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1. Introduction

Titanium and its alloys have been extensively studied for biomedical applications for replacement hard tissues. 
However, the stress-shielding phenomenon is an important aspect that needs to be considered in the development 
of new titanium alloys for replacement hard tissues in biomedical applications. An alteration in the mechanical 
stimulus in the bone adjacent to the implant after implantation occurs principally due to the difference between 
the stiffness of the implant material as well as bone size, shape, and density [1].

Therefore, since 1990 s, new beta type titanium alloys formed by addition of non-toxic elements such as Nb, 

Ta, Zr, Mo and Sn with lower Young’s modulus, high strength and corrosion resistance have been developed 
[2–13]. Two binary alloys systems, Ti–Nb [10, 14] and Ti–Ta [15–17], have been attracted attention as promis-
ing implant materials. Despite their higher corrosion resistance, the shape memory effect has been reported in 
these materials due to reversion α″ martensitic transformation to β phase. For the Ti–Nb alloys the martensitic 
transformation start temperature (MS) increased with decreasing of niobium content in alloy [14]. Likewise, Ms 
temperature was below room temperature for Ti–40Ta (%at) alloy and Ms temperatures above 373 K for content 
less than Ti35Ta (%at).

The ternary alloy Ti25Ta25Nb formed by niobium and tantalum was proposed by Betrand et al [18, 19] and 
its cytotoxicity was evaluated by Cimpean et al [20]. This alloy exhibited higher corrosion resistance and biocom-
patibility. However, the double yielding effect in elastic region during tensile testing was observed. According Li 
et al [21] this phenomenon corresponds to the critical stress needed to induce α″ martensitic transformation to 
β phase and this low strength of the first yielding raises concern over the long-term use of implants made of these 
materials for biomedical applications. This effect can be suppressed by addition of alloying elements such as tin 
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Abstract
Metallic biomaterials have been used for biomedical applications, such as cardiovascular, 
orthopaedics and orthodontics, due to excellent properties. In this study, the mechanical properties 
and corrosion resistance of new quaternary alloy Ti25Ta25Nb3Sn were evaluated. Alloys were 
processing in arc melting furnace with argon atmosphere and cold worked by rotary swaging. 
Alloy microstructure, crystalline phases and mechanical properties such as Young’s modulus, yield 
strength and tensile strength were evaluated. Corrosion resistance was investigated in fluoride 
solution by electrochemical polarization and biocompatibility with human dermal fibroblasts were 
also evaluated. In our study, for quaternary alloy Ti25Ta25Nb3Sn the stabilization of beta phase was 
maintained. It was observed that the elastic modulus of Ti25Ta25Nb3Sn (65 GPa) was lower than 
CP Ti (105 GPa) and Ti6Al4V (110 GPa) and slightly higher than Ti25Ta25Nb (55 GPa) alloy. The 
addition of Sn suppressed the double yielding verified on ternary alloy Ti25Ta25Nb.Electrochemical 
studies showed that stable passive oxide film was formed on the Ti25Ta25Nb3Sn surface and 
an increase of HDF adhesion and proliferation on alloy surface, indicating that the alloy is non-
cytotoxic may provide a favorable material for biomedical applications. Results obtained showed that 
Ti25Ta25Nb3Sn alloy is indicated for biomedical applications.
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(Sn). Tong et al [14] evaluated the influence of Sn addition in the Ti–Ta binary system. Ti–35Ta alloy exhibits 
a ‘double yielding’ phenomenon that disappeared for Ti30Ta5Sn alloy and only single yielding was observed. 
Based in these researches, we propose a new quaternary alloy, Ti25Ta25Nb3Sn, formed by the addition of Sn to 
initial composition of Ti25Ta25Nb ternary alloy. In this study, the crystalline phase formation, mechanical prop-
erties, corrosion resistance and biocompatibility was evaluated.

2. Experimental procedure

The ternary alloy Ti25Ta25Nb and new alloy quaternary Ti25Ta25Nb3Sn (% wt) were produced from sheets 
of commercially pure titanium (Ti), tantalum (Ta), niobium (Nb) and tin (Sn). After weighing, the materials 
were put in water-cooled copper crucible inside arc melting furnace and the furnace was evacuated and 
purged with argon at least five times. For chemical homogenization of the alloy, ingots were remelted and 
homogenization heat treatment was carried-out in vacuum at 1000 °C for 24 h and furnace cooled. Then, they 
were cold worked by rotary swaging into bars with 10 mm of diameter. Finally, they were subject to a solution 
treatment at 950 °C for 2 h followed by quenching. Ti25Ta25Nb was processed the same way and it was used as 
control group in all tests.

