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Abstract Eigenfunctions associated with Riemann–Liouville and Caputo fractional differ-
ential operators are obtained by imposing a restriction on the fractional derivative parameter.
Those eigenfunctions can be used to express the analytical solution of some linear sequential
fractional differential equations. As a first application, we discuss analytical solutions for the
so-called fractional Helmholtz equation with one variable, obtained from the standard equa-
tion in one dimension by replacing the integer order derivative by the Riemann–Liouville
fractional derivative. A second application consists of an initial value problem for a fractional
wave equation in two dimensions in which the integer order partial derivative with respect to
the time variable is replaced by the Caputo fractional derivative. The classical Mittag-Leffler
functions are important in the theory of fractional calculus because they emerge as solutions
of fractional differential equations. Starting with the solution of a specific fractional differ-
ential equation in terms of these functions, we find a way to express the exponential function
in terms of classical Mittag-Leffler functions. A remarkable characteristic of this relation is
that it is true for any value of the parameter n appearing in the definition of the functions, i.e.,
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we have an infinite family of different expressions for ex in terms of classical Mittag-Leffler
functions.

Keywords Riemann–Liouville derivatives · Caputo derivatives ·
Linear fractional differential equations · Mittag-Leffler functions

Mathematics Subject Classification 26A33 Fractional derivatives and integrals

1 Introduction

The Non-Integer Order Calculus, traditionally known as Fractional Calculus (FC), is the
branch of mathematics that deals with the study of integrals and derivatives of non-integer
order. Although it is not accurate, since the order of an integral and a derivative can be
real and also complex (Bagley and Torvik 1983; Tenreiro Machado et al. 2010a, b, 2011), it
has played an outstanding role (Tenreiro Machado et al. 2011) since its creation, as several
mathematicians and applied researchers have obtained important results by modeling real
processes using FC (Arafa et al. 2016; Camargo et al. 2009a, 2012; Camargo and de Oliveira
2015; Debnath 2003; Mainardi 2009; Ortigueira and Tenreiro Machado 2015; Podlubny
1999; Soubhia et al. 2010).

Given a differential equation that describes a specific phenomenon, a common way to
use fractional modeling is to replace the integer order derivatives by non-integer derivatives,
usually with order lower than or equal to the order of the original derivatives, so that the usual
solutions may be recovered as a particular case (Camargo and de Oliveira 2015).

Although there is no trivial physical and geometrical interpretation for the fractional
derivative and the fractional integral (Podlubny 2002; Tavassoli et al. 2013), fractional order
differential equations are naturally related to systems with memory, as fractional derivatives
are usually nonlocal operators, i.e., the calculation of a time-fractional derivative at a given
time requires its knowledge at all previous times (Camargo and de Oliveira 2015; Podlubny
1999). Processes with memory exist in many biological systems (Arafa et al. 2016; Diethelm
et al. 2005; Elsadany and Matouk 2014; Matouk et al. 2015; El-Sayed et al. 2009, 2007;
Arafa et al. 2012). Besides, fractional differential equations may help in reducing the errors
arising from the neglected parameters in modeling real-life phenomena (Arafa et al. 2016;
Mainardi 2009; Gutierrez et al. 2010).

There are several applications of fractional calculus in engineering (Sabatier et al. 2007),
for example, in the study of control and dynamical systems (Matignon 1996; Matouk 2010,
2015). Moreover, there are in physics several potential applications of fractional derivatives
(Hilfer 2000), for instance, in the generalization of classical equations (Camargo et al. 2008,
2009a, b, c).

In medicine, it has been found that the electrical conductance of the cell membranes of
living organisms are described by fractional order equations, so that they may be classified as
groups of non-integer order models. Fractional derivatives embody essential features of cell
rheological behavior and have enjoyed a great success in the field of rheology (Arafa et al.
2016). Somemathematical models in HIV show that fractional models are more approximate
than their integer order versions (Arafa et al. 2016; Diethelm et al. 2005).

With the aim of solving fractional partial differential equations and generalizing results,
several definitions of “fractional derivative” (FD) have been proposed (de Oliveira and
Tenreiro Machado 2014). In a recent paper (Khalil et al. 2014), a new definition of FD,
called conformable FD, has also been proposed. Another example is the so-called local FD
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1014 E. C. Grigoletto et al.

