.2, 1.8 Hz, 1H), 8.15 (d, J=9.2 Hz, 1H), 7.93 (d,
J=8.2 Hz, 1H), 7.79 (s, 1H), 7.62–7.54 (m, 5H), 7.47 (dd, J=9.2,
2.8 Hz, 1H), 7.21 (d, J=2.8 Hz, 1H), 3.83 (s, 3H). 13C NMR (CDCl3,
150.93MHz, ppm): δ 159.0, 149.4, 148.8, 145.0, 144.5, 138.0, 133.9,
132.1, 131.9, 131.1, 129.2, 128.9, 128.8, 127.7, 123.1, 118.7, 116.5,

115.6, 115,5, 115,1, 103.6, 55.6.13C NMR (DEPT-135) (CDCl3,
150.93MHz, ppm): δ 133.9, 132.1, 131.9, 131.1, 129.2, 128.9, 128.8,
123.1, 118.7, 103.6, 55.6. FT-IR (KBr, cm−1): ν=3113, 3078, 3051,
2949, 2824, 2234 (C≡N), 1626, 1599, 1493, 1368, 1265, 1223, 1042,
854, 826, 700, 528. HRMS (ESI-TOF): m/z calcd. for C24H16N3O+

[M + H]+: 362.1288; Found: 362.1307.

2.5.5. 4-(6-Nitro-4-phenylquinolin-2-yl)phthalonitrile (4e)
The MCR was carried out according to the general procedure with 4-

nitroaniline (2e) (69.1 mg, 0.50mmol) and phenylacetylene (3a)
(57.3 mg, 0.55mmol), and purified by method 2 to afford the phtha-
lonitrile 4e in 55% yield (103.6mg, 0.275mmol). When the same re-
action was carried out in the absence of p-chloranil, compound 4e was
obtained in 41% yield (77.8mg, 0.207mmol). Data for 4e:
M.p.> 300 °C. 1H NMR (CDCl3, 400.15MHz, ppm): δ 8.91 (d,
J=2.5 Hz, 1H), 8.80 (d, J=1.2 Hz, 1H), 8.63 (dd, J=8.2, 1.8 Hz,
1H), 8.58 (dd, J=9.2, 2.5 Hz, 1H), 8.40 (d, J=9.3 Hz, 1H), 8.06–7.97
(m, 2H), 7.72–7.62 (m, 3H), 7.62–7.52 (m, 2H). 13C NMR (CDCl3,
100.62MHz, ppm): δ 154.9, 152.7, 146.3, 143.0, 136.0, 134.0, 132.6,
132.1, 131.6, 129.8, 129.3, 125.5, 123.8, 122.9, 119.7, 116.7, 116.5,
115.1.13C NMR (DEPT-135) (CDCl3, 100.62MHz, ppm): δ 134.0, 132.6,
132.1, 131.6, 129.8, 129.3, 123.8, 122.9, 119.7. FT-IR (KBr, cm−1):
ν=3105, 3080, 3051, 2235 (C≡N), 1620, 1591, 1551, 1485, 1410,
1342, 1084, 841, 810, 766, 746, 704, 527. HRMS (ESI-TOF): m/z calcd.
for C23H13N4O2

+ [M + H]+: 377.1033; Found: 377.1042.

2.5.6. 4-(6-Ethyl-4-phenylquinolin-2-yl)phthalonitrile (4f)
The MCR was carried out according to the general procedure with 4-

ethylaniline (2f) (61.8 mg, 0.50mmol) and phenylacetylene (3a)
(57.3 mg, 0.55mmol), and purified by method 1 to afford the phtha-
lonitrile 4f in 75% yield (135.3mg, 0.376mmol). Data for 4f: M.p.
215–216 °C. 1H NMR (CDCl3, 400.15MHz, ppm): δ 8.75 (d, J=1.6 Hz,
1H), 8.56 (dd, J=8.2, 1.8 Hz, 1H), 8.18 (d, J=8.6 Hz, 1H), 7.94 (d,
J=8.2 Hz, 1H), 7.80 (s, 1H), 7.75–7.66 (m, 2H), 7.64–7.51 (m, 5H),
2.81 (q, J=7.6 Hz, 2H), 1.30 (t, J=7.6 Hz, 3H). 13C NMR (CDCl3,
100.63MHz, ppm): δ 150.9, 149.8, 147.6, 144.5, 144.4, 137.8, 133.9,
132.4, 131.6, 131.3, 130.3, 129.4, 128.8, 126.5, 123.4, 118.4, 116.5,
115.5, 115.4, 115.3, 29.2, 15.4.13C NMR (DEPT-135) (CDCl3,
100.63MHz, ppm): δ 133.9, 132.4, 131.6, 131.3, 130.3, 129.4, 128.8,
123.4, 118.4, 29.2, 15.4. FT-IR (KBr, cm−1): ν=3074, 2965, 2230
(C≡N), 1597, 1585, 1489, 1414, 845, 700, 523. HRMS (ESI-TOF): m/z
calcd. for C25H18N3

+ [M + H]+: 360.1495; Found: 360.1498.

