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Abstract
The sediment compartment stands out because it functions as both a temporary sink of pollutants and a potential source of 
these elements that may become available to the water column.This study aimed to correlate the concentrations of total met-
als in the crude sediment and in the interstitial water with the ecotoxicity in the water column using an a modified sediment 
ecotoxicity test with Ceriodaphnia dubia. The results indicate that the sediment may contribute to the toxicity in the water 
column and that such toxicity is possibly not related to the metals present. Based on the chemical analysis of the metals, the 
Canadian Sediment Quality Guidelines (SQGs) would frame the sediment as non-toxic to benthic organisms, but the SQGs 
have no reference standards for possible effects on nektonic organisms. Due to the complexity of this compartment, it is fun-
damental to evaluate the interactions of the different pollutants in the system and possible effects on the nektonic organisms.
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Anthropogenic activities generate pollutants, including met-
als, which can compromise water quality. Contaminants in 
water bodies can remain in the water column or they can 
precipitate, becoming part of the sediment, and they can 
affect the biota in both compartments (Fetters et al. 2016). 
Sediments are typically complex matrixes composed of 
organic and inorganic fractions and interstitial water, 
defined as water occupying the spaces between sediment 
or soil particles (Alahverdi and Savabieasfahani 2012; US 
EPA 2000). Changes in pH and the process of mobilization 
of the sediments, either by natural or anthropic causes, can 
release these contaminants into the water column, especially 
those weakly bound to the sediment particles, resulting in 
peaks of toxicity. As contaminants can persist for long peri-
ods in sediments, determining sediment quality patterns for 
multiple water uses and for aquatic biota protection are of 
scientific and public interest.

There are three different and non-mutually exclusive ways 
to assess sediment quality: (i) by the detection and quanti-
fication of certain chemical components previously shown 

to cause toxicity (CCME 1995), hereafter called chemical 
methods, (ii) by ecotoxicological assays involving the expo-
sure of model organisms, with or without chemical analyses, 
hereafter called ecotoxicological methods and (iii) bioas-
says with spiked sediment (formulated or natural) conducted 
to understand the dynamics of toxicity in association with 
chemical knowledge (CCME 1995).

The Canadian Sediment Quality Guidelines (SQGs), 
for instance, have been broadly used; they are based on 
the bioavailability of metals determined through equilib-
rium partitioning theory, and they indicate circumstances 
in which toxicity is unlikely, uncertain or likely to occur. 
Furthermore, they highlight certain concentrations of indi-
vidual chemical contaminants, such as the SQGs model TEL 
(threshold effect level) and PEL (probable effect level). The 
TEL is the concentration below which adverse biological 
effects are expected to rarely occur, while the concentra-
tion above which adverse effects are expected to occur fre-
quently is defined as the PEL (CCME 2001a). Recent studies 
demonstrate that both methodologies are valid and present 
similar results (Nasr et al. 2014; He et al. 2015; McQueen 
et al. 2016; Zhuang et al. 2016). Although these guidelines 
also emphasize the importance of evaluating pollutants other 
than metals, certain organic pollutants, for instance, are usu-
ally taken into account only when indirect evidence has pre-
viously indicated their potential presence in a target aquatic 
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system, i.e., certain pesticides in water bodies located near 
agricultural areas (CCME 1995).

However, determining the proper body of analyses in situ-
ations in which multiple metal contaminants can be present 
is difficult. Another problem is that protocols based only on 
the quantification of certain contaminants do not take into 
account the toxicity resulting from the potential interaction 
between the toxic components. When sources of pollution 
are diverse and unpredictable, ecotoxicological analyses can 
be a potential solution for determining water and sediment 
quality, but comparative analyses between the metal-based 
SQGs (CCME 2001a) and ecotoxicological methods are 
scarce (Anderson et al. 2001; Souza et al. 2016). Here, we 
analysed the sediments of a subtropical lentic water system 
and demonstrate that sediment and interstitial water samples 
classified as non-toxic based on the metal parameters of the 
SQGs (CCME 2001b) have caused acute and chronic toxic-
ity in Ceriodaphnia dubia in the water column. Toxicity 
analyses of sediments often use organisms that are repre-
sentative of this component, e.g., Hyalella sp., Chironomus 
sp., Lytechinus sp. and Echinometra sp.