(Kolwankar and Gangal 1996). Finally, one should also consider the Grünwald–Letnikov,
Riemann–Liouville and Caputo fractional derivatives and the Riesz potential. A natural
question arises: “What is a fractional derivative?” In a paper whose title is exactly this
question (Ortigueira and Tenreiro Machado 2015), Ortigueira and Tenreiro Machado set
a criterion named Wide Sense Criterion (WSC) which establishes when an operator is an
FD and showed that the well-known definitions of Grünwald–Letnikov, Riemann–Liouville,
Caputo and Riesz satisfy the WSC.

Since linear sequential fractional differential equations are naturally related to the model-
ing of many problems in physics and applied science, several methods to obtain the analytical
solutions for this kind of equations have been studied (Bonilla et al. 2005; Dzherbashyan and
Nersesyan 1968; Kilbas et al. 2006, 2007; Miller and Ross 1993; Rida and Arafa 2011).

This work presents, with the help of some particular linear fractional differential equa-
tions, new theorems about eigenfunctions related to the fractional differential operators of
Riemann–Liouville, Dnα

a+ and of Caputo CDnα
a+. From these theorems, we may express the

exponential function in terms of a sum involving the Mittag-Leffler functions (Grigoletto
2014).

The results are presented as follows: after this introduction, Sect. 2 presents a review of
FC and some preliminary concepts. In Sect. 3, the definition of the so-called linear sequential
fractional differential equation and new theorems are introduced. In Sect. 4, we present
the analytical solution of some particular linear sequential fractional differential equations.
Finally, in Sect. 5, a new formula involving the exponential and the Mittag-Leffler functions
is presented. Section 6 brings the concluding remarks.

2 Preliminary concepts

In this section, we present several definitions and properties of the Riemann–Liouville
fractional integral, the Riemann–Liouville fractional derivative and the Caputo fractional
derivatives.

In what follows, for Eqs. (1–5), we assume that α > 0, � = (a, b) is an interval on the
real axis R = (−∞,∞) and f ∈ Cn [a, b], where1 n = [α] + 1.

The Riemann–Liouville left-sided fractional integral of order α, denoted I α
a+, is defined

as follows:

(
I α
a+ f

)
(x) := 1

�(α)

∫ x

a

f (τ )

(x − τ)1−α
dτ , for x ∈ �, (1)

where

� (α) =
∫ ∞

0
tα−1e−tdt, (2)

is the Gamma function (de Oliveira 2005).
For convenience, I 0a+ is considered as the identity operator.
TheRiemann–Liouville left-sided fractional derivative of orderα, denoted Dα

a+, is defined
as follows:

(
Dα

a+ f
)
(x) := dn

dxn

[(
I n−α
a+ f

)
(x)

]
, for x ∈ �. (3)

1 [μ] indicates the integer part of μ.
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In particular, if 0 < α < 1 we may write from Eq. (3) that

(
Dα

a+ f
)
(x) =

(
d

dx

) [(
I 1−α
a+ f

)
(x)

]
= 1

�(1 − α)

(
d

dx

) ∫ x

a

f (τ )

(x − τ)α
dτ . (4)

If α = 1, Eq. (3) becomes
(
D1

a+ f
)
(x) = f ′ (x).

Now we present Caputo’s definition for the fractional derivative (Mainardi 2009).
The Caputo left-sided fractional derivative of order α, denoted by CDα

a+, is defined as
follows:

(
CDα

a+ f
)

(x) :=
(

I n−α
a+ f (n)

)
(x) , for x ∈ �. (5)

As a particular case, if 0 < α < 1, Eq. (5) becomes
(
CDα

a+ f
)

(x) :=
(

I 1−α
a+ f ′) (x) = 1

�(1 − α)

∫ x

a

f ′ (τ )

(x − τ)α
dτ . (6)

If α = 1, we obtain from Eq. (5) that
(
CD1

a+ f
)

(x) = f ′ (x).