2.5.7. 4-(6-(Decyloxy)-4-phenylquinolin-2-yl)phthalonitrile (4g)
The MCR was carried out according to the general procedure with 4-

(decyloxy)aniline (2g) (124.7mg, 0.50mmol) and phenylacetylene
(3a) (57.3mg, 0.55mmol), and purified by method 1 to afford the
phthalonitrile 4g in 76% yield (185.1 mg, 0.379mmol). Data for 4g:
M.p. 128–130 °C. 1H NMR (CDCl3, 400.15MHz, ppm): δ 8.73 (d,
J=1.2 Hz, 1H), 8.55 (dd, J=8.3, 1.5 Hz, 1H), 8.14 (d, J=9.2 Hz,
1H), 7.93 (d, J=8.2 Hz, 1H), 7.77 (s, 1H), 7.65–7.51 (m, 5H), 7.47
(dd, J=9.1, 2.7 Hz, 1H), 7.19 (d, J=2.6 Hz, 1H), 3.96 (t, J=6.5 Hz,
2H), 1.79 (dt, J=14.9, 6.4 Hz, 2H), 1.50–1.41 (m, 2H), 1.39–1.21 (m,
12H), 0.89 (t, J=6.7 Hz, 3H). 13C NMR (CDCl3, 100.63MHz, ppm): δ
158.5, 149.2, 148.7, 144.8, 144.5, 138.0, 133.9, 132.1, 131.8, 131.0,
129.2, 128.9, 128.8, 127.7, 123.3, 118.6, 116.4, 115.6, 155.5, 115.0,
104.3, 68.4, 31.9, 29.5, 29.4, 29.3, 29.1, 26.0, 22.7, 14.1.13C NMR
(DEPT-135) (CDCl3, 100.63MHz, ppm): δ 133.9, 132.1, 131.8, 131.0,
129.2, 128.9, 128.8, 123.3, 118.6, 104.3, 68.4, 31.9, 29.5, 29.4, 29.3,
29.1, 26.0, 22.7, 14.1. FT-IR (KBr, cm−1): ν=3078, 3049, 2918, 2851,
2234 (C≡N), 1622, 1599, 1489, 1470, 1369, 1223, 1036, 860, 825,
702, 527. HRMS (ESI-TOF): m/z calcd. for C33H34N3O+ [M + H]+:
488.2696; Found: 488.2703.

2.5.8. 4-(6-Methoxy-4-(4-pentylphenyl)quinolin-2-yl)phthalonitrile (4h)
The MCR was carried out according to the general procedure with 4-
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methoxyaniline (2d) (61.6mg, 0.50mmol) and 1-ethynyl-4-pentyl-
benzene (3b) (97.7 mg, 0.55mmol), and purified by method 1 to afford
the phthalonitrile 4h in 70% yield (150.9 mg, 0.350mmol). Data for
4h: M.p. 177–178 °C. 1H NMR (CDCl3, 400.15MHz, ppm): δ 8.70 (d,
J=1.5 Hz, 1H), 8.52 (dd, J=8.3, 1.7 Hz, 1H), 8.12 (d, J=9.2 Hz,
1H), 7.91 (d, J=8.2 Hz, 1H), 7.76 (s, 1H), 7.51–7.43 (m, 3H),
7.42–7.36 (m, 2H), 7.28–7.23 (m, 1H), 3.83 (s, 3H), 2.74 (t, J=7.8 Hz,
2H), 1.73 (quint, J=7.4 Hz, 2H), 1.46–1.34 (m, 4H), 0.95 (t,
J=7.0 Hz, 3H). 13C NMR (CDCl3, 100.62MHz, ppm): δ 158.9, 149.4,
148.9, 145.0, 144.5, 143.9, 135.2, 133.9, 132.1, 131.9, 131.0, 129.1,
128.9, 127.8, 122.9, 118.7, 116.4, 115.6, 115.5, 115.0, 103.8, 55.6,
35.8, 31.6, 31.1, 22.6, 14.1.13C NMR (DEPT-135) (CDCl3, 100.62MHz,
ppm): δ 133.9, 132.1, 131.9, 131.0, 129.1, 129.0, 122.9, 118.7, 103.8,
55.6, 35.8, 31.6, 31.1, 22.6, 14.1. FT-IR (KBr, cm−1): ν=3084, 3034,
2994, 2951, 2924, 2859, 2239 (C≡N), 2230 (C≡N), 1620, 1595, 1493,
1470, 1225, 1042, 847, 831, 523. HRMS (ESI-TOF): m/z calcd. for
C29H26N3O+ [M + H]+: 432.2070; Found: 432.2088.

2.5.9. 4-(6-(Decyloxy)-4-(4-pentylphenyl)quinolin-2-yl)phthalonitrile (4i)
The MCR was carried out according to the general procedure with 4-

(decyloxy)aniline (2g) (124.7 mg, 0.50mmol) and 1-ethynyl-4-pentyl-
benzene (3b) (97.7 mg, 0.55mmol), and purified by method 1 to afford
the phthalonitrile 4i in 81% yield (226.9mg, 0.407mmol). Data for 4i:
M.p. 145–147 °C. 1H NMR (CDCl3, 400.15MHz, ppm): δ 8.72 (br s, 1H),
8.54 (dd, J=8.2, 1.4 Hz, 1H), 8.13 (d, J=9.2 Hz, 1H), 7.93 (d,
J=8.2 Hz, 1H), 7.77 (s, 1H), 7.53–7.35 (m, 5H), 7.25 (d, J=2.2 Hz,
1H), 3.97 (t, J=6.5 Hz, 2H), 2.75 (t, J=7.6 Hz, 2H), 1.87–1.69 (m,
4H), 1.51–1.23 (m, 18H), 0.95 (t, J=6.8 Hz, 3H), 0.89 (t, J=6.6 Hz,
3H). 13C NMR (CDCl3, 100.63MHz, ppm): δ 158.4, 149.2, 148.8, 144.9,
144.6, 143.8, 135.2, 133.9, 132.1, 131.8, 131.0, 129.1, 128.9, 127.8,
123.2, 118.6, 116.4, 115.6, 115.5, 115.0, 104.5, 68.3, 35.8, 31.9, 31.6,
31.1, 29.6, 29.4, 29.3, 29.1, 26.1, 22.7, 22.6, 14.1, 14.0.13C NMR
(DEPT-135) (CDCl3, 100.63MHz, ppm): δ 133.9, 132.1, 131.8, 131.0,
129.1, 128.9, 123.2, 118.6, 104.5, 68.3, 35.8, 31.9, 31.6, 31.1, 29.6,
29.4, 29.3, 29.1, 26.1, 22.7, 22.6, 14.1, 14.0. FT-IR (KBr, cm−1):
ν=3040, 2924, 2853, 2226 (C≡N), 1618, 1597, 1493, 1261, 1215,
1126, 1032, 825, 525. HRMS (ESI-TOF): m/z calcd. for C38H44N3O+

[M + H]+: 558.3479; Found: 558.3483.