Considering the above, the Itupararanga reservoir was 
chosen due to the intense agricultural activity that impacts 
its surroundings, and in which it was investigated the fol-
lowing: 1 – The relationship between the physical and 
chemical conditions of sediments in the reservoir (with an 
emphasis on the analysis of metals in the raw sediments 
and their interstitial waters) with the water ecotoxicity by 
means of tests with Ceriodaphnia dubia, and 2 – Whether 
the metal values described in the Canadian Sediment Qual-
ity Guidelines to classify the toxicity of the sediments can 
also be used to obtain an ecotoxicological classification for 
nektonic organisms, considering that these compartments 
(sediment–water) exhibit dynamic interactions.

Materials and Methods

The Itupararanga reservoir is located at the head of the 
Sorocaba river, in the southeastern region of Brazil. This 
reservoir receives water from the Sorocabaçu and Soro-
camirim rivers, which come together to form the Sorocaba 
river (Smith and Petrere, Jr. 2008), located between the par-
allels 23°34′49″ and 23°40′12"S and meridians 47°13′11″ 
and 47°24′34"W. Although it is located within an Area of 
Environmental Preservation, the main types of land use and 
occupation are characterized by intense agricultural activ-
ity, with 393 km2 occupied by vegetable crops such as cab-
bage, lettuce, potatoes and tomatoes, and 35 km2 is occupied 
by farms, which are also used for agriculture and leisure 
(Sardinha et al. 2010; Conceição et al. 2011). Six collection 
points were defined along the dam in order to character-
ize the Itupararanga system horizontally. The collections 

occurred in September (2013) and in March (2014). These 
points are susceptible to point and diffuse pollution of agri-
cultural origin, which may lead to nutrients entering the bod-
ies of water, as shown in Fig. 1.

The sediment samples for the physical and chemical anal-
yses were obtained with a Petersen-type dredger, with three 
replicates per point, which were immediately homogenized 
and conditioned in plastic containers with a capacity of 1 L. 
A portion of the samples remained in the refrigerator, and 
the other samples remained at room temperature for drying 
and subsequent analyses.

Physical and chemical analyzes of sediment samples as 
organic matter by incineration were performed according 
to Trindade (1980); granulometry, screening and desimeter, 
second ISO 13320 (2009), total phosphorus through spec-
trophotometry according to EPA 6010C (2007) and total 
organic nitrogen by KJEDHAL (APHA 2005).

For the quantification of extractable metal in crude sedi-
ments, 0.1 mol L−1 hydrochloric acid extraction was used (a 
smooth extraction and without heating), adapted Luoma and 
Bryan (1981) with the purpose of evaluating the biological 
availability of metals in the sediments. This methodologi-
cal procedure consisted of weighing 1 g of dry sediment, 
transferring it to an Erlenmeyer flask and adding 25 mL 
of 0.1 mol L−1 hydrochloric acid. This mixture was trans-
ferred to a shaker table at 200 rpm for 2 h. Subsequently, 
the suspension was filtered through a 0.45 µm cellulose 
nitrate membrane and diluted in a 100 mL volumetric flask. 

Fig. 1  Localization of Itupararanga reservoir (São Paulo state – Bra-
zil), and sampling points (P1, P2, P3, P4, P5 and P6). Reproduced 
with permission from Lira et al. (2017)
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Readings were performed by atomic emission spectroscopy 
using inductively coupled plasma optical emission spectrom-
etry (ICP-OES 720 series), and the results were expressed 
as mg kg−1 of dry sediment. For the total interstitial metals, 
the sediment samples were centrifuged at 2500 rpm to a 
volume of 100 mL. Subsequently, they were preserved with 
concentrated nitric acid and submitted to a digestion process. 
The determination of metals was conducted using a method-
ology adapted from US EPA method 3005A (1992), which 
describes the digestion of water samples and quantification 
using optical emission spectroscopy. Thus, 100 mL of the 
filtered contents from each of the sampled points was main-
tained at temperatures of up to 100°C on a heating plate, and 
15 mL of concentrated nitric acid was added. After reduction 
of the digested contents, each sample was voluted in a 25 mL 
flask and subsequently submitted to the determination of 
metal concentrations by atomic emission spectroscopy using 
inductively coupled plasma optical emission spectrometry 
(ICP-OES 720 series).

