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Abstract
The study aimed to evaluate the metabolic and inflammatory effects of short-term treatments (10 days) with metformin 
(MET) on the NAFLD caused by a high-fat diet (HFD) in C57BL/6 mice. After the treatment, histological liver slices were 
obtained, hepatocytes and macrophages were extracted and cultured with phosphate buffered saline, LPS (2.5 µg/mL) and 
MET (1 µM) for 24 h. Cytokine levels were determined by ELISA. NAFLD caused by the HFD was partially reduced by 
MET. The lipid accumulation induced by the HFD was not associated with liver inflammation; however, MET seemed to 
promote pro-inflammatory effects in liver, since it increased hepatic concentration of IL-1β, TNF-α, IL-6, MCP-1 and IFN-γ. 
Similarly, MET increased the concentration of IL-1β, IL-6 in hepatocyte cultures. However, in macrophages culture, MET 
lowered levels of IL-1β, IL-6 and TNF-α stimulated by LPS. Overall, MET reduced liver NAFLD but promoted hepatocyte 
increase in pro-inflammatory cytokines, thus, leading to liver inflammation.
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Introduction

The liver is a complex metabolic organ, and a classical 
example of the tight interaction between the immune sys-
tem and metabolism. The liver’s metabolic role is coordi-
nated by hepatocytes, the most abundant cell type, but the 
cells responsible for the initial immune responses to stimuli, 

Kupffer cells (KC) and hepatic satellite cells (HSc), only 
constitute 15% of the liver cell population. (Nati et al. 2016). 
Pathological conditions promote the migration of immune 
cells, which, besides changes to the proportion and subtypes 
of cells in the liver, could also lead to the maintenance of a 
chronic inflammatory state (Fader et al. 2015; Mikami et al. 
2014).

Nonalcoholic fatty liver disease (NAFLD), characterized 
by an accumulation of fat droplets in hepatic parenchyma, 
is the most common chronic liver disease (Tiniakos et al. 
2010). NAFLD has been highly associated with other meta-
bolic diseases, such as obesity, insulin resistance, type 2 
diabetes and cardiovascular diseases (Love-Osborne et al. 
2008). It was also observed that long-term NAFLD can pro-
gress into harmful kinds of liver disease, like nonalcoholic 
steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma 
and liver failure (McCullough 2004).

The western diet, rich in fatty acids, can trigger the pro-
cess of apoptosis, necrosis, oxidative stress, and lipid per-
oxidation in the liver (Casas et al. 2014; Yadav and Ramana 
2013). Although the most accepted hypothesis for the 
NAFLD pathogenesis points to the excess of free fatty acids 
(FFA) caused by peripheral insulin resistance as a trigger 
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for higher triacylglycerol incorporation (Adams et al. 2005; 
Teixeira et al. 2016) and impaired oxidation functions (Ber-
langa et al. 2014), it is well known that inflammation could 
promote metabolic alterations in the liver.

In fact, low grade inflammation (LGI), observed in obe-
sity and insulin-resistant patients (Brestoff and Artis 2015; 
McNelis and Olefsky 2014), seems to have an important 
role in the progression of NAFLD (Xu et al. 2015a). LGI is 
responsible for a low sustained exacerbation of cytokines, 
chemokines, adipokines and acute phase proteins, which 
increase the recruitment of immune cells and also seem to 
impair insulin sensitivity and oxidative metabolism in the 
liver (Liu et al. 2016; Nati et al. 2016).

Until the present moment, no drug has been approved as 
a treatment for NAFLD. Nevertheless, Metformin (MET) 
activates AMPK, reducing glucose production in the liver 
and improving glucose and fatty acid uptake, as well as their 
oxidation in skeletal muscle (Viollet et al. 2009). Moreo-
ver, MET has been described as being able to induce an 
anti-inflammatory response by (1) decreasing the levels 
of inflammatory cytokines in macrophages activated by 
lipopolysaccharide (LPS) (Kelly et al. 2015; Kim et al. 
2014), (2) impairing monocyte–macrophage differentiation 
(Vasamsetti et al. 2015) and (3) increasing M2 (anti-inflam-
matory) macrophages activation (Chen et al. 2015).