2.5.10. 4-(6-Chloro-4-(4-pentylphenyl)quinolin-2-yl)phthalonitrile (4j)
The MCR was carried out according to the general procedure with 4-

chloroaniline (2c) (65.1mg, 0.50mmol) and 1-ethynyl-4-pentylben-
zene (3b) (97.7mg, 0.55mmol), and purified by method 1 to afford the
phthalonitrile 4j in 80% yield (174.9 mg, 0.401mmol). Data for 4j:
M.p. 224–226 °C. 1H NMR (CDCl3, 400.15MHz, ppm): δ 8.74 (d,
J=1.6 Hz, 1H), 8.56 (dd, J=8.2, 1.7 Hz, 1H), 8.18 (d, J=9.0 Hz,
1H), 8.01–7.92 (m, 2H), 7.85 (s, 1H), 7.74 (dd, J=9.0, 2.3 Hz, 1H),
7.51–7.36 (m, 4H), 2.76 (t, J=7.8 Hz, 2H), 1.74 (quint, J=7.4 Hz,
2H), 1.48–1.34 (m, 4H), 0.96 (t, J=7.0 Hz, 3H). 13C NMR (CDCl3,
100.63MHz, ppm): δ 152.0, 149.9, 147.2, 144.4, 143.9, 134.2, 134.0,
133.8, 132.4, 131.9, 131.4, 129.3, 129.1, 127.2, 124.8, 119.1, 116.6,
115.8, 115.4, 115.3, 35.8, 31.6, 31.1, 22.6, 14.1.13C NMR (DEPT-135)
(CDCl3, 100.63MHz, ppm): δ 134.0, 132.4, 131.9, 131.4, 129.3, 129.1,
124.8, 119.1, 35.8, 31.6, 31.1, 22.6, 14.1. FT-IR (KBr, cm−1): ν=3080,
2924, 2857, 2234 (C≡N), 1595, 1483, 1362, 1155, 827, 525. HRMS
(ESI-TOF): m/z calcd. for C28H23ClN3

+ [M + H]+: 436.1575; Found:
436.1573.

2.5.11. 4-(4-(4-Butylphenyl)-6-chloroquinolin-2-yl)phthalonitrile (4k)
The MCR was carried out according to the general procedure with 4-

chloroaniline (2c) (65.1mg, 0.50mmol) and 1-butyl-4-ethynylbenzene
(3c) (91.6 mg, 0.55mmol), and purified by method 1 to afford the
phthalonitrile 4k in 73% yield (154.3 mg, 0.366mmol). Data for 4k:
M.p. 224–225 °C. 1H NMR (CDCl3, 400.15MHz, ppm): δ 8.74 (d,
J=0.9 Hz, 1H), 8.57 (dd, J=8.2, 1.3 Hz, 1H), 8.18 (d, J=9.0 Hz,
1H), 8.04–7.91 (m, 2H), 7.85 (s, 1H), 7.74 (dd, J=9.0, 2.0 Hz, 1H),

7.52–7.36 (m, 4H), 2.77 (t, J=7.7 Hz, 2H), 1.73 (quint, J=7.6 Hz,
2H), 1.46 (sext, J=7.4 Hz, 2H), 1.01 (t, J=7.3 Hz, 3H). 13C NMR
(CDCl3, 100.63MHz, ppm): δ 152.0, 149.9, 147.2, 144.3, 143.9, 134.2,
134.0, 133.8, 132.4, 131.9, 131.4, 129.3, 129.1, 127.3, 124.8, 119.1,
116.6, 115.8, 115.4, 115.3, 35.5, 33.6, 22.4, 14.0.13C NMR (DEPT-135)
(CDCl3, 100.63MHz, ppm): δ 134.0, 132.4, 131.9, 131.4, 129.3, 129.1,
124.8, 119.1, 35.5, 33.6, 22.4, 14.0. FT-IR (KBr, cm−1): ν=3080,
3034, 2957, 2930, 2858, 2232 (C≡N), 1595, 1483, 1155, 825, 523.
HRMS (ESI-TOF): m/z calcd. for C27H21ClN3

+ [M + H]+: 422.1419;
Found: 422.1422.

2.5.12. 4-(4-(4-(tert-Butyl)phenyl)-6-chloroquinolin-2-yl)phthalonitrile
(4l)

The MCR was carried out according to the general procedure with 4-
chloroaniline (2c) (65.1mg, 0.50mmol) and 1-(tert-butyl)-4-ethy-
nylbenzene (3d) (90.7mg, 0.55mmol), and purified by method 1 to
afford the phthalonitrile 4l in 79% yield (166.9mg, 0.395mmol). Data
for 4l: M.p. 298–300 °C. 1H NMR (CDCl3, 400.15MHz, ppm): δ 8.74 (d,
J=1.4 Hz, 1H), 8.56 (dd, J=8.2, 1.6 Hz, 1H), 8.19 (d, J=9.0 Hz,
1H), 7.99 (d, J=2.2 Hz, 1H), 7.96 (d, J=8.2 Hz, 1H), 7.85 (s, 1H),
7.75 (dd, J=9.0, 2.3 Hz, 1H), 7.63 (d, J=8.3 Hz, 2H), 7.49 (d,
J=8.3 Hz, 2H), 1.45 (s, 9H). 13C NMR (CDCl3, 100.63MHz, ppm): δ
152.5, 152.0, 149.8, 147.2, 143.9, 134.0, 133.8, 132.4, 131.9, 131.4,
129.1, 127.2, 126.0, 124.8, 119.1, 116.6, 115.8, 115.4, 115.3, 31.3.13C
NMR (DEPT-135) (CDCl3, 100.63MHz, ppm): δ 134.0, 132.4, 131.9,
131.4, 129.1, 126.0, 124.8, 119.1, 31.3. FT-IR (KBr, cm−1): ν=3084,
2951, 2904, 2868, 2235 (C≡N), 1597, 1483, 1362, 1157, 849, 827,
600, 525. HRMS (ESI-TOF): m/z calcd. for C27H21ClN3

+ [M + H]+:
422.1419; Found: 422.1418.

