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A B S T R A C T

This paper presents an alternative methodology to represent rebars and their bond-slip behavior against concrete
based on coupling finite elements. Among the main features and advantages of the proposed technique are:
(i) the coupling between the two independent meshes for concrete and reinforcement does not introduce any
additional degree of freedom in the global problem; (ii) both rigid and non-rigid coupling can be used to represent
the particular cases of perfect adherence and general bond-slip behavior, respectively; (iii) rebars of arbitrary
geometry and orientation can be modeled; (iv) the methodology can be applied to 2D and 3D problems and (v)
the formulation can be adapted to other type of finite elements and implemented easily in any existing FEM
code. Constitutive models based on continuum damage mechanics are used to represent the concrete behavior
and concrete-rebar interaction. A number of numerical analyses are performed and the results obtained show
the versatility and accuracy of the proposed methodology.

1. Introduction

It is well known that to achieve an accurate and efficient model-
ing of the nonlinear behavior of reinforced concrete structures by the
Finite Element Method (FEM), three important components must be
appropriately represented: concrete, steel reinforcement and the bond-
slip between steel and concrete. Regarding the latter component, since
the thickness of the interface between the two materials is usually very
small compared to the typical dimensions of the structural member, the
computational analysis involves different scales.

A first alternative to model the interface in 3D can be achieved by
using the same solid finite elements also employed for the other com-
ponents – concrete and steel reinforcements. This strategy, however,
involves a high computational cost and a complex finite element mesh
due to the refinement needed in the neighborhood of the interface. In
addition, the cross-section of the steel rebars is much smaller than the
general dimensions of the structural member, which precludes using
solid elements to represent the reinforcements (see, e.g., Refs. [1,2])
due to the mesh complexity, particularly when the reinforcement ratio
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of the structural member is considerably large.
To reduce the computational costs of 3D models, a strategy for mod-

eling steel/concrete interaction based on a multi-fiber approach has
been proposed by Richard et al. [3]. In their model, the steel/concrete
interaction and reinforcement bars are homogenized and the kinematic
assumptions are added to relate the global nodal displacement (beam
element) to the local strains (cross section). Degenerated finite elements
can also be applied to model steel concrete interaction, as employed for
Richard et al. [4] for three-dimensional analysis. Recently, interface
finite elements with high aspect ratio have been proposed by Rodrigues
et al. [5] to describe the interaction between rebars (discretized using
one dimensional finite elements) and concrete (represented by three-
noded triangular finite elements). In this approach, a continuum dam-
age model is applied to describe the interfaces between the two com-
ponents. Lastly, one dimensional finite elements are also frequently
applied to model both rebars and interfaces. In such models, the behav-
ior of the steel/concrete interface is treated as discrete or embedded
formulation to represent the reinforcement bars.
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Smeared, discrete and embedded models can be used to represent
the steel rebars. The first model is particularly suitable for modeling
distributed reinforcement, since it is based on the assumption that the
reinforcements are distributed uniformly with a particular orientation
angle over the concrete element. Hence, this formulation is very appeal-
ing for modeling concrete structures such as membranes [6,7], shells
[8–10] and plates [9–11]. In addition, since it is usually assumed per-
fect bond between concrete and reinforcements, the constitutive rela-
tions are derived using the homogenization theory and, consequently,
the reinforcement does not have an explicit discrete representation.