Although the use of MET as a treatment for type 2 diabe-
tes is well established, its actions over hepatic illnesses have 
not been widely investigated. Thus, the aim of this study was 
to evaluate the effects of short-term metformin treatments 
(10 days) on NAFLD caused by a high-fat diet in mice.

Materials and methods

Animal procedure

Male C57BL/6 J mice maintained in standard conditions 
were fed with a high-fat diet (HFD, caloric content: 59% 
fat, 15% proteins, 26% carbohydrate) (Reeves et al. 1993) 
or a standard diet (SD, caloric content: 9% fat, 15% pro-
tein, 76% carbohydrate) (Reeves et al. 1993) for 12 weeks. 
In the last 10 days, the mice received phosphate-buffered 
saline (PBS) or metformin (300 mg/kg of body weight) daily 
by oral administration (gavage), based on previous studies 
(Souza-Mello et al. 2010; Spruss et al. 2012). The body 
weight was evaluated weekly for 12 weeks, then the mice 
were fasted (4 h), culled, and the samples of blood (total 
cholesterol:  Labtest®, Lagoa Santa, MG, Brazil) and tissue 
(liver, adipose tissue and skeletal muscle) were collected. 
Adipose tissue index was calculated as sum of epididymal, 
subcutaneous, and retroperitoneal adipose tissue weight. The 
experimental protocols were approved by the Ethics Com-
mittee for Animal Experimentation, Institute of Biomedical 

Sciences, registered under the number 050 in the fls. 05 of 
book 03.

Histological analyses

Liver biopsies (50 mg) were obtained carefully excised 
using scissors following by fixation 4% paraformaldehyde 
(w/v), pH 7.4. The samples were dehydrated in absolute 
ethanol, diaphanization in xylol and for last, embedded in 
paraffin (Paraplast X-TRA, SIGMA-ALDRICH). The sec-
tions of 5 µm were mounted onto slides  Starfrost® (Knittel 
Glass). Deparaffinized and hydrated sections were stained 
with hematoxylin (H) and counterstained with eosin (E) and 
photographed under light microscopy (Olympus).

Picro sirius red

The 5-µm sections previously deparaffinized were hydrated 
during 5 min in running water followed for 1 h at room 
temperature of staining by Picro Sirius red dye. The slides 
were mounted with Permount (Tuluene Solution, Fischer 
Scientific).

Oil red O

For Oil Red O (ORO) staining, the fresh liver samples 
were cryo-preserved with isopentane and freezing into liq-
uid nitrogen. Before cryostat sections set to − 21 °C were 
obtained, the samples were covered with Tissue-Tek. Sec-
tions of 7 µm were hydrated in phosphate buffer during 
5 min and fixed for 30 min at room temperature in buffered 
formalin (4%), ph 7.4. The staining protocol was performed 
adapted from VanSaun (2009). After fixation, the slides were 
rinsed in running water for 10 min followed by 60% isopro-
panol for 5 min. The working solution of ORO was directly 
applied into each section during 1 h at room temperature. 
The working solution was prepared from stock solution, con-
sisting of 5 g ORO (Sigma, Aldrich, St. Louis, MO) in 100% 
isopropanol, at 3:2 with distilled water. After staining, slides 
were immersed in 60% isopropanol following by 5 min with 
distilled water. Mayer’s hematoxylin was used to counter-
staining, tris-buffered saline during 1 min and distilled water 
by 5 min. After, the slides were mounted with glycerol.

All images were acquired using Image ProPlus v.5.2 
(Media Cybernetics, Bethesda, MD, USA) digital cam-
era system coupled to a light microscope (Olympus).

Glucose tolerance tests

The glucose tolerance tests were performed at the seventh 
(before metformin treatment) and 11th week (after 8 days 
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with metformin treatment), in which blood samples were 
collected 0 (basal), 15, 30, 60 and 90 min after the d-glucose 
(2 g/kg body weight) intraperitoneal injection (Bergmeyer 
and Bernet 1974). The levels of plasma glucose were meas-
ured using an Accu-Chek® performa glucometer  (ROCHE®, 
São Paulo, SP, Brazil), and the difference of glycemia before 
and after glucose administration over time was used to cal-
culate the area under the curve (AUC).