Property 1 Let � = (a, b) be an interval on the real axis R, μ > −1 and α > 0; then

Dα
a+ (x − a)μ = �(μ + 1)

�(μ − α + 1)
(x − a)μ−α for x ∈ �. (7)

Property 2 Let � = [a, b] be an interval on the real axis R and α > 0. Then, for x ∈ � we
have

CDα
a+(x − a)μ =

⎧
⎨

⎩

0, for μ = 0, 1, 2, . . . , [α] ,
�(μ + 1)

�(μ − α + 1)
(x − a)μ−α, for μ > [α] .

2.1 Mittag-Leffler functions

The Mittag-Leffler functions are generalizations of the exponential function. They play in
FC a role similar to the role played by the exponential function in usual calculus.

The classical Mittag-Leffler function is defined as (Mittag-Leffler 1903):

Eα(z) =
∞∑

j=0

z j

�(α j + 1)
, z ∈ C and R(α) > 0, (8)

where R (γ ) denotes the real part of γ . Taking α = 1 in Eq. (8), the exponential function
is recovered because E1(z) = ez . A two-parameter generalization has been proposed by
Wiman (Wiman 1905) as follows:

Eα,β(z) =
∞∑

j=0

z j

� (α j + β)
, with R(α) > 0 and R(β) > 0. (9)

For β = 1, the classical Mittag-Leffler function is recovered because Eα,1(z) = Eα(z).
The Caputo fractional derivative of the classical Mittag-Leffler function is given by

CDα
0+

[
Eα

(
zα

)] = Eα

(
zα

)
. (10)

This shows that in the case of the Caputo fractional derivative, the Mittag-Leffler function
recovers themost important property of the exponential function. That is the reasonwhy some
authors refer to Mittag-Leffler functions as the fractional generalization of the exponential
function.
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1016 E. C. Grigoletto et al.

3 Linear fractional differential equations

In this paper, we employ the left-sided fractional operators explained above. A similar rea-
soning will extend the results obtained here to right-sided fractional operators.

Let � = [a, b] be an interval on the real axis R, x ∈ �, 0 < α ≤ 1, n ∈ N and
g, a j : � → R continuous functions for j = 0, 1, 2, . . . , n − 1. The linear sequential
fractional differential equations (Kilbas et al. 2006, 2007; Rida and Arafa 2011) of order nα,
denoted by [Lnα( f )] (x), are defined as

[Lnα( f )] (x) := (
Dnα

a+ f
)
(x) +

n−1∑

j=0

a j (x)
(

D jα
a+ f

)
(x) = g(x), (11)

where Dα
a+ represents the fractional derivative of Riemann–Liouville (or Caputo) and

(
D0

a+ f
)
(x) = f (0) (x) = f (x) .

In this paper, we consider the particular case in which a0 (x) = λ, with λ �= 0, a j (x) = 0,
for j = 1, 2, . . . , n − 1 and g(x) = 0 in Eq. (11). As a result, we obtain a homogeneous
linear sequential fractional differential equation, denoted by [ L̂nα( f )](x) and defined as

[ L̂nα( f )](x) := (
Dnα

a+ f
)
(x) − λ f (x) = 0. (12)

From the two theorems presented below about eigenfunctions of the Riemann–Liouville
and Caputo fractional operators it is possible to find solutions for fractional differential
equations of the type of Eq. (12), where Dα

a+ can be the Riemann–Liouville or the Caputo
fractional operators.

Theorem 1 Let � = (a, b) be an interval on the real axis R, n ∈ N, λ �= 0 a real number
and α ∈ ( n−1

n , 1
]

an interval on the real axis. Then

fk (x) = (x − a)nα−k Enα,nα+1−k
[
λ (x − a)nα

]
, (13)

for x ∈ � and k = 1, 2, . . . , n, are the eigenfunctions associated with the eigenvalues λ of
the Riemann–Liouville left-sided fractional derivative Dnα

a+.

Proof For any fixed value k, k = 1, 2, . . . , n, we may write, from Eq. (9),

(x − a)nα−k Enα,nα+1−k
[
λ (x − a)nα

] =
∞∑

j=0

λ j (x − a)nα j+nα−k

� (nα j + nα + 1 − k)

=
∞∑

j=1

λ j−1 (x − a)nα j−k

� (nα j + 1 − k)
.