On the discrete and embedded models, the reinforcement layout
is explicitly handled. Such models are suitable for applications in
which the steel reinforcements are located sparsely. The basic differ-
ence among them lies is the way concrete and reinforcement layout
are coupled. The discrete model was cited for the first time by Ngo
and Scordelis [1]. In this model, the steel reinforcements are connected
directly to the adjacent concrete element nodes. Therefore, the major
drawback is related to the fact that the concrete mesh does depend on
the layout of reinforcements adopted. On the other hand, no special
finite elements are required for establishing the connection, since the
contribution of the reinforcement to the global stiffness matrix is auto-
matically achieved. E-Mezaini and Çitipitioǧlu [12] propose a technique
to overcome the problem of mesh dependency, in which isoparametric
elements with movable side nodes are applied to concrete, in which
case the reinforcement layout can be positioned arbitrarily. This for-
mulation, however, is very limited, since each concrete element cannot
be crossed by more than one reinforcement segment. Many researchers
employ this formulation when they need to investigate the bond-slip
between steel and concrete, since this phenomenon can be introduced
straightforwardly. Bond-links [1,2] and contact elements [13] are the
most common finite elements used to represent this feature.

In the context of the finite element analysis of reinforced concrete
structures, the embedded model seems to be the most appealing, since
the discrete rebars can be positioned independently of the concrete
mesh. Thus, the rebars can intersect the elements used to represent
the concrete in any direction. The contribution of the reinforcement
stiffness is superimposed to their parent elements. In the case of per-
fect bond, the stiffness matrix of the reinforcement (corresponding to
its embedded length) is evaluated using the same strain displacement
relation of the parent element. It is important to note that, in this case,
the size of the stiffness matrix remains unchanged.

In the formulation developed independently by Phillips and
Zienkiewicz [14] and Elwi and Murray [15], the embedded reinforce-
ment needs to be aligned with the local isoparametric coordinate axes of
the parent elements, bringing some restrictions regarding the reinforce-
ment layout. Chang et al. [16] developed a formulation that allows the
reinforcement layer to have an angle relatively to the local isoparamet-
ric element axes. However, the reinforcement layer must be straight,
and the parent element mesh rectilinear. Elwi and Hrudey [17] pub-
lished a formulation for curved embedded bars in two-dimensional par-
ent elements that allows slip, whereas Al-Bayati and Fahed [18] devel-
oped a procedure to embedded reinforcement in shell elements. Cheng
and Fan [19] extended the formulation proposed by Elwi and Hrudey
[17] to general three-dimensional elements with improvement and cor-
rections in the transformation process to take into account the reinforce-
ment confinement. Barzegar and Maddipudi [20] developed an auto-
matic procedure for three-dimensional analysis and inclusion of straight
segments of embedded reinforcement in a mesh of solid-parametric ele-
ments representing concrete. With this procedure only the global coor-
dinates of the nodes need to be provided. Then, an extension of this for-
mulation for modeling of bond-slip in three-dimensional applications is
presented by these authors [21]. Markou and Papadrakakis [22] devel-
oped an automatic procedure for the generation of embedded steel rein-
forcement inside hexahedral finite elements to decrease the computa-
tional cost in the generation of the input data for the embedded rebar
elements.

It is important to consider that in all embedded formulations allow-
ing slip between reinforcement and concrete, the number of degrees
of freedom is increased, and consequently, also the size of the stiff-
ness matrix and the computational cost. Another important aspect that
should be considered is related to the algorithm necessary to obtain
the intersection between the reinforcements and parent elements, and
to properly account for the length of reinforcement within each par-
ent element. An integration method or an iterative approach is usually
employed to map from global to local the Gauss points coordinates of
the reinforcement, and then, evaluate its contribution to the stiffness
matrix.

Besides of the approaches mentioned above, nowadays some authors
considered the effect of the rebars based on the use of the mixture
theory. In this way, Manzoli et al. [23] accounted for the presence
of the reinforcing bars oriented in different directions. According to
these authors, bundles or layers of rebars, surrounded by concrete, are
modeled as composite materials without the need for representing the
mesoscopic scale at which the rebars geometrically belong.