Enzyme‑linked immunosorbent assay (ELISA)

Liver retroperitoneal adipose tissue and gastrocnemius mus-
cle samples (80–100 mg) were carefully homogenized in 
RIPA buffer (0.625% Nonidet P-40, 0.625% sodium deoxy-
cholate, 6.25 mM sodium phosphate, and 1 mM EDTA at 
pH 7.4) containing 10 μg/mL of protease inhibitor cocktail 
(Sigma-Aldrich®, St. Louis, Missouri, USA). The homogen-
ate supernatant was utilized to measure total protein concen-
tration by Bradford assay (Bio-Rad®, Hercules, CA, USA) 
and to determine expression of IL-1β, TNF-α, IL-6, IL-12, 
MCP-1, IFN-γ, IL-1Ra, IL-10, IL-4, adiponectin and FGF-
21 by ELISA (DuoSet  ELISA®, R&D Systems, Minneapolis, 
MN, USA).

RNA isolation, reverse transcription, and real‑time 
PCR

The expression of hepatic genes related to metabolic and 
inflammatory factors was assessed by qRT-PCR with 
a SYBR Green marker. For this reason, total RNA was 
extracted as described by Chomczynski and Sacchi (1987), 
quantified in a spectrophotometer (260 nm), and cDNA was 
synthesized from the total RNA using reverse transcriptase. 
The sequences of the primers are shown in Supplementary 
Table 1; gene expression was quantified by the compara-
tive method using the expression of GAPDH or RPL-19 as 
standard (Livak and Schmittgen 2001).

Western blotting (WB)

The total protein extracted (25 µg) from the liver, retrop-
eritoneal adipose tissue and gastrocnemius muscle was 
diluted in Laemmli buffer, subjected to electrophoresis in a 
SDS–polyacrylamide gel and transferred to a nitrocellulose 
membrane. The membranes were incubated with antibod-
ies against Total AMPK (1:1000), Phosphorylate AMPK 
(1:1000), PPAR-γ (1:1000), Total ACC (1:1000), Phospho-
rylate ACC (1:1000), FAS (1:1000) and FABP4 (1:1000) 
(Cell Signaling Technologies, USA) or β-tubulin (1:1000) 
(Santa Cruz  Biotechnology®, USA) followed by anti-IgG 
peroxidase-conjugated antibody, and then incubated with the 
peroxidase substrate (ECL kit,  Biorad®, USA) and exposed 
to X-ray film.

Table 1  Effect of 10-day metformin treatment on body weight (BW), tissue weight AND total cholesterol

C57BL/6 mice were fed with a standard diet (SD) or a high-fat diet (HFD), and either treated with metformin (SDM; HFDM) or PBS as placebo
The data are presented as the mean ± SEM
a p < 0.05 versus SD
b p < 0.05 versus SDM
c HFD versus HFDM (Two-way ANOVA followed by Bonferroni correction)

SD SD M HFD HFD M

Initial BW (g) 23.35 ± 0.57 (n = 12) 23.70 ± 0.3019
(n = 12)

23.69 ± 0.26 (n = 12) 23.14 ± 0.79 (n = 12)

Tenth week BW (g) 29.860 ± 0.84 (n = 12) 29.74 ± 0.9590
(n = 12)

40.46 ± 0.79ª,b (n = 12) 40.50 ± 1.61ª,b (n = 12)

Final BW (g) 29.46 ± 0.75 (n = 12) 28.77 ± 0.7969 (n = 12) 42.39 ± 0.91ª,b (n = 12) 37.92 ± 1.55ª,b,c (n = 12)
Liver weight (g) 0.990 ± 0.023 (n = 12) 1.014 ± 0.043 (n = 12) 1.30 ± 0.058ª,b (n = 12) 1.14 ± 0.018