Thus, we may write

Dnα
a+

{
(x − a)nα−k Enα,nα+1−k

[
λ (x − a)nα

]} =
∞∑

j=1

λ j−1 Dnα
a+

[
(x − a)nα j−k]

� (nα j + 1 − k)
. (14)

From Eq. (7) in Property 1 it follows that

Dnα
a+

[
(x − a)nα j−k

]
= � (nα j − k + 1)

�(nα j − k − nα + 1)
(x − a)nα j−k−nα , nα j − k > −1,

(15)

123



Linear fractional differential equations and eigenfunctions… 1017

for k ∈ {1, 2, . . . , n} and j ∈ {1, 2, 3, . . .}. Now,

nα j − k > −1 �⇒ α >
k − 1

nj
. (16)

Since α ∈ ( n−1
n , 1

]
, all inequalities in Eq. (16) are verified.

Using the result of Eq. (15) in Eq. (14), we obtain

Dnα
a+

{
(x − a)nα−k Enα,nα+1−k

[
λ (x − a)nα

]} =
∞∑

j=1

λ j−1 (x − a)nα j−k−nα

� (nα j − k − nα + 1)
. (17)

If j = 1, then the term

(x − a)−k

� (1 − k)
,

in the second member of Eq. (17) vanishes for k ∈ {1, 2, . . . , n}, since

lim
t→k

(x − a)−t

� (1 − t)
= 0,

for k ∈ {1, 2, . . . , n}. In consequence, Eq. (17) can be rewritten as

Dnα
a+

{
(x − a)nα−k Enα,nα+1−k

[
λ (x − a)nα

]} =
∞∑

j=2

λ j−1 (x − a)nα j−k−nα

� (nα j − k − nα + 1)

=
∞∑

j=0

λ j+1 (x − a)nα j+nα−k

� (nα j + nα + 1 − k)
.

Thus,

Dnα
a+ (x − a)nα−k Enα,nα+1−k

[
λ (x − a)nα

] = λ (x − a)nα−k Enα,nα+1−k
[
λ (x − a)nα

]
,

(18)

for α ∈ ( n−1
n , 1

]
, x ∈ � and k = 1, 2, . . . , n, which is the expected result. 
�

Now, considering the Caputo left-sided fractional derivative, we have the following
theorem:

Theorem 2 Let � = [a, b] be an interval on the real axis R, n ∈ N, λ �= 0 a real number
and α ∈ ( n−1

n , 1
]

an interval on the real axis. Then

ϕk (x) = (x − a)k−1 Enα,k
[
λ (x − a)nα

]
, (19)

with x ∈ � and k = 1, 2, . . . , n, are the eigenfunctions associated with the eigenvalues λ of
the Caputo left-sided fractional derivative CDnα

a+.

Proof For a fixed value k, we obtain from Eq. (9):

(x − a)k−1 Enα,k
[
λ (x − a)nα

] =
∞∑

j=0

λ j (x − a)nα j+k−1

� (nα j + k)
.
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1018 E. C. Grigoletto et al.

Thus, we may write

CDnα
a+

{
(x − a)k−1Enα,k

[
λ(x − a)nα

]} =
∞∑

j=0

λ j

� (nα j + k)

CDnα
a+

[
(x − a)nα j+k−1

]
.

(20)

Since α ∈ ( n−1
n , 1

]
, we have

k − 1 ≤ [nα] , (21)

for k ∈ {1, 2, . . . , n}, and
nα j + k − 1 > [nα] , (22)

for k ∈ {1, 2, . . . , n} and j ∈ {1, 2, 3, . . .}.
Using Eq. (21) and Property 2, it follows that

CDnα
a+ (x − a)k−1 = 0, (23)

for k ∈ {1, 2, ..., n}. From Property 2 and Eq. (22),

CDnα
a+

[
(x − a)nα j+k−1

]
= � (nα j + k) (x − a)nα j+k−1−nα

� (nα j + k − nα)
, (24)

for j ∈ {1, 2, 3, . . .} and k ∈ {1, 2, . . . , n}.
Using results (23) and (24) in Eq. (20), it follows that