In this paper an alternative approach based on the use of coupling
finite elements for modeling rebars and their bond-slip relation against
concrete are proposed. The model can be classified as a variation of
the embedded approach, since both reinforcement layout and concrete
are discretized initially in an entirely independent and non-conforming
way. Coupling finite elements developed by Bitencourt Jr. et al. [24]
are inserted in the mesh to describe the interaction between reinforce-
ments and concrete. This alternative approach is very appealing since
it avoids the need for implementing an algorithm to detect the length
of the bar embedded in each “parent” element, as is usually the case
in existing embedded approaches. Moreover, with the proposed formu-
lation, a concrete element can be crossed by more than one reinforce-
ment segment in any direction automatically. Finally, in order to sim-
ulate reinforced concrete structures using the proposed methodology,
constitutive models based on the Continuum Damage Mechanics The-
ory (CDMT) are also formulated for the concrete behavior and rebar
interaction.

This paper is organized in five main sections. In section 2, the strat-
egy used to describe the interaction of the rebars on the concrete matrix
based on coupling finite elements is presented. Both cases involving
perfect and non-perfect bond conditions are detailed. Then, in section
3, continuum damage mechanics models are proposed for handling
the bond-slip and concrete behavior under tension and compression.
Finally, in section 4, several structural examples are presented as means
to validate the proposed strategy. The concluding remarks are presented
in section 5.

2. Discrete representation of rebars

To present the strategy for the discrete representation of rebars in
reinforced concrete structures, let us consider the reinforced concrete
corbel in Fig. 1. In such example, the reinforcement layout is quite
complex, given that the rebars have different geometries, positioned in
distinct directions and completely independent of the concrete mesh.
The strategy proposed can be summarized as follows:

1. Concrete mesh discretization based on the geometry of the structural
member (Fig. 1(a));

2. Definition of the rebars and corresponding mesh discretization
(Fig. 1(b));

3. Definition of coupling finite elements (CFEs) to describe the interac-
tion between concrete and rebars (Fig. 1(c)).

The main novelty of the proposed approach lies in the use of CFEs
to couple the two independent and non-conforming meshes for concrete
and reinforcement. According to Bitencourt Jr. et al. [24], each CFE has
the same nodes of the matching concrete element plus an additional
node – herein designated coupling node – represented by the loose node
of the rebar that belongs to the domain of the referred concrete element.
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Fig. 1. Definition of the numerical model for a reinforced concrete corbel based on CFEs: (a) generation of the concrete mesh; (b) generation of the rebars and
corresponding discretization; (c) coupling procedure; and (d) detail of the CFEs.

As illustrated in Fig. 1(d), for reinforcement nodes c1, c2 and c3, the
following CFEs are created: CFE1 = {i, j, k, l, c1}, CFE2 = {m, n, o, p, c2},
and CFE3 = {q, r, s, t, c3}. Hence, for each reinforcement node, a CFE is
added. It should be highlighted that, as will be discussed later, although
new CFEs are introduced in the problem, there is no increase in the
degrees of freedom of the global problem.

Since the discretization of concrete and rebars is done entirely inde-
pendent of each other, the proposed strategy can be classified as a vari-
ation of the embedded approaches discussed in the previous section.
However, unlike the typical embedded approaches, where the effect of
the rebars is locally introduced in the stiffness matrix and internal force
vector of the corresponding concrete elements, after the coupling pro-
cedure, the contribution of the rebars is added directly to the global
internal force vector (Fint) and stiffness matrix (K), i.e.:

𝐅int = AnelΩC

e=1 𝐅int
e,ΩC

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
concrete elements

+ Anel ΩR

e=1 𝐅int
e,𝛺R

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
rebars

+ Anel ΩCFE

e=1 𝐅int
e,𝛺CFE

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
coupling elements

(1)

and

𝐊 = Anel ΩC

e=1 𝐊e,ΩC
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

concrete elements

+ Anel𝛺R

e=1 𝐊e,𝛺R
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

rebars

+ Anel 𝛺CFE

e=1 𝐊e,𝛺CFE
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

coupling elements

(2)

where A stands for the finite element assembly operator. The first and
second terms of Equations (1) and (2) are related to the subdomains of
concrete, ΩC, and reinforcement, ΩR, respectively, and the third term
is associated with the CFEs introduced in the model.