The crystalline phases formed were evaluated by x-ray Diffraction (XRD) using a PANanalytical Empyrean 
diffractometer operated at an accelerating voltage of 40 kV, current of 40 mA with Cu Kα radiation. For optical 
microscopy (OM) analysis, samples were prepared according standard metallographic procedure. Samples were 
ground using silicon carbide (SiC) paper (#100 to #1200 grit), polished with clothes using colloidal silica and 

cleaned in ultrasonic bath with acetone prior to use. The microstructure of the etched samples (Kroll’s reagent) 
was evaluated by using an optical microscope (Epiphot 4 Nikkon).

Mechanical behavior was characterized by tensile test in a Universal Testing Machine (MTS) according to 
ASTM E8M at a strain rate of 3 mm min−1 at room temperature with strain gage. Standard cylindrical samples 
with gage dimensions 6 mm diameter and 25 mm length were machined for each alloy. Elastic modulus, 0.2% off-
set yield strength and maximum strength were determined.

Electrochemical measurements were performed to evaluate corrosion resistance of Ti25Ta25Nb3Sn alloy. 
Electrochemical experiments were carried-out in a standard three electrode double wall glass cell containing 
fluorinated physiological serum (0.15 M NaCl  +  0.03 M NaF (pH  =  6.0)) at 37 °C. The working electrode was 
made of the titanium CP, Ti25Ta25Nb and Ti25Ta25Nb3Sn discs with 0.5 cm2 exposed area. Potentiodynamic 
polarization studies were performed after 3 h exposure to solution. Curves were recorded using a potenciostat/
galvanostat EG & G PAR-283 by a scan rate of 1 mV s−1 with EOC ranging from  −0.3 V until  +3.0 V.

Biocompatibility of the alloy was evaluated due the addition of tin. Before cytotoxicity test, samples were 
sterilized by gamma irradiation. Human Dermal Fibroblast cells (HDF, Clonetics) were used in this study once 
fibroblast cell line are the major cellular constituent of fibrous connective tissue adjacent to implant. Prior to cell 
culture, fibroblasts cells were isolated of neonatal foreskin, stored during 4 d at  −80 °C and thawed in a water 
bath at 37 °C prior to cell culture. HDF cells were suspended in DMEM/High glucose (Hyciclone) medium with 
50 ml of fetal bovine serum (Sigma) supplement and 5 ml of Penicillin Strep (Sigma). The suspensions were 
added into culture flasks (75 cm3) and they were incubated at 37 °C in 5% CO2 atmosphere until cells reached 
70% confluence changing the medium each 72 h. When the cell suspensions reached 70% confluence, 3 mL of 
trypsin 0.25% solution was added to detached the cells and this enzymatic reaction was arrested by addition of 
a trypsin neutralizer (0.5% fetal bovine serum in phosphate-buffered saline (PBS)) after few minutes. The cells 
were aspirated, transferred to flasks and centrifuged at 180 g for 7 min. The cell pellet was resuspended in the 5 mL 
PBS (0.5% fetal bovine serum in phosphate-buffered saline). The number of cell was determined using the Scep-
ter Cell Counter (Millipore). Cells from passage fifth were used in the experiments.

Samples were placed in 42-well plates, washed with three times with sterile PBS and HDF cells were seeded 
at a density of 3  ×  104 cells mL−1. The adhered and proliferated fibroblasts cells were quantified 1, 4 and 7 d 
after seeding using a colorimetric assay using MTT (3-[4,5-dimethylthiazol]-2,5 diphenyl tetrazolium bromide) 
(Sigma, Aldrich). The substrates were transferred to a new 24-well plate and incubated in 10% MTT solution in 
PBS for 3 h at 37 °C under a 5% CO2 atmosphere and then it was added a mixture of 10% Triton X-100 in MTT 
solvent, with agitation. The absorbance of the solution was measured at a wavelength of 570 nm and 690 nm 
using a spectrophotometer. Fibroblast morphology on Ti25T25Nb3Sn alloy was evaluated after 1 and 7 d of cul-
ture using SEM.

3. Results and discussion

Optical micrographs of the Ti25Ta25Nb3Sn alloy and Ti25Ta25Sn after solution treatment along the transversal 
section are shown in figures 1(a) and (b), respectively. Despite the different steps used during processing of 
ternary alloy Ti–25Ta–25Nb in our study, the microstructure was like obtained for Bertrand et al [18, 19] for 
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this alloy. For quaternary alloy Ti25Ta25Nb3Sn, the stabilization of beta phase was maintained with addition 
of Sn and changing in the grain size can be observed. The presence of β-phase was verified for either according 
XRD patterns (figure 1(c)) for both alloys, confirming the micrographs analysis. The obtaining of β Ti alloys for 

biomedical applications is viable due to low Young’s modulus inhibiting the stress-shielding phenomena which 
occurs due to a mismatch in the stiffness of the biomedical material and bone tissue. Also, these alloys are easier to 
cold work when compared to α  +  β Ti alloys reducing the costs associated their processing [8].