2.5.13. 4-(6-Chloro-4-(4-methoxyphenyl)quinolin-2-yl)phthalonitrile
(4m)

The MCR was carried out according to the general procedure with 4-
chloroaniline (2c) (65.1mg, 0.50mmol) and 1-ethynyl-4-methox-
ybenzene (3e) (74.9mg, 0.55mmol), and purified by method 2 to af-
ford the phthalonitrile 4m in 78% yield (155.3mg, 0.392mmol). Data
for 4m: M.p. dec. above 280 °C. 1H NMR (CDCl3, 400.15MHz, ppm) δ
8.74 (d, J=1.6 Hz, 1H), 8.57 (dd, J=8.2, 1.8 Hz, 1H), 8.18 (d,
J=9.0 Hz, 1H), 7.97 (dd, J=5.2, 3.0 Hz, 2H), 7.83 (s, 1H), 7.75 (dd,
J=9.0, 2.3 Hz, 1H), 7.51–7.46 (m, 2H), 7.16–7.11 (m, 2H), 3.95 (s,
3H). FT-IR (KBr, cm−1): ν=3233, 3078, 2941, 2845, 2237 (C≡N),
1593, 1514, 1483, 1263, 1180, 1032, 824, 569, 523. HRMS (ESI-TOF):
m/z calcd. for C24H15ClN3O+ [M + H]+: 396.0898; Found: 396.0905.

2.5.14. 4-(6-Chloro-4-(4-methylphenyl)quinolin-2-yl)phthalonitrile (4n)
The MCR was carried out according to the general procedure with 4-

chloroaniline (2c) (65.1mg, 0.50mmol) and 1-ethynyl-4-methylben-
zene (3f) (65.9mg, 0.55mmol), and purified by method 2 to afford the
phthalonitrile 4n in 80% yield (152.7 mg, 0.402mmol). Data for 4n:
M.p. 272–274 °C. 1H NMR (CDCl3, 400.15MHz, ppm): δ 8.74 (d,
J=1.6 Hz, 1H), 8.56 (dd, J=8.3, 1.7 Hz, 1H), 8.19 (d, J=9.0 Hz,
1H), 7.99–7.93 (m, 2H), 7.84 (s, 1H), 7.75 (dd, J=9.0, 2.3 Hz, 1H),
7.46–7.39 (m, 4H), 2.51 (s, 3H). 13C NMR (CDCl3, 100.62MHz, ppm): δ
152.0, 149.8, 147.2, 143.9, 139.4, 134.0, 133.9, 132.4, 131.9, 131.4,
129.7, 129.3, 127.3, 124.8, 119.0, 116.6, 115.8, 115.4, 21.4.13C NMR
(DEPT-135) (CDCl3, 100.62MHz, ppm): δ 134.0, 132.4, 131.9, 131.4,
129.7, 129.3, 124.8, 119.0, 21.4. FT-IR (KBr, cm−1): ν=3080, 2920,
2232 (C≡N), 1595, 1483, 1153, 856, 845, 814, 525. HRMS (ESI-TOF):
m/z calcd. for C24H15ClN3

+ [M + H]+: 380.0949; Found: 380.0949.

2.5.15. 4-(6-Chloro-4-(4-fluorophenyl)quinolin-2-yl)phthalonitrile (4o)
The MCR was carried out according to the general procedure with 4-

chloroaniline (2c) (65.1mg, 0.50mmol) and 1-ethynyl-4-fluorobenzene
(3g) (66.7mg, 0.55mmol), and purified by method 2 to afford the
phthalonitrile 4o in 79% yield (152.4 mg, 0.397mmol). Data for 4o:
M.p.> 300 °C. 1H NMR (CDCl3, 400.15MHz, ppm): δ 8.74 (d,
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J=1.5 Hz, 1H), 8.57 (dd, J=8.2, 1.7 Hz, 1H), 8.21 (d, J=9.0 Hz,
1H), 7.97 (d, J=8.2 Hz, 1H), 7.87 (d, J=2.2 Hz, 1H), 7.83 (s, 1H),
7.77 (dd, J=9.0, 2.3 Hz, 1H), 7.56–7.50 (m, 2H), 7.35–7.29 (m, 2H).
FT-IR (KBr, cm−1): ν=3076, 2234 (C≡N), 1597, 1514, 1483, 1364,
1240, 1165, 847, 829, 825, 527. HRMS (ESI-TOF): m/z calcd. for
C23H12ClFN3

+ [M + H]+: 384.0698; Found: 384.0703.