Tests of the toxicity of the sediment samples were per-
formed with the test organism Ceriodaphnia dubia, which is 
representative of the water column, by adapting a methodol-
ogy from the US EPA (2000) for H. azteca, exposing it to 
5 g of sediment in 30 mL of reconstituted water for 8 days 
both being renewed every 48 h, following the recommenda-
tions of US EPA Method 1002 (2002). The formulated sedi-
ment was used as a control, a mixture of clay and different 
granulometries of sand (US EPA 2000). Test organisms with 
6- to 24-h lifecycles (neonates) were used at the beginning 
of the experiment, and individuals were 8 days old at the 
end, as adults. The end points analysed were survival and 
reproduction (number of neonates). The data were analysed 
statistically by means of the assessment of the significance 
of the mortality using Fisher’s exact test, and reproduction in 
the toxicity tests was analysed using the Kruskal–Wallis test 
conducted in the BioEstat 5.0 software (Ayres et al. 2007). 
A principal component analysis (PCA) was carried out to 
explain the variation in the chemical and physical variables 
among sampling sites using the PAST software 2.17 (Ham-
mer et al. 2001). Correlations between metals (in crude 
sediments and interstitial) and survival and reproduction 
parameters of C. dubia were analysed using multiple linear 
regressions in the software BioStat 5.0 (Ayres et al. 2007).

Results and Discussion

Concentrations of metals in crude sediments (CMs) were 
found in the following descending order: Mn > Zn > Cu > P
b > Co > Cr > Ni > As > Cd. The potentially toxic metals Cu 
and Pb were the metals that stood out. Interstitial metals 
(IMs) were found in the following decreasing order: Mn > 
Pb > Cr > Cu > Zn > As > Ni > Co > Cd. The concentrations 

of IMs are usually low (Leonard et al. 1996; Kay et al. 2008; 
De Jonge et al. 2009), as seen in Table 1.

In both years, the concentrations of CMs were below the 
level at which adverse effects to the biota are likely (PEL) 
(Table 1), but the use of only this empirical model of the 
SQGs may not reflect the true potential of sediment toxic-
ity (He et al. 2015). Since the IMs Cu and Ni were above 
the LC50 (48-h) values for C. dubia at almost all points, 
considering a pH range of 7–8.5 (Table 2). Similarly Cr 
(P3, P4 and P5) and Zn (P1, P3, P5) to a pH of 7.8–8.5. 
Among the potentially toxic IMs, chromium was the most 
abundant, followed by Cu, Ni and Co (Table 1). The envi-
ronmental agency responsible for monitoring the reservoir 
also reported the constant presence of Cr in the sediment and 
acute toxicity to Vibrio fischeri bacteria in interstitial water 
extracted from the samples obtained in the years of 2013 
and 2014 (Cetesb 2015). Evidence indicates that these pol-
lutants in both the sediment and interstitial water can cause 
toxicity to the biota.

When assessing the behaviour of trace metals and the 
potential role of sediment resuspensions in the contamina-
tion of the water column, Superville et al. (2015) realized 
that during spring and summer, when bacterial activity is 
more important, the daily reduction of Fe(III) in the surface 
sediments promotes the weaker adsorption of Pb and Zn, 
and the concentrations are higher as a consequence. Which 
would justify the greater amounts of these metals in the 
study in question, considering that the same results occurred 
during those seasons.

In 2013 complete mortality was observed in P2 and 
P3, but in the remaining samples there were no significant 
effects on survival or reproduction (Fig. 2). There was no 
significant mortality in 2014, only point P2 had significantly 
reduced reproduction, as shown in Fig. 2. It should be noted 
that the results of mortality in points P2 and P3 in 2013, 
were probably due to the pH, since the average pH in the 
toxicity tests were 5.74 ± 0.21 and 5.31 ± 0.19, respectively. 
These are also the points at which the highest concentrations 
of potentially toxic CMs, Cu, Co, Cr and As at point P2 and 
Cu, Pb and Co at point P3, were also detected. Schubauer-
Berigan et al. (1993) when testing the acute toxicity of met-
als to C. dubia at three pH values (6.3, 7.3, and 8.3) noted 
that toxicity of Cd, Ni, and Zn was greatest at pH 8.3 and 
least at pH 6.3 and conversely, the toxicity of Cu and Pb was 
greatest at pH 6.3 and least at pH 8.3.