(n = 12)
Adiposity index (g) 1.762 ± 0.214 (n = 12) 1.578 ± 0.2194 (n = 12) 5.109 ± 0.327ª,b (n = 12) 4.702 ± 0.245a,b (n = 12)
Retroperitoneal adipose tissue (g) 0.308 ± 0.033 (n = 12) 0.281 ± 0.039 (n = 12) 0.782 ± 0.061ª,b (n = 12) 0.7625 ± 0.029a,b (n = 12)
Brown adipose tissue weight (g) 0.115 ± 0.011 (n = 12) 0.1130 ± 0.007

(n = 12)
0.166 ± 0.016ª,b (n = 12) 0.144 ± 0.012 (n = 12)

Gastrocnemius muscle (g) 0.2970 ± 0.011
(n = 12)

0.2951 ± 0.006
(n = 12)

0.3034 ± 0.005
(n = 12)

0.2878 ± 0.009
(n = 12)

Total cholesterol (mg/dL) 139.0 ± 15.27 (n = 8) 173.4 ± 14.07
(n = 8)

204.5 ± 16.07a (n = 7) 182.8 ± 10.38 (n = 8)
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Insulin Response in Isolated Soleus Muscles

Soleus muscles were carefully isolated from the culled mice, 
weighed (8–10 mg), and attached to stainless steel clips to 
maintain resting tension. The muscles were pre-incubated 
in Krebs–Ringer bicarbonate buffer containing 5.69 mM 
glucose and 1% bovine serum albumin, pH 7.4, and pre-
gassed (95%  O2, 5%  CO2) with agitation (100 oscillations/
min). After these procedures, the muscles were transferred to 
fresh vials containing the same buffer containing 0.3 μCi/mL 
d-[U-14C]-glucose and 0.20 μCi/mL 2-deoxy-d-[2,6-3H]-
glucose in the presence or absence of 7 nM insulin. After the 
incubation period, the samples were processed to measure 
the uptake of 2-deoxy-d-[2,6-3H]-glucose, the incorporation 
of d-[14C]-glucose, the synthesis of [14C]-glycogen, and 
the decarboxylation of d-[14C]-glucose, according to the 
methods described by (Challiss et al. 1983; Espinal et al. 
1983; Leighton et al. 1985).

Measurement of palmitic acid oxidation in skeletal 
muscle

Oxidation of [U-14C] palmitic acid was evaluated as previ-
ously described (Hirabara et al. 2006; Leighton et al. 1985). 
Skeletal muscle cells were incubated in DPBS containing 
25 µM palmitic acid, 0.2 µCi/mL d-[U-14C]palmitic acid 
and incubated for 2 h in the absence or presence of etomoxir 
(10 µM) or bromopalmitate (25 µM). Phenylethylamine, 
diluted 1:1 v/v in methanol, was added into a separate com-
partment for  14CO2 adsorption.

Isolation and culture of hepatocytes

Hepatocytes were isolated according to the method 
described by (Edwards et al. 2013), in which mice anes-
thetized by inhalation of isoflurane were subjected to liver 
perfusion technique in situ (de Morais et al. 2012) with 
collagenase. After perfusion, the liver was filtered and the 
hepatocytes obtained were counted by TRIPAN Blue exclu-
sion method. 1 × 105/cm2 viable cells were plated and cul-
tivated in standard medium containing LPS (2.5 µg/mL, E. 
coli O111:B4), and/or metformin (1 µM). After 24 h, the 

medium was collected for ELISA and a cell viability assay 
was performed.

Cell viability (MTT)

After the stimulation period, hepatocytes were incubated 
with MTT (bromide 3-(4,5-dimethylthiazol-2-il)-2,5-diphe-
nyltetrazolium) solution (0.5 mg/mL) for 3 h. The formazan 
formed was resuspended with isopropanol/HCl (11 M) and 
the absorbance measured (595 nm) was utilized to calculate 
the cell viability in relation to the absorbance of the control 
group (100%). For the treatment of the cells, a dose of 1 μM 
of metformin was used

Extraction and culture of intraperitoneal 
macrophages

Macrophages were extracted from the intraperitoneal cav-
ity of C57BL6 mice with RPMI medium and counted in 
a hemocytometer using TRIPAN Blue exclusion method. 
2.5 × 105/cm2 viable macrophages were exposed to PBS 
(control) or LPS (2.5 µg/mL, E. coli O111:B4) DMSO or 
metformin (1 µM) for 24 h. Then, the medium and mac-
rophages were collected for further analysis.