2.5.16. Methyl 4-(6-chloro-2-(3,4-dicyanophenyl)quinolin-4-yl)benzoate
(4p)

The MCR was carried out according to the general procedure with 4-
chloroaniline (2c) (65.1mg, 0.50mmol) and methyl 4-ethynylbenzoate
(3h) (97.9mg, 0.55mmol), and purified by method 2 to afford the phtha-
lonitrile 4p in 57% yield (120.5mg, 0.284mmol). Data for 4p: M.p.
281–283 °C. 1H NMR (CDCl3, 400.15MHz, ppm): δ 8.76 (d, J=1.4Hz,
1H), 8.57 (dd, J=8.3, 1.8Hz, 1H), 8.30–8.25 (m, 2H), 8.22 (d, J=9.1Hz,
1H), 7.98 (d, J=8.3Hz, 1H), 7.87 (s, 1H), 7.83 (d, J=2.2Hz, 1H), 7.78
(dd, J=9.0, 2.3Hz, 1H), 7.65–7.60 (m, 2H), 4.02 (s, 3H). 13C NMR (CDCl3,
100.62MHz, ppm): δ 166.5, 152.0, 148.6, 147.1, 143.6, 141.4, 134.4,
134.0, 132.4, 132.1, 131.7, 131.4, 130.9, 130.2, 129.5, 126.7, 124.3, 118.9,
116.7, 116.0, 115.3, 52.5.13C NMR (DEPT-135) (CDCl3, 100.62MHz, ppm):
δ 134.0, 132.4, 132.1, 131.7, 131.4, 130.2, 129.5, 124.3, 118.9, 52.5. FT-IR
(KBr, cm−1): ν=3078, 2955, 2237 (C≡N), 1728 (C=O), 1593, 1483,
1288, 1119, 854, 827, 708, 525. HRMS (ESI-TOF): m/z calcd. for
C25H15ClN3O2

+ [M + H]+: 424.0847; Found: 424.0852.

2.5.17. 4-(6-Chloro-4-phenylquinolin-2-yl-3-d)phthalonitrile (4q)
The MCR was carried out according to the general procedure with 4-

chloroaniline (2c) (65.1 mg, 0.50mmol) and phenylacetylene-d (3i)
(56.7 mg, 0.55mmol), and purified by method 1 to afford the phtha-
lonitrile 4q in 74% yield (135.6mg, 0.369mmol). Data for 4q: M.p.
260–261 °C. 1H NMR (CDCl3, 600.23MHz, ppm): δ 8.75 (d, J=1.7 Hz,
1H), 8.57 (dd, J=8.2, 1.8 Hz, 1H), 8.20 (d, J=9.0 Hz, 1H), 7.97 (d,
J=8.2 Hz, 1H), 7.92 (d, J=2.3 Hz, 1H), 7.76 (dd, J=9.0, 2.3 Hz,
1H), 7.64–7.57 (m, 3H), 7.56–7.52 (m, 2H). 13C NMR (CDCl3,
150.93MHz, ppm): δ 152.0, 149.7, 147.2, 143.8, 136.9, 134.0, 132.4,
132.0, 131.5, 131.4, 129.3, 129.2, 129.1, 127.2, 124.7, 118.8
(J=25.0 Hz), 116.6, 115.8, 115.4, 115.3.13C NMR (DEPT-135) (CDCl3,
150.93MHz, ppm): δ 134.0, 132.4, 132.0, 131.5, 131.4, 129.3, 129.2,
129.1, 124.7. FT-IR (KBr, cm−1): ν=3115, 3080, 3055, 2234 (C≡N),
1599, 1537, 1481, 1358, 1086, 826, 766, 746, 704, 573, 527. HRMS
(ESI-TOF): m/z calcd. for C23H12DClN3

+ [M + H]+: 367.0855; Found:
367.0865.

2.6. General procedure for the synthesis of zinc phthalocyanine-quinoline
dyads (5a-c)

ZnPCs 5a-c were synthesized following previously reported proce-
dures with minor modifications [57]. To a 15-mL glass pressure tube
(Ace pressure tube®, back seal, Aldrich Z181064) equipped with a

Table 1
Synthesis of phthalonitriles 4a-i.a

Entry Aniline Product R1 R2 Yield (%)f

1b 2a 4a H H 0
2c 2a 4a H H 26
3d 2a 4a H H 29
4 2a 4a H H 40
5d 2b 4b F H 42
6 2b 4b F H 76
7e 2c 4c Cl H 6
8d 2c 4c Cl H 49
9 2c 4c Cl H 80
10d 2d 4d OMe H 52
11 2d 4d OMe H 75
12d 2e 4e NO2 H 41
13 2e 4e NO2 H 55
14 2f 4f Et H 75
15 2g 4g O-n-Dec H 76
16 2d 4h OMe n-pentyl 70
17 2g 4i O-n-Dec n-pentyl 81

a Conditions: 4-formylphthalonitrile (1) (0.50mmol), aniline derivatives (2a-g) (0.50mmol), phenylacetylenes (3a, 3b) (0.55mmol), NbCl5 (50mol%), p-chloranil
(0.55mmol) in CH3CN (5mL) were heated in a glass pressure tube at 100 °C for 24 h.

b The reaction was carried out in the absence of NbCl5 and p-chloranil at room temperature.
c The reaction was carried out in the absence of p-chloranil at room temperature for 96 h.
d The reaction was carried out in the absence p-chloranil.
e The reaction was carried out in the absence of NbCl5.
f Isolated yields.
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magnetic stir bar and rubber septum, were added sequentially phtha-
lonitrile derivatives (4g-i) (0.09 mmol), Zn(OTf)2 (8.3 mg, 22.5 μmol,
0.25 equiv), HMDS (76 μL, 4.0 equiv) and DMF (200 μL) under an argon
atmosphere at room temperature. The tube was closed and the resulting
mixture was stirred at 130 °C under light protection for 24 h. After
cooling to room temperature, 5 mL of methanol was added, and the
solid was filtered under vacuum and washed with methanol.