The same point P2 (2014) also differed significantly 
in comparison to points P4 and P6; the pH at P2 was 
7.16 ± 1.43. Points P1, P2 and P5 were points where the 
reproduction of C. dubia was lower in relation to the control 
and the OM levels were also higher. Although P4 contains 
practically all metals in quantities that are much higher than 
those of the other points, with emphasis on Cr, Cu and Ni at 
concentrations higher than LC50 (48-h) for C. dubia, there 
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was no toxicity. It should be emphasized the acute toxicity 
of metals in hard water to C. dubia can be greatly affected 
by sample pH, with toxicity displaying large variations with 
a change of 1 pH unit (Schubauer-Berigan et al. 1993), as 
shown in Table 2. It should be noted that metal concentra-
tions were not measured in the overlying water which has not 
allowed to make direct comparisons between water column 
concentrations and test organism tolerance values.

The highest percentage of organic matter (OM) occurred 
in the second season, especially at points 2 and 5, which 
had 37.1% and 32.7% OM, respectively (Table 3). With the 
exception of point 4, the Itupararanga sediment was organic, 
with OM values higher than 10%. This characteristic had 
already been observed by Beghelli et al. (2012) and Tani-
waki et al. (2013) in other studies carried out in this system.

At the point P3 in both years, there were the highest 
concentrations of N. In 2014 the P1 point showed high 
concentrations of N and P, these concentrations may be a 
consequence of the intense agricultural activity practiced 
in the region (Sardinha et al. 2010; Conceição et al. 2011). 
In the first sampling period, 50% of the points had higher 
clay content than the other inorganic fractions. In the second 
sampling period, more than 80% had higher clay content, 
with 56.2% clay at point 3 and 55.7% at point 2; the data are 
presented in Fig. 3. In both sampling periods, the beginning 
of the system (P1) presented the lowest clay proportions, 
which can be explained by the greater water turbulence and 
drag fractions with finer granulation.

The second sampling point, more upstream of the res-
ervoir, presented higher organic matter loading in both 

Table 1  Results of the analysis 
of metals in the crude sediment 
and interstitial water of the 
samples collected in the 
Itupararanga reservoir

LQ: limit of quantification; < LQ: below the limit of quantification; –: no limit established

As Cd Co Cr Cu Mn Ni Pb Zn

Crude sediment (mg kg−1)
 2013
  P1 < LQ < LQ 0.17 0.07 0.31 9.03 0.05 < LQ 0.26
  P2 0.19 < LQ 0.65 0.35 1.56 65.46 0.30 < LQ 12.07
  P3 < LQ < LQ 0.35 0.21 1.50 11.75 0.17 0.89 1.38
  P4 < LQ < LQ 0.14 0.05 0.39 63.82 0.07 < LQ 4.36
  P5 < LQ < LQ < LQ 0.18 0.84 149.80 0.04 < LQ < LQ
  P6 < LQ < LQ 0.09 0.12 0.57 69.75 < LQ < LQ < LQ

 2014
  P1 < LQ 0.11 2.20 2.27 6.67 156.81 0.84 5.07 16.84
  P2 0.48 < LQ 1.99 1.27 5.76 131.34 0.80 4.20 5.36
  P3 < LQ 0.14 4.77 1.35 9.43 < LQ 1.19 11.11 15.98
  P4 0.06 0.14 1.80 0.53 2.67 171.25 < LQ 5.01 3.47
  P5 0.41 < LQ 1.11 1.58 13.05 < LQ < LQ 4.27 7.27
  P6 < LQ < LQ 1.04 0.58 3.21 < LQ < LQ 3.56 2.54
  TEL 5.90 0.60 – 43.40 31.60 – 22.70 35.80 121.00
  PEL 17.0 4.90 – 111.00 149.00 – 48.60 128.00 459.00