Statistical methods

Normal distribution and variance homogeneity were tested 
and the appropriate statistical test (two-way ANOVA) was 
employed. Statistical analysis was carried out with the pro-
gram GraphPad Prism 5.0, with significance being < 5% 
(p < 0.05). Data are expressed as mean ± standard error of 
the mean (SEM).

Results

The high fat diet group (HFD) markedly increased the body 
weight gain of mice (Table 1). This body weight gain caused 
by the HFD was associated with an increase of liver weight 
and adiposity (Table 1). As expected by the increase of body 
weight, the HFD also increased the concentration of total 
cholesterol (Table 1).

After seven weeks of HFD feeding, an increase of gly-
cemia was observed in the glucose tolerance test (GTT) 
(Fig. 1b), and this effect could be confirmed by the increased 
AUC (Fig. 1a). After eight days of metformin (M) treatment, 
the high fat diet group treated with metformin (HFDM) 

Fig. 1  Variation in glycemia in the glucose tolerance test in the sev-
enth (a) and 11th week (after 8 days with metformin treatment) (c), 
respective area under curve (AUC) (b, d), glucose uptake of tissue 
soleus without stimulating insulin (e), with stimulating insulin (f) Pal-
mitate Oxidation without stimulating insulin (g) and Palmitate Oxida-
tion with stimulating insulin (h) of mice submitted to standard diet 
(SD) or high fat diet (HFD) for 12  weeks and treated with PBS or 
metformin (M) (300 mg/kg of body weight) for 10 days. The data are 
mean ± SEM of 8 animals, *p < 0.05, **p < 0.01 and ***p < 0.001. 
(Two-way ANOVA followed by Bonferroni)

◂
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presented a lower glycemia in the glucose tolerance test 
(Fig. 1 C/D).

Although the HFD or the metformin treatment had no 
effect on the weight of the gastrocnemius muscle (Table 1), 
when compared to the HFD group (Fig.  1f), this drug 
increased the glucose uptake in skeletal muscle of mice fed 
with a standard diet. Additionally, increased palmitate oxi-
dation in skeletal muscle in both situations, without insulin 
stimulus when compared to all the other groups (Fig. 1g) 
and with the insulin stimulus when compared to the SD 
(Fig. 1h).

Despite the total weight loss of the HFDM group when 
compared to the HFD group, when weighed the adiposes 
tissues we did not observe significant differences between 
these groups (Table 1). In the retroperitoneal adipose tissue, 
the protein content of IL-1β, TNF-α, IL-6, IL-12, MCP-1, 
IFN-γ, IL-1RA, IL-10, IL-4 and adiponectin was analyzed 
(Fig. 2). This analysis allowed us to observe that IL-1β 
(Fig. 2a), IL-6 (Fig. 2c) and MCP-1 (Fig. 2e) were increased 
in the HFDM when compared to standard diet groups. Simi-
larly, the TNF-α (Fig. 2b) and IFN-γ (Fig. 2f) were increased 
in SDM when compared to SD, while IL-12 (Fig. 2d) was 
higher in both groups treated with metformin, when com-
pared to their respective controls.

These results show that metformin increased the concen-
tration of some inflammatory cytokines, however, the same 
effects of metformin were observed on anti-inflammatory 
cytokine concentrations. The levels, of IL-1RA (Fig. 2g) and 
IL-10 (Fig. 2h), were increased in the adipose tissue from 
HFDM, when compared to SD. Similarly, the concentrations 
of IL-4 and adiponectin (Fig. 2i, j, respectively) were also 
increased by metformin in both diets, when compared to 
their respective controls.