2.6.1. Zinc phthalocyanine-quinoline 5a
The crude solid obtained from phthalonitrile 4g (43.9mg,

0.09mmol) was purified by flash column chromatography (silica gel,
230–400 mesh), eluting initially with dichloromethane/toluene/ethyl
acetate (4:4:2, v/v/v) to remove fluorescent impurities and then with
toluene/ethyl acetate/methanol (6:3:1, v/v/v) to elute the product.
Evaporation of the elute gave a solid which was dissolved in a small
amount of chloroform, methanol was added afterwards, and the solu-
tion was stored at room temperature overnight. The green solid ob-
tained was filtered, washed with methanol, and then dried under va-
cuum to afford the pure ZnPC 5a (24.5mg, 12.15 μmol, 54%). Data for
5a: 1H NMR (CDCl3/DMSO-d6= 2:1, 400.15MHz, ppm): δ 9.63–9.11
(m, 6H), 8.91–8.43 (m, 8H), 8.33–7.98 (m, 14H), 7.91–7.74 (m, 10H),
7.49–6.96 (m, 10H), 4.01–3.66 (m, 8H), 1.92–1.73 (m, 8H), 1.62–1.26
(m, 56H), 1.02–0.90 (m, 12H). UV–Vis (THF): λmax/nm (log ε)= 695
(5.59), 626 (4.89), 357 (5.14). FT-IR (KBr, cm−1): ν=2922, 2853,
1618, 1589, 1545, 1491, 1385, 1356, 1225, 1095, 910, 831, 748, 702.
HRMS (MALDI-TOF): m/z calcd. for C132H133N12O4Zn+ [M + H]+:
2013.9859; Found: 2013.9837.

2.6.2. Zinc phthalocyanine-quinoline 5b
The crude solid obtained from phthalonitrile 4h (38.8mg,

0.09mmol) was purified by flash column chromatography (silica gel,
230–400 mesh), eluting initially with toluene/ethyl acetate (8:2, v/v)
to remove fluorescent impurities and then with toluene/ethyl acetate/
methanol (7:2:1, v/v/v) to elute the product. Evaporation of the elute
gave a solid which was dissolved in a small amount of chloroform,
methanol was added afterwards, and the solution was stored at room
temperature overnight. The green solid obtained was filtered, washed

with methanol, and then dried under vacuum to afford the pure ZnPC
5b (25.9 mg, 14.45 μmol, 64%). Data for 5b: 1H NMR (CDCl3/DMSO-
d6= 2:1, 400.15MHz, ppm): δ 9.71–9.14 (m, 6H), 8.99–8.42 (m, 8H),
8.35–8.02 (m, 9H), 7.89–7.57 (m, 12H), 7.51–6.98 (m, 9H), 4.00–3.58
(m, 12H), 3.09–2.81 (m, 8H), 2.08–1.82 (m, 8H), 1.68–1.38 (m, 16H),
1.13–0.91 (m, 12H). UV–Vis (THF): λmax/nm (log ε)= 695 (5.50), 626
(4.77), 355 (5.05). FT-IR (KBr, cm−1): ν=2926, 2853, 1620, 1589,
1545, 1493, 1385, 1356, 1227, 1095, 903, 831, 750. HRMS (MALDI-
TOF): m/z calcd. for C116H101N12O4Zn+ [M + H]+: 1789.7355; Found:
1789.7329.

2.6.3. Zinc phthalocyanine-quinoline 5c
The crude solid obtained from phthalonitrile 4i (50.2 mg,

0.09mmol) was purified by flash column chromatography (silica gel,
230–400 mesh), eluting initially with dichloromethane/toluene/ethyl
acetate (6:2:2, v/v/v) to remove fluorescent impurities and then with
toluene/ethyl acetate/methanol (7:2:1, v/v/v) to elute the product.
Evaporation of the elute gave a solid which was dissolved in a small
amount of chloroform, methanol was added afterwards, and the solu-
tion was stored at room temperature overnight. The green solid ob-
tained was filtered, washed with methanol, and then dried under va-
cuum to afford the pure ZnPC 5c (30.0 mg, 13.06 μmol, 58%). Data for
5c: 1H NMR (CDCl3/DMSO-d6= 2:1, 400.15MHz, ppm): δ 9.77–9.10
(m, 6H), 9.05–8.42 (m, 8H), 8.39–8.01 (m, 9H), 7.97–7.75 (m, 7H),
7.67–7.53 (m, 5H), 7.51–7.02 (m, 9H), 4.10–3.68 (m, 8H), 3.02–2.82
(m, 8H), 2.13–1.75 (m, 16H), 1.68–1.24 (m, 72H), 1.15–0.90 (m, 24H).
UV–Vis (THF): λmax/nm (log ε)= 695 (5.63), 626 (4.92), 355 (5.19).
FT-IR (KBr, cm−1): ν=2924, 2853, 1618, 1589, 1545, 1493, 1385,
1356, 1223, 1095, 910, 829, 748. HRMS (MALDI-TOF): m/z calcd. for
C152H173N12O4Zn+ [M + H]+: 2294.2989; Found: 2294.3037.

2.7. Aggregation studies

The aggregation behaviour of ZnPCs 5a-c was investigated in THF
using UV–Vis spectroscopy (Fig. 3 and Figs. S1 and S2). Different
concentrations of zinc phthalocyanines 5a-c were prepared and the
absorbances measured.

Table 2
Synthesis of phthalonitriles 4j-p.a

Entry Acetylene Product R2 Yield (%)b

1 3b 4j n-pentyl 80
2 3c 4k n-butyl 73
3 3d 4l tert-butyl 79
4 3e 4m OMe 78
5 3f 4n Me 80
6 3g 4o F 79
7 3h 4p CO2Me 57

a Conditions: NbCl5 (50mol%), p-chloranil (0.55mmol), 4-formylphthalonitrile (1) (0.50mmol), 4-chloroaniline (2c) (0.50mmol) and phenylacetylene derivatives
(3b-h) (0.55mmol) in CH3CN (5mL) at 100 °C for 24 h.

b Isolated yields.
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2.8. Fluorescence measurements

The values of ΦF were obtained by comparing the areas under the
fluorescence spectra of the samples (ZnPCs 5a-c) with the area under
the fluorescence spectrum of the standard (unsubstituted ZnPC) (see SI,
Fig. S3 and Table S1) [58]. A solution of each compound was prepared
in THF and the absorbances at the excitation wavelength
(λex= 630 nm) were adjusted to be 0.05 for comparison. Dissolved
oxygen was removed from the solutions by bubbling argon. The cal-
culation was performed by Eq. (1):

= ×
×

×

Φ Φ F A
F AF F

Std Std

Std (1)

In Eq. (1), ΦF
Std is the fluorescence quantum yield of the standard (for

unsubstituted ZnPC is 0.25 in THF) [58], F and FStd are the areas under

the fluorescence emission curves of the sample and standard, respec-
tively. A and AStd are the absorbances of the sample and standard, re-
spectively, at the excitation wavelength (λex= 630 nm).