Interstitial water (µg L−1)
 2013
  P1 < LQ < LQ 6.5 25.3 3.0 321.3 8.7 < LQ < LQ
  P2 < LQ < LQ 5.4 13.9 5.8 1125.5 3.7 < LQ < LQ
  P3 < LQ < LQ 8.9 36.1 17.9 368.5 16.7 < LQ < LQ
  P4 < LQ < LQ 6.2 31.0 55.9 4955.3 18.9 17.3 < LQ
  P5 28.5 < LQ 11.8 116.5 68.5 6641.2 28.2 < LQ < LQ
  P6 < LQ < LQ 6.6 62.3 17.5 7808.5 15.1 < LQ < LQ

 2014
  P1 < LQ < LQ < LQ 89.5 50 367.9 < LQ < LQ 129.7
  P2 < LQ 3.4 < LQ 43.1 30.7 606.4 < LQ < LQ 24.5
  P3 24.5 9.8 20.7 151.3 67.7 302.7 < LQ 475.7 164.2
  P4 116.9 8.7 103.1 303.4 281.5 3254.9 109.4 112.4 < LQ
  P5 < LQ < LQ < LQ 80.0 59.8 632.3 < LQ < LQ 116.6
  P6 37.2 < LQ 33.2 196.7 95.1 3748.6 51.9 < LQ < LQ
  LQ 22.50 3.26 14.98 2.54 3.32 0.26 41.60 89.66 5.71
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collection periods and higher toxicity in relation to the other 
points showing acute and chronic toxicity. The sediments of 
the reservoir have characteristics (clayed and organic) that 
facilitate the adsorption and accumulation of contaminants 
and nutrients. The results of the toxicity tests show that the 
reproduction of the organisms tends to be reduced in the 
samples obtained at the beginning of the system (Fig. 2). 
The direct influence of the forming rivers that flow into the 
dam can justify this fact, as well as the large amount of P 
found at P1 in the year 2014.

At sampling sites very similar to those in this study, Tani-
waki et al. (2013) performed genotoxicity analyses in 2010 
and showed that there was an increase in the index of chro-
mosomal alterations when compared to the negative con-
trolin all seasons, with the point in the center of the system 
(P4) presenting the highest index. A study by Beghelli et al. 
(2016) that evaluated the community of benthic macroinver-
tebrates identified species that were bioindicators of organic 
enrichment and tolerant to pollution.

The PCA was performed with the following variables: 
IMs, CMs, OM, pH and inorganic fraction. The IMs and 
CMs were expected to be directly correlated in the princi-
pal component analysis (PCA), but this situation was not so 
clear. In 2013, Axis 1 highlighted the roles of the CMs As, 
Cd, Co, Cr, Cu and Ni in addition to the percentages of silt 
and OM, while the IMs As, Co, Cr, Cu, Mn, Ni and Pb were 
highlighted on axis 2 (Fig. 4). There were correlation of the 
Mn and Cu IMs with clay and the Co, Cr and Cu CMs with 
OM that can be justified by the formation of aggregates and 
complexes. In 2014, there were greater contributions of the 

Table 2  Mean lethal concentrations (LC50) of metals for Ceriodaph-
nia dubia in 48 h exposure and respective ph values reported in the 
literature

# No values reported in the literature

LC50 (µg L−1) pH References

As 1448 7.8–8.3 Spehar and Fiandt (1986)
Cd 560 6–6.5 Schubauer-Berigan et al. (1993)

350 7–7.5
120 8–8.5

Co # # #
Cr 144 7.8–8.3 Spehar and Fiandt (1986)
Cu 9.5 6–6.5 Schubauer-Berigan et al. (1993)

28 7–7.5
200 8–8.5

Mn 14,500 8–8.2 Lasier et al. (2000)
9100 7–7.6 Boucher and Watzin (1999)

Ni 200 6–6.5 Schubauer-Berigan et al. (1993)
> 140 7–7.5
13 8–8.5

Pb 280 6–6.5 Schubauer-Berigan et al. (1993)
> 2700 7–7.5
> 2700 8–8.5

Zn > 530 6–6.5 Schubauer-Berigan et al. (1993)
360 7–7.5
95 8–8.5

Fig. 2  Results of chronic toxic-
ity tests obtained on the basis of 
reproductive parameter, presen-
tation of average of neonates per 
individual
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Table 3  Concentrations of 
organic matter (OM), Nitrogen 
(N), Phosphorus (P) and pH 
of crude sediment found in the 
Itupararanga Reservoir in the 
samplings held in September 
(2013) and in March (2014)