In histological slides of the liver stained with H&E, Oil 
Red and Sirius red, we observed that the lipid accumula-
tion caused by the HFD, was partially reduced in the MET 
treatment (Fig. 3). The gene expression of AMPK (Fig. 4a), 
ACC (Fig. 4b) and FAS (Fig. 4c) in the liver was not signifi-
cantly different. The protein expression of pAMPK (Fig. 5a) 
increased in the HFDM when compared with HFD, and 
pACC (Fig. 5b) presented no significant difference. This 
hepatic steatosis induced by the HFD was not associated 
with liver inflammation in the HFD. However, metformin 
seemed to induce liver inflammation, as observed by the 
higher hepatic concentration of IL-1β (Fig. 6a), TNF-α 
(Fig. 6b), IL-6 (Fig. 6c), MCP-1 (Fig. 6e) and IFN-γ (Fig. 6f) 

in HFDM mice. Besides its inflammatory effects, metformin 
also increased the hepatic concentration of IL-10 (Fig. 6h) 
and adiponectin (Fig. 6j). Nevertheless, the concentration of 
FGF-21 (Fig. 6k) was decreased in the liver of mice treated 
with metformin, and the levels of IL-12 (Fig. 6d), IL-1RA 
(Fig. 6g) and IL-4 (Fig. 6i) were not modulated by the diet 
nor the -treatment. In the protein expression analyzed by 
WB, we observed that NF-κB is increased in the groups 
treated with metformin (Fig. 6l).

Although metformin increased the levels of IL1β in the 
livers of HFD mice, the hepatic mRNA expression of IL-1β 
decreased in HFDM when compared with SD. (Figure 7e). 
However, other inflammatory genes such as IKB-α (Fig. 7c), 
NF-κB (Fig. 7d), NLRP-3 (Fig. 7f) and Caspase-1 (Fig. 7g), 
as well as the receptors OCT-1 (Fig.  7a) and OCT-3 
(Fig. 7b), were not altered by the diets nor the treatments.

In cultured isolated hepatocytes, the expression of 
IL-1β, IL-6 and TNF-α stimulated with LPS was analyzed 
and then treated with 1 μM of metformin. We observed 
that metformin, exclusively, increased the concentration of 
IL-1β (Fig. 8a) and IL-6 (Fig. 8b), and metformin plus LPS 
increased the concentration of TNF- α (Fig. 8c). However, 
in intraperitoneal macrophages, we observed lower levels 
of IL-1β (Fig. 8d), IL-6 (Fig. 8e) and TNF-α (Fig. 8f) in 
those cells stimulated with LPS and then treated 1 μM of 
metformin.

Discussion

We observed that the metformin treatment (300 mg/kg 
of metformin) improved glucose tolerance, weight loss, 
increased palmitate oxidation in skeletal muscle, alleviated 
the lipid accumulation in the liver, with a decrease in lipid 
storage and fibrosis. Furthermore, we observed the different 
expression of cytokines that occur in different proportion 
dependent of the tissue, or cell type. A pro-inflammatory 
profile was found in liver, and we observed that this effect 
was induced by increased in pro-inflammatory cytokines 
produced by hepatocytes, while the pro and anti-inflamma-
tory cytokines were increased in adipose tissue, and finally 
the metformin avoided the pro-inflammatory response in 
macrophages stimulated with LPS.

Metformin is a well-established drug used for the treat-
ment of type 2 diabetes mellitus (T2D) for decades and 
appears to also be useful against obesity (Nasri and Rafieian-
Kopaei 2014). Specifically, metformin inhibits gluconeogen-
esis by decreasing the endogenous glucose production by 
liver (Nasri and Rafieian-Kopaei 2014). Furthermore, this 
drug improved both insulin sensitivity and β-cell function 
(Bi et al. 2013; Patane et al. 2000). An improved glucose 
tolerance was observed in our model.