∞∑

j=0

λ j

� (nα j + k)

CDnα
a+

[
(x − a)nα j+k−1

]
=

∞∑

j=1

λ j (x − a)nα j+k−1−nα

� (nα j + k − nα)
. (25)

Then, from Eq. (25), we have
∞∑

j=0

λ j

� (nα j + k)

CDnα
a+

[
(x − a)nα j+k−1

]
=

∞∑

j=0

λ j+1 (x − a)nα j+k−1

� (nα j + k)
. (26)

Substituting result (26) in (20), we may write

CDnα
a+

{
(x − a)k−1 Enα,k

[
λ (x − a)nα

]} =
∞∑

j=0

λ j+1 (x − a)nα j+k−1

� (nα j + k)
, (27)

from where it follows the expected result,

CDnα
a+

{
(x − a)k−1 Enα,k

[
λ (x − a)nα

]} = λ (x − a)k−1 Enα,k
[
λ (x − a)nα

]
, (28)

for α ∈ ( n−1
n , 1

]
, x ∈ � and k = 1, 2, . . . , n. 
�

The results of Theorems 1 and 2 for the corresponding right-sided fractional derivatives
are proved similarly.

Proposition 1 If {yk (x)}n
k=1 is a fundamental system of solutions for the linear sequential

fractional differential Eq. (11) with g(x) = 0, then the general solution of the equation is
given by

y (x) =
n∑

k=1

ck yk (x) , (29)

where {ck}n
k=1 are arbitrary constants.
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Proof See Kilbas et al. (2006). 
�

Corollary 1 Let � = (a, b) be an interval on the real axis R, n a natural number and α ∈
R

( n−1
n < α ≤ 1

)
. Then the general solution of the linear sequential fractional differential

equation

(
Dnα

a+ f
)
(x) − λ f (x) = 0 (30)

can be written as

fα (x) =
n∑

k=1

ck (x − a)nα−k Enα,nα+1−k
[
λ (x − a)nα

]
, (31)

where {ck}n
k=1 are arbitrary constants and x ∈ �.

Proof FromTheorem 1, the functions { fk (x)}n
k=1 satisfy the differential Eq. (30). As a result,

from Proposition 1, it follows that the general solution of the equation can be written as

fα (x) =
n∑

k=1

ck fk (x) .


�

Corollary 2 Let � = [a, b] be an interval on the real axis R, n a natural number and α ∈ R,( n−1
n < α ≤ 1

)
. Then the general solution of the linear sequential differential equation

(CDnα
a+ϕ

)
(x) − λϕ(x) = 0 (32)

can be written as

ϕα (x) =
n∑

k=1

ck (x − a)k−1 Enα,k
[
λ (x − a)nα

]
, (33)

where {ck}n
k=1 are arbitrary constants and x ∈ �.

Proof FromTheorem 2, the functions {ϕk (x)}n
k=1 satisfy Eq. (32). Then, from Proposition 1,

it follows that the general solution of the differential equation can be written as

ϕα (x) =
n∑

k=1

ckϕk (x) .


�

Remark 1 Note that, if α = 1, we have from Eqs. (31) and (33) that

f1 (x) = ϕ1 (x) =
n∑

k=1

ck (x − a)k−1 En,k
[
λ (x − a)n]

. (34)
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4 Differential equation [ L̂nα( f )](x)

There are recent applications of FC in different fields of knowledge (Baleanu et al. 2010;
Dalir and Bashour 2010; Pfaffenzeller et al. 2011; Rahimy 2010; Silva Costa et al. 2015) and
several methods have been proposed for solving fractional differential equations (Grigoletto
and de Oliveira 2013; Elsaid 2010; Rajaramanr 2012; de la Hoz and Vadillo 2016).

Kilbas et al. (2007) present the analytical solution of a class of linear sequential fractional
differential equations. In this section, we present some examples of equations arising from
Eqs. (30) and (32).

Example 1 Let � = (0, b) be an interval on the real axis R and α ∈ R
( 2
3 < α ≤ 1

)
. Using

Corollary 1, the solution of the fractional differential equation
(
D3α
0+ f

)
(x) − f (x) = 0, (35)

can be written as

fα (x) = c1 x3α−1E3α,3α
(
x3α

) + c2 x3α−2E3α,3α−1
(
x3α

) + c3 x3α−3E3α,3α−2
(
x3α

)
,

(36)

where {ck}3k=1 are arbitrary constants and x ∈ �.