Figure 2 shows the stress–strain curves obtained to Ti25Ta25Nb3Sn and compared with the curve obtained 

on ternary alloy Ti25Ta25Nb take as reference. The mechanical properties such as, tensile strength, Young’s 
modulus and yield strength of Ti25Ta25Nb3Sn were compared with Ti CP and Ti6Al4V [22] from literature 
are showed in table 1. It was observed that the elastic modulus of Ti25Ta25Nb3Sn (65 GPa) was lower than Ti 

CP (110 GPa) and Ti6Al4V. The Young’s modulus value was slightly higher than Ti25Ta25Nb alloy (55 GPa), 
however, the addition of Sn suppresses the transformation β to α″ verified to ternary alloy in the elastic deforma-
tion known as ‘double yielding’ [23]. A drop was observed in Ti25Ta25Nb3Sn, which can be attributed to stress-
induced α″ formation during deformation [24].

Electrochemical tests evaluated the corrosion resistance of the alloy. Figure 3(a) shows the open circuit poten-
tial of the alloys as a function of exposure time in solution containing fluoridated physiological serum (0.15 
M NaCl  +  0.03 M NaF (pH  =  6.0)) at 37 °C. OCP shift in the more noble direction and stabilized with time 
indicating the equilibrium between the formation and dissolution air-formed native oxide in these fluoride con-
centrations. The Ti25Ta25Nb shows the most positive OCP value, followed by Ti25Ta25Nb3Sn and Ti CP, i.e. 

Figure 1. Optical micrographs of (a) Ti25Ta25Nb3Sn alloy (b) Ti25Ta25Nb alloy and (c) XRD patterns obtained for 
Ti25Ta25Nb3Sn and Ti25Ta25Nb alloys (treated at 950 °C for 2 h).
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Ti25Ta25Nb  >  Ti25Ta25Nb3Sn  >Ti CP. These values were used in potentiodynamic polarization tests to evalu-
ate corrosion resistance.

Potentiodynamic polarization curves are shown in figure 3(b). It can be observed that Ti CP, Ti25Ta25Nb 
and Ti25Ta25Nb3Sn were spontaneously passive upon anodic polarization. However, Ti25Ta25Nb exhibited 
continuous increase in current density due to the breaking of the passive film. Similar results were observed by 
Karthega et al [25] for Ti29Nb13Ta4.6Zr (TNTZ) alloy in Hank’s solution. According these studies, this behavior 
probably occurred due to dissolution of any one of the alloying elements. In our study, the addition of Sn resulted 
in the decreasing in passive current density which indicate an increase of their corrosion protective ability due to 
formation of protective film. The corrosion potential (Ecorr), corrosion current density (icorr) and passive current 

Figure 2. Representative stress–strain tensile curves of the Ti25Ta25Nb3Sn and Ti25Ta25Nb alloys.

Table 1. Mechanical properties of Ti CP, Ti6Al4V, Ti25Ta25Nb and Ti25Ta25Nb3Sn alloy.

Ti CP Ti6Al4V Ti25Ta25Nb Ti25Ta25Nb3Sn (this study)

LRT (MPa) 360 800–1100 530 583

σe (MPa) 310 930 210 (480) (double yielding) 567

E (GPa) 105–110 110–140 55 65

Figure 3. (a) Corrosion potential, ECORR and (b) potentiodynamic polarization curves of Ti25Ta25Nb3Sn, Ti25Ta25Nb and CP Ti.
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density (ipass) of Ti CP, Ti25Ta25Nb and Ti25Ta25Nb3Sn are showed in table 2. Thus, this alloy shows a potential 

for biomedical applications due to high corrosion resistance.
The results from cell studies indicate an increase in HDF adhesion and proliferation on alloy surfaces after 7 d 

of culture (figures 4(a) and (b)). This indicates that alloy provides a favorable surface for enhanced adhesion and 
proliferation of HDF cells and does not have any cytotoxic effect. Further, the elongated morphology of the cells 
after 7 d elicits increased cell coverage and may activate additional focal adhesions, thus resulting in enhanced 
HDF cell functionality. MTT assay was used to evaluate the cytotoxicity of the alloy from the analysis of cell viabil-
ity. MTT assay results (figure 4(c)) indicated the viability of HDF cells after 7 d of culture on alloy surface. These 
findings are in agreement with studies about cytotoxicity for others alloys previously published [15, 26–28] and 
they showed clearly the viability of this alloy for biomedical applications due to their good biocompatibility.

4. Conclusions

In the present study, the effect of Sn addition on properties of the Ti25Ta25Nb alloy was evaluated. New 
quaternary alloy (Ti25Ta25Nb3Sn) exhibited excellent bulk properties such as high strength and low elastic 
modulus. Besides, the addition of Sn suppressed the double yielding verified on Ti25Ta25Nb alloy. These results 
are important in load bearing applications, such as orthopedic applications. Electrochemical studies showed that 
stable passive oxide film was formed. Also, results showed an increase of HDF adhesion and proliferation on alloy 
surface, indicating that the alloy in non-cytotoxic may provide a favorable material for biomedical applications.
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