Fig. 2  Protein expression in retroperitoneal adipose tissue by ELISA 
of a IL-1β, b TNF-α, c IL-6, d IL-12, e MCP-1, f IFN-γ, g IL-1RA, 
h IL-10, i IL-4 and j Adiponectin of mice submitted to standard diet 
(SD) or high-fat diet (HFD) for 12  weeks and treated with PBS or 
metformin (M) (300 mg/kg of body weight) for 10 days. The data are 
mean ± SEM of 8 animals, *p < 0.05, **p < 0.01 and ***p < 0.001 
(Two-way ANOVA followed by Bonferroni)

◂
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Moreover, the treatment increased palmitate oxidation in 
the skeletal muscle of mice submitted to a HFD and treated 
with metformin. Kitzmann et al. showed that skeletal muscle 
cells derived from moderately obese T2D patients exhibited 
decreased beta-oxidation and increased lipid accumulation in 
response to palmitate overload (Kitzmann et al. 2011). Other 
studies showed that metformin induced decreases in palmi-
tate uptake (Bogachus and Turcotte 2010) and suppression 

of lipid accumulation in skeletal muscle, by promoting an 
increase in fatty acid oxidation (Wang et al. 2014). In fact, 
some studies show the relation between the abnormalities 
in skeletal muscle, such as fat accumulation, insulin resist-
ance and loss of skeletal muscle, with the pathogenesis and 
severity of hepatic steatosis (Flannery et al. 2012; Kitajima 
et al. 2013; Moon et al. 2013).

Fig. 3  Histological slices of livers colored by hematoxylin and eosin 
(H&E), Oil Red and Sirius Red at ×40 magnification. Livers of mice 
submitted to standard diet (SD) or high fat diet (HFD) for 12 weeks 

and treated with PBS or metformin (M) (300 mg/kg of body weight) 
for 10 days. N = 4 per group
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Fig. 4  mRNA expression in liver of a AMPK, b ACC and c FAS 
of mice submitted to standard diet (SD) or high-fat diet (HFD) for 
12  weeks and treated with PBS or metformin (M) (300  mg/kg of 

body weight) for 10 days. The data are mean ± SEM of 8 animals, 
*p  <  0.05, **p  <  0.01 and ***p  <  0.001. (Two-way ANOVA fol-
lowed by Bonferroni)
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Fig. 5  Protein expression in liver by WB of a AMPK and b ACC 
of mice submitted to standard diet (SD) or high-fat diet (HFD) for 
12  weeks and treated with PBS or metformin (M) (300  mg/kg of 

body weight) for 10 days. The data are mean ± SEM of 6 animals, 
*p  <  0.05, **p  <  0.01 and ***p  <  0.001. (Two-way ANOVA fol-
lowed by Bonferroni)
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Fig. 6  Protein expression in liver by ELISA of a IL-1β, b TNF-α, c 
IL-6, d IL-12, e MCP-1, f IFN-γ, g IL-1RA, h IL-10, i IL-4, j Adi-
ponectin and k FGF-21 of mice submitted to standard diet (SD) or 
high-fat diet (HFD) and Protein expression in liver by WB of phos-
phorylated and total NF-κB p65 (L) for 12  weeks and treated with 

PBS or metformin (M) (300 mg/kg of body weight) for 10 days. The 
data are mean ± SEM of 8 animals in ELISA and 4 animals in WB, 
*p < 0.05, **p < 0.01 and ***p < 0.001 (Two-way ANOVA followed 
by Bonferroni)
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Fig. 7  mRNA expression in liver of a Organic Cation Transporter 1 
(OCT-1), b Organic Cation Transporter 3 (OCT-3), c nuclear factor 
of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha 
(IκB-α), d nuclear factor kappa light chain enhancer of activated B 
cells (NF-κB), e Interleukin 1β (IL-1β), f leucine-rich repeat-contain-

ing family protein-3 (NLRP-3) and g Caspase 1 of mice submitted to 
standard diet (SD) or high-fat diet (HFD) for 12  weeks and treated 
with PBS or metformin (M) (300 mg/kg of body weight) for 10 days. 
The data are mean ± SEM of 8 animals, *p < 0.05, **p < 0.01 and 
***p < 0.001. (Two-way ANOVA followed by Bonferroni)