Example 2 Let � = [0, b] be an interval on the real axis R, α ∈ R
( 1
2 < α ≤ 1

)
, and λ �= 0

a real constant. From Corollary 2, the solution of the following homogeneous fractional
Helmholtz equation in one variable, which represents a time-independent form of the wave
equation,

(
D2α
0+ϕ

)
(x) + λ2ϕ(x) = 0, (37)

can be written as

ϕα (x) = c1 x2α−1E2α,2α
(−λ2x2α

) + c2 x2α−2E2α,2α−1
(−λ2x2α

)
, (38)

where c1 and c2 are arbitrary constants.
From Grigoletto (2014), we know that

E2 (z) = cosh
(√

z
)

and E2,2 (z) = sinh
√

z√
z

.

Thus,

E2
(−λ2x2

) = cosh (i |λ| x) = cos (|λ| x) , (39)

and

E2,2
(−λ2x2

) = sinh (i |λ| x)

i |λ| x
= sin (|λ| x)

|λ| x
. (40)

If α = 1 in Eq. (37), using Eqs. (39) and (40) in Eq. (38), we obtain a particular solution for
the Helmholtz equation,

�ϕ + λ2ϕ = 0, (41)

namely

ϕ1 (x) = c1 cos (|λ| x) + c2
sin (|λ| x)

|λ| , (42)

where {ck}2k=1 are arbitrary constants and x ∈ �.
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Linear fractional differential equations and eigenfunctions… 1021

Fig. 1 Graphic for ϕα (x) = x2α−1E2α,2α

(
−4 x2α

)
+ x2α−2E2α,2α−1

(
−4 x2α

)
with 1

2 < α ≤ 1

Fig. 2 Curves for ϕ1(x), ϕ0.9(x) and ϕ0.6(x) when x ∈ [0, 10]

The graphic of the solution given in Eq. (38) for different values of α
( 1
2 < α ≤ 1

)
when

c1 = c2 = 1 and λ = 2 is shown in Fig. 1. In Fig. 2, we plot the cases α = 1, α = 0.9 and
α = 0.6.

Example 3 Let u ≡ u(x, y, t) be a function defined on a space-time domain (x, y, t) ∈ �×I ,
where� ⊆ R

2, I = [0,T] is an interval on the real axisR and α ∈ R
( 1
2 < α ≤ 1

)
. Consider

the initial value problem associated with the two-dimensional fractional wave differential
equation

⎧
⎪⎨

⎪⎩

CD2α
0+u = �u in (x, y, t) ∈ � × I,

u (x, y, 0) = sin (x) sin (y) in (x, y) ∈ �,

ut (x, y, 0) = 3 sin (x) sin (y) in (x, y) ∈ �.

(43)

Let u (x, y, t) = ψ (x, y) φ (t), we then have

CD2α
0+φ (t)

φ (t)
= �ψ (x, y)

ψ (x, y)
= −λ2. (44)
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From Eq. (44), we have

CD2α
0+φ (t) = −λ2φ (t) . (45)

Now, using equation (38) in Example 2, we obtain the solution of Eq. (45),

φ (t) = c1 cos
(|λ| tα

) + c2 t E2α,2
(−λ2t2α

)
, (46)

where c1 and c2 are arbitrary constants.
FromEq. (46) it follows thatφ (0) = c1; as a result, using the initial condition u (x, y, 0) =

sin (x) sin (y), we may write

ψ (x, y) = 1

φ(0)
sin (x) sin (y) = 1

c1
sin (x) sin (y) . (47)

Thus, �ψ (x, y) = −2ψ (x, y), and using this result in the equation

�ψ (x, y)

ψ (x, y)
= −λ2,

we have that λ = ±√
2.