OM (%) N (mg Kg−1) P (mg Kg−1) pH (crude sedi-
ment)

2013 2014 2013 2014 2013 2014 2013 2014

P1 20.72 ± 0.02 30.60 ± 3.45 1.95 31.90 2.31 145.12 6.93 7.05
P2 29.91 ± 0.11 37.11 ± 1.12 11.01 5.10 3.64 2.32 6.55 6.26
P3 23.9 ± 0.05 24.90 ± 0.98 26.72 36.91 4.12 14.70 6.49 6.51
P4 8.20 ± 0.13 9.23 ± 0.02 5.20 17.10 1.74 3.45 7.36 6.43
P5 26.01 ± 1.10 32.70 ± 1.47 5.71 6.20 1.27 0.98 6.79 6.75
P6 14.20 ± 0.09 14.10 ± 0.07 2.40 5.12 1.25 1.46 6.68 6.90
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interstitial metals As, Cd, Co, Cr, Cu, Mn and Ni and the 
percentages of sand and clay on axis 1 and the interstitial 
metals Cd, Pb, Zn and the metals in crude sediments Cd, 
Co, Ni, Pb and Zn on axis 2 (Fig. 4). There was a correlation 
between the metals in crude sediments and the Mn, Pb and 
Zn IMs, likely due to the higher concentrations of IMs and 
their bioavailability as a consequence. The metals Pb and 
Zn are usually found to be associated in nature, and a cor-
relation between them is commonly reported (Allaby 2008; 
Charriau et al. 2011). The correlation of the clay with the 
IMs occurred in the two PCAs. Several authors report the 
possibility of metals forming colloids and aggregates with 
clay and OM (Luoma and Rainbow 2008; Charriau et al. 
2011; López et al. 2012).

The sediment in this system presents high capacity for the 
retention of pollutants, which can contribute to the occur-
rence of system toxicity and impairment of water quality. 
Although we did not notice a direct influence of CMs and 
IMs on the water column, additively acting metals may 
explain the toxicity in the sediment of the system.

After conducted acute and chronic toxicity tests with C. 
dubia, Pimephales promelas and Oncorhynchus mykiss to 
determine the effects of metals combined as mixtures (As, 

Cd, Cr, Cu, Hg and Pb), Spehar and Fiandt (1986) observed 
that the joint action was nearly strictly additive for C. dubia. 
In the literature the additive effects of metals mixtures on 
toxicity are often reported (Norwood et al. 2003; Alsop and 
Wood 2013; Traudt et al. 2016; Lari et al. 2017).

There was no correlation of the metals in the crude sedi-
ment and in the interstitial water with the acute and chronic 
toxicities detected. It should be noted that Lira et al. (2017) 
drew attention to the constant proliferation of cyanobacteria, 
potentially producing cyanotoxins in the reservoir in ques-
tion. Thus, considering the toxicities found and the intense 
agricultural activity, it would be interesting to evaluate the 
possible agricultural pesticides, drugs and cyanotoxins, 
which may contribute to the toxicity found in the sediments 
of this system.

The results showed a marked presence of clay and organic 
matter, demonstrating a high capacity for the adsorption of 
metals and organic pollutants. There was no direct cor-
relation between IMs and CMs. Although the PEL model 
SQGs considered the sediment as having low potential to 
cause damage to benthic organisms in this study, we noticed 
damage to nektonic organisms. Considering that there was 
no correlation between the metals analysis of the crude 

Fig. 3  Results of inorganic 
fractions in sediment samples, 
obtained in 2013 and 2014
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sediment and the toxicity, even adopting the criterion of the 
SQG, there was also no correlation between the metals in 
the interstitial water and toxicity to the organisms of the 
water column. These results indicate that these are weak 
analyses, leading us to affirm that in such a complex matrix, 
it is essential to carry out ecotoxicological tests, which may 
reflect all of the dynamics of the interaction of pollutants 
with biological systems. This work concluded that the metal 
values described in the Canadian SQG to classify sediment 
toxicity may not guarantee the protection of the nectonic 
organisms. The C. dubia trials presented acute and chronic 
toxicities that may be related to the bioavailability of the 
metals or other possible contaminants in the sediment, such 
as cyanotoxins, agricultural pesticides, drugs and endocrine 
disruptors, which were not evaluated in the present study.
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