Fig. 8  Protein expression in hepatocytes by ELISA of a IL-1β, b 
IL-6 and c TNF-α stimulated with 2.5  ng/mL LPS and/or treated 
with 1  μM of metformin and protein expression in intraperitoneal 
macrophages by ELISA of d IL-1β, e IL-6 and f TNF-α stimulated 
with 2.5 ng/mL LPS and/or treated with 1 μM metformin. The data 

are mean ± SEM of 4 animals, the dotted line represents the control 
group, *p < 0.05 versus control group, #p < 0.05 versus LPS group 
and $p < 0.05 versus 1 μM MET group. (Two-way ANOVA followed 
by Bonferroni)
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The improvement in glucose homeostasis showed in the 
HFDM could be explained by decreased in weight gain, 
associated with increased in adiponectin content and huge 
increased in anti-inflammatory cytokines (IL-1RA, IL-10 
and IL-4) induced by metformin treatment in HFD mice.

We observed a decrease in NAFLD in mice submitted 
to a HFD and treated with metformin confirmed by his-
tological analysis. AMPK protein expression in the liver 
was increased in the HFDM group. Also, the phospho-
rylated AMPK (THR 172) had suppressed expression of 
lipogenesis-associated genes like fatty acid synthase, and 
phosphorylated ACC, thus deactivating them (Foretz and 
Viollet 2011; Viollet et al. 2009). Although the ACC did not 
increase significantly in the HFDM group, there was a trend 
observed. ACC is an enzyme that controls the synthesis of 
malonyl-CoA, which is a precursor for the biosynthesis of 
fatty acids and a potent inhibitor of mitochondrial fatty acid 
oxidation by inhibiting CPT1. Inhibition of ACC by AMPK 
leads to a decrease in malonyl-CoA content, and a subse-
quent decrease in fatty acid synthesis and an increase in fatty 
acid oxidation. Thus, excessive storage of triglycerides in 
the liver is reduced (Foretz and Viollet 2011; Viollet et al. 
2009). The association between the increase in peripheral 
fatty acid oxidation and the increase of AMPK in the liver 
led to the decrease of NAFLD by metformin.

Furthermore, the chronic utilization of low doses of met-
formin also presents an anti-inflammatory effect in humans, 
animal models, and in cell culture (Koh et al. 2014; Woo 
et al. 2014; Xu et al. 2015b).

In our study, 300 mg/kg of metformin during 10 days pro-
moted a dual inflammatory and anti-inflammatory effect in 
the retroperitoneal adipose tissue and intraperitoneal mac-
rophages, respectively. Kim et al. 2014, showed that met-
formin presented an anti-inflammatory action in intraperi-
toneal macrophages, partially through pathways involving 
the activation of AMPK and activating transcription factor-3 
(ATF-3). A mechanism model shows that ATF-3 inhibits the 
translocation of NF-kB subunit involved in the transcription 
of pro-inflammatory genes such as TNF-α and IL-6 (Kim 
et al. 2014). The potential, anti-inflammatory mechanism 
through which metformin operates is by the inhibition of 
NF-κB through AMPK-dependent and independent path-
ways (Salminen et al. 2011). Metformin can also increase 
nitric oxide production and inhibit the poly [ADP ribose] 
polymerase 1 pathway through AMPK activation, leading 
to suppression of the inflammatory response. (Saisho 2015).

However, in the liver, metformin caused an inflamma-
tory effect, which was further confirmed with the hepatocyte 
isolation. It is interesting once a recent study has shown 
a relationship between inflammation and the progression 
of NAFLD to steatohepatitis (Wan et al. 2016). However, 
we observed that the metformin treatment was able to pro-
mote a reduction in lipid toxicity and in accumulation in 

the liver. In according with our findings, the recent meta-
analysis showed that the metformin administration reduced 
the serum levels of glucose and lipids with the improvement 
of biochemistry parameters, but induced lobular inflamma-
tion after metformin treatment in humans (Said and Akhter 
2017).

In conclusion, the short-term metformin treatment 
reversed lipid accumulation in liver by central and periph-
eral oxidation, improved the glucose homeostasis, amelio-
rated the inflammation in adipose tissue and intraperitoneal 
macrophages, but leads to an inflammatory response in liver 
through an increase in cytokine production by hepatocytes.
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