So, the solution u (x, y, t) can be written as

u (x, y, t) = sin (x) sin (y)
[
cos

(√
2 tα

)
+ c t E2α,2

(−2 t2α
)]

, (48)

where c is a real constant. Taking the derivative of u with respect to t in Eq. (48), and using
the initial condition ut (x, y, 0) = 3 sin (x) sin (y), we have that c = 3, since E2α,2 (0) = 1.

As a result, the general solution of the two-dimensional wave fractional differential equa-
tion with the mentioned initial conditions is given by

u (x, y, t) = sin (x) sin (y)
[
cos

(√
2 tα

)
+ 3t E2α,2

(−2 t2α
)]

, (49)

provided that (x, y, t) ∈ � × I .

5 Exponential function and the Mittag-Leffler functions

As a consequence of our previous results, we present now a particular sum involving the
Mittag-Leffler functions.

Starting from the theorems and corollaries presented in the third section, we use the
solution of a particular differential equation to express the exponential function in terms of
Mittag-Leffler functions.

Ifα = 1 = λ, the linear sequential fractional differential equations presented inCorollaries
1 and 2 become the ordinary differential equation

y(n) (x) − y (x) = 0, (50)

whose general solution when ck = 1, for k = 1, 2, . . . , n, can be written as

yn (x) =
n∑

k=1

xk−1En,k
(
xn)

, (51)

with x ∈ �.
The function y (x) = ex also satisfies Eq. (50), a fact that leads us to analyze the similarity

between the exponential function and the function in Eq. (51). Indeed, we have the following
result:
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Proposition 2 Let � = (0, b) be an interval on the real axis R and n a natural number.
Then the function

φn (x) =
n∑

k=1

xk−1En,k
(
xn)

,

defined for x ∈ �, satisfies the equation

φn (x) = ex , (52)

for any fixed natural number n. In particular,

∞∑

k=1

xk−1En,k
(
xn) = ex . (53)

Proof It is known that

φn (x) =
n∑

k=1

xk−1En,k
(
xn)

= En,1
(
xn) + x En,2

(
xn) + x2En,3

(
xn) + · · · + xn−1En,n

(
xn)

. (54)

Writing each series for the Mittag-Leffler functions as in Eq. (9) we obtain

φn (x) =
∞∑

j=0

xnj

�(nj + 1)
+

∞∑

j=0

xnj+1

�(nj + 2)
+ · · · +

∞∑

j=0

xnj+n−1

�(nj + n)
, (55)

that is,

φn (x) =
(
1 + xn

�(n + 1)
+ x2n

�(2n + 1)
+ · · ·

)

︸ ︷︷ ︸
∑∞

j=0

xnj

�(nj + 1)

+
(

x

�(2)
+ xn+1

�(n + 2)
+ x2n+1

�(2n + 2)
+ · · ·

)

︸ ︷︷ ︸
∑∞

j=0

xnj+1

�(nj + 2)

+ · · · +
(

xn−1

�(n)
+ x2n−1

�(2n)
+ x3n−1

�(3n)
+ · · ·

)

︸ ︷︷ ︸
∑∞

j=0

xnj+n−1

�(nj + n)

.

Reorganizing the series terms we may write

φn (x) = 1 + x

�(2)
+ · · · + xn−1

�(n)
+ xn

�(n + 1)
+ xn+1

�(n + 2)
+ · · · =

∞∑

j=0

x j

j ! = ex ,

where � ( j + 1) = j !. Thus, we have shown that
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n∑

k=1

xk−1En,k
(
xn) = ex , (56)

for any fixed natural number n. We may also recover the result of equation (56) through the
inverse Laplace transform. 
�

6 Concluding remarks

This work presents the so-called eigenfunctions associated with the Riemann–Liouville and
Caputo fractional differential operators, considering the parameter nα with n a natural num-
ber and α in a limited interval that depends on n. In both cases, the eigenfunctions were
obtained in terms of the two-parameter Mittag-Leffler functions. Besides, the analytical
solution of a particular homogeneous linear sequential fractional differential equations of the
kind [ L̂nα( f )](x) was obtained through the eigenfunctions found in Theorems 1 and 2.

Examples of applications were discussed; in particular, the fractional differential equation
associated with the two-dimensional wave equation was solved. As another application, a
new expression involving the exponential function and the Mittag-Leffler functions was
demonstrated.
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