2.9. Molar absorption coefficient (ε)

The values for ε were obtained from the data of Fig. 3 and Figs. S1
and S2. All the graphs of absorbance against concentration for each
band are in agreement with the Lambert-Beer's law (see SI, Tables
S2–S4), affording straight lines with R2 > 0.99. In each graph, the
slope of this line is the molar absorptivity (ε) divided by the optical path
length, as described in Eq. (2) [59]:

= × ×A ε c l (2)

In Eq. (2), A is the absorbance, c is the concentration and l is the optical

Scheme 1. a) Mechanism proposed by Cao et al. [62]; b) Our mechanistic proposal based on experiment.
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path length, respectively.

2.10. Photobleaching studies

A solution of ZnPCs 5a-c in THF with an absorbance near 1 was
irradiated in the dark with a white LED lamp (30W) (see SI, Fig. S4) in
periods of 1min (10 irradiations), 5 min (4 irradiations), 10min (3 ir-
radiations), and 30min (2 irradiations), totaling 2 h. After each irra-
diation time, the UV–Vis spectrum was measured in order to observe
the possible photobleaching by reduction of the photosensitizer con-
centration (Fig. 5 and Figs. S5 and S6).

3. Results and discussion

3.1. Synthesis of phthalonitrile derivatives (4a-q)

Phthalonitrile 1 was used in the reactions with substituted anilines
2a-g and phenylacetylenes 3a,b in MCRs promoted by NbCl5, for the
preparation of the phthalonitriles 4a-i (Table 1).

We initially tested 4-formylphthalonitrile (1) and phenylacetylene
(3a) as substrates, for exploring the aniline substrate scope. When the
MCR was carried out with aniline (2a) in the absence of NbCl5 and p-
chloranil at room temperature for 24 h, the desired phthalonitrile (4a)
was not obtained (Table 1, entry 1). The formation of an imine (an
intermediate isolable in this MCR) was detected. When the same MCR
was carried out in the presence of NbCl5 at room temperature for 96 h,
the phthalonitrile 4a was obtained in 26% yield (entry 2). A similar
result (29%) was observed when the MCR was performed at 100 °C for
24 h (entry 3). However, when NbCl5 and p-chloranil were used to-
gether also at 100 °C for 24 h, the compound 4a was obtained in 40%
yield (entry 4). Interestingly, when the MCR was carried out with the
aniline 2c and p-chloranil (without NbCl5), the phthalonitrile 4c was
obtained in 6% yield (entry 7). Similar results had already been

reported by Leardini et al. [60,61] for the synthesis of 2,4-diphe-
nylquinolines from imines and phenylacetylene under oxidising con-
ditions. It is also clear from Table 1 that anilines which contain either
electron-donating or electron-withdrawing groups can be both tolerated
in this MCR (entries 5, 6 and 8–17) with no evident changes in yields.
For example, the MCRs carried out with the substituted anilines 2b-e in
the presence of the NbCl5/p-chloranil system at 100 °C for 24 h pro-
vided the phthalonitriles 4b-e in yields ranging from 55 to 80% (entries
6, 9, 11 and 13). These results are better than those obtained using only
NbCl5 under the same conditions (41–52%, Table 1, entries 5, 8, 10 and
12). In addition, the MCRs carried out with the anilines 2f,g and phe-
nylacetylene (3a) or 2d,g and 1-ethynyl-4-pentylbenzene (3b) in the
presence of the NbCl5/p-chloranil system at 100 °C for 24 h afforded the
compounds 4f-i in 70–81% yields (entries 14–17).

Subsequently, we used 4-formylphthalonitrile (1) and 4-chloroani-
line (2c) as model substrates for exploring the phenylacetylene sub-
strate scope (Table 2).

Product 4c was selected due to its efficiency in the MCR, as pre-
viously demonstrated (80%, Table 1, entry 9). It was found that sub-
stituted phenylacetylenes (3b-g) were suitable substrates for this MCR
(Table 2), and the expected phthalonitriles (4j-o) were obtained in
73–80% yields (Table 2, entries 1–6) using the NbCl5/p-chloranil
system at 100 °C for 24 h. Notably, when phenylacetylene 3h
(R2=CO2Me) was used in the MCR under the same conditions, the
phthalonitrile 4p was obtained in only 57% yield (entry 7), possibly
due to the strong electron-withdrawing and mesomeric effect of the
ester group. Furthermore, we have successfully performed a scaled-up
experiment of 1 (2.5 mmol) with 2c and 3a in the same conditions
established in Table 1 and entry 9, and obtained 640.2mg of 4c in 70%
yield (see Section 2.5.3).

Intriguingly, the literature on similar MCRs suggests that this re-
action proceeds by a stepwise pathway involving the propargylamine A
as a key intermediate (Scheme 1a) [62–70], or by a concerted pathway

Fig. 1. Comparison of 1H NMR (400MHz) spectra in CDCl3 of 4c (a) and 4q (b).
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(not proven) [61,71].
To obtain our own insight on the mechanism of this MCR, a deu-

terium labelling experiment using phenylacetylene-d (99% atom D) (3i)
with 4-formylphthalonitrile (1) and 4-chloroaniline (2c) was carried
out under the same reaction conditions, as described in Table 2. To our
delight, the deuterated phthalonitrile 4q was obtained as a single
product in 74% yield, showing that rupture of the C-D bond does not
occur during the MCR (Scheme 1b). Thus, we propose the initial for-
mation of an imine between formylphthalonitrile 1 and the substituted
anilines 2 catalysed by NbCl5. This is followed by a hetero-Diels-Alder
reaction with the phenylacetylenes 3 also catalysed by NbCl5. Finally,
the dihydroquinoline intermediate is oxidised by p-chloranil to the
phthalonitrile-quinoline dyads 4.

As illustrated in the 1H NMR spectrum of phthalonitrile 4c (Fig. 1a),
the H-3 signal of the quinoline nucleus appearing at δ 7.86 ppm (singlet,

1H) is absent in the spectrum of the deuterium-labelled phthalonitrile
4q (Fig. 1b). The structure of 4q was confirmed by HRMS with a mo-
lecular ion peak at m/z 367.0865 [M (deuterated) + H]+ (Fig. 2b).

After optimizing the methodology and testing the scope, and elu-
cidating the mechanism of this NbCl5 mediated MCR, we decided to
demonstrate the versatility of some of the phthalonitrile-quinoline
dyads for the synthesis of the PCs 5a-c.

3.2. Synthesis of zinc phthalocyanine-quinoline dyads (5a-c)

ZnPCs 5a-c were prepared by cyclotetramerization of phthaloni-
triles 4g-i, respectively, in the presence of Zn(OTf)2 and HMDS, in DMF
at 130 °C for 24 h (Scheme 2) [57]. The compounds 5a-c were obtained
in 54–64% yields as non-separable regioisomeric mixtures. Phthaloni-
triles 4g-i do not yield PCs using standard methodologies such as
heating with Zn(OAc)2 in DMAE.

The 1H NMR spectra of ZnPCs 5a-c (see SI, Figs. S60–62) show that
the peaks are broadened due to the presence of regioisomers and the
slight aggregation in solution at the concentrations used for the NMR.
The structures of ZnPCs 5a-c were confirmed by MALDI-TOF mass
spectrometric analyses (see SI, Figs. S82–84). In order to measure the
preliminary photophysical properties of these new dyads, aggregation,
fluorescence and photodegradation studies were performed as de-
scribed below.

3.3. Aggregation, photobleaching, and photophysical properties of the zinc
phthalocyanine-quinoline dyads (5a-c)

The UV–Vis spectra of dyads 5a-c show intense Q band absorption
in THF at 695 nm. Compared with the unsubstituted Zinc (II) phthalo-
cyanine (666 nm), the Q-band absorption of ZnPCs 5a-c are red-shifted
by 29 nm, showing the effect of the extended π-system (quinoline
moieties).

The aggregation behaviour of the ZnPCs 5a-c was studied by con-
centration-dependent UV–Vis spectral measurements in THF at room
temperature. As observed for compound 5a (Fig. 3), the intensity of the
Q-band absorption increased with the concentration without producing
new bands (normally blue-shifted). The bands perfectly followed

Fig. 3. Aggregation behaviour of ZnPc 5a in THF at different concentrations. The inset
plots the Q band absorption at 695 nm vs. the concentration of 5a.

Fig. 2. Comparison of HRMS spectra of 4c (a) and 4q (b).
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Lambert-Beer's law (Fig. 3 inset plot), suggesting no aggregation in this
solvent at the concentrations tested. A similar behaviour was found for
ZnPCs 5b and 5c (see SI, Figs. S1 and S2).

Fluorescence measurements were studied under identical conditions
in degassed THF at room temperature (Fig. 4). Upon excitation at
630 nm, fluorescence emissions at 705 nm were found for all com-
pounds, with the quantum yields of 0.16 (ZnPC 5a) and 0.15 (ZnPCs 5b
and 5c) relative to ZnPC standard (ΦF= 0.25 in THF) [58], and Stokes
shifts of 10 nm (Table 3).

The photobleaching studies (example in Fig. 5 for ZnPC 5a) were
also performed in THF, and the ZnPCs 5a-c showed no significant de-
gradation after irradiation for 2 h with a white LED lamp (30W) (see SI,
Figs. S5 and S6).

4. Conclusions

We have demonstrated the versatility of NbCl5 as a very efficient
Lewis acid for the promotion of MCRs between anilines, 4-for-
mylphthalonitrile and phenylacetylenes. We have also demonstrated

Fig. 5. Photobleaching study of ZnPc 5a in THF.

Table 3
Photophysical parameters of ZnPCs 5a-c in THF.

ZnPc λ (nm) (log ε) λema (nm) Stokes (nm) ΦF
b

5a 357 (5.14), 626 (4.89), 695 (5.59) 705 10 0.16
5b 355 (5.05), 626 (4.77), 695 (5.50) 705 10 0.15
5c 355 (5.19), 626 (4.92), 695 (5.63) 705 10 0.15

a Excited at 630 nm. All the emission analyses were carried out in degassed THF at
room temperature.

b Relative to Std-ZnPc in THF as the reference (ΦF= 0.25) [58].

Scheme 2. Synthesis of zinc phthalocyanine-quinoline dyads (5a-c).

Fig. 4. Normalized emission spectra for Std-ZnPc (black line), 5a (red line), 5b (blue line)
and 5c (green line). (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)
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that this MCR goes by a pericyclic hetero-Diels-Alder reaction. The
methodology describes the scope, and the scalability for the production
of the phthalonitrile-quinoline dyad (4c) on a 600mg-scale. To show
the versatility of our library, we have also synthesized three new
phthalocyanine derivatives, and measured their photophysical proper-
ties which show good potential for applications in photonics.
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