One main advantage of the procedure describe above, is that no
algorithm needs to be defined to detect the length of the rebar embed-

Fig. 2. 2D and 3D CFEs based on linear interpolation functions for displace-
ments: (a) 3-noded triangular element with the Cnode, and (b) 4-noded tetrahe-
dral element with the Cnode.

ded in each “parent”, as is usually the case for existing embedded
approaches. Moreover, with the proposed technique, a concrete element
can be automatically crossed by multiple rebar segments in any direc-
tion. Finally, the coupling procedure does not introduce any additional
degree of freedom in the global problem. In addition, both rigid and
non-rigid coupling behaviors can be defined to represent the particular
cases of bond behavior, as discussed in the following sections.
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Fig. 3. Problem with one curved reinforcing layer: (a) global scheme; and (b) numerical model.

2.1. Concrete-rebar interaction

The concrete-rebar interaction is described by the use of CFEs. To
understand the interaction force introduced by these elements, let us
consider a standard isoparametric finite element with domain Ωe, num-
ber of nodes equal to nn, and shape functions Ni(𝐗) (i = 1, nn), which
are defined for the material points X ∈ Ωe, such that the displacement,
𝐔, at any point inside the element domain can be approximated in terms
of its nodal displacements, Di(i = 1, nn), as follows:

𝐔(𝐗) =
nn∑
i=1

Ni(𝐗)𝐃i. (3)

The CFE is a finite element which has the nodes of the standard isopara-
metric finite element, plus an additional node nn + 1 – the coupling
node (Cnode) – situated at the material point Xc ∈ Ωe.

Note that, to describe the interaction between the two independent
meshes for concrete and reinforcement, the CFEs are constructed using
the standard isoparametric elements of the concrete mesh plus the addi-
tional node that corresponds to the rebar node located inside their
domain. In the implementation presented in this paper, the CFEs for
2D problems all have three nodes from the standard triangular isopara-
metric element adopted plus the Cnode; and in 3D, four nodes from the

Fig. 4. Steel stress on the model with one curved reinforcing layer.

standard tetrahedral isoparametric element adopted plus the Cnode. This
is illustrated in Fig. 2.

The relative displacement, ⟦U⟧, herein defined by the difference
between the displacement of the Cnode and the material point Xc, can
be evaluated using the shape functions of the underlying finite element,
Ni(𝐗c) (i = 1, nn), as follows:

[[𝐔]] = 𝐃nn+1 −𝐔(𝐗c) = 𝐃nn+1 −
nn∑
i=1

Ni(𝐗c)𝐃i = 𝐁e𝐃𝐞, (4)

where matrix 𝐁e = [−𝐍1(𝐗c) −𝐍2(𝐗c) … −𝐍nn(𝐗c) 𝐈]; 𝐍i = Ni𝐈; and
I is the identity matrix of order 2 or 3, respectively for 2D and 3D
problems; and the displacement components of the CFE are stored in
𝐃e =

{
𝐃1 𝐃2 · · · 𝐃nn+1

}
.

The internal virtual work of the CFE is given by:

𝛿Wint
e = 𝛿[[𝐔]]T𝐅([[𝐔]]), (5)

where F(⟦U⟧) is the reaction force due to the relative displacement ⟦U⟧,
and 𝛿⟦U⟧ is an arbitrary virtual relative displacement compatible with
the boundary conditions of the problem. Using the same approximation
for the virtual relative displacement as the one used for the relative
displacement given by Equation (4), i.e., 𝛿⟦U⟧ = Be𝛿De, the internal
force vector of the CFE can be expressed as:

𝐅int
e = 𝐁T

e 𝐅([[𝐔]]). (6)

Accordingly, the corresponding tangent stiffness matrix of the CFE is
given by:

𝐊e =
𝜕𝐅int

e
𝜕𝐃e

= 𝐁T
e 𝐂tg𝐁e, (7)

where Ctg = 𝜕F(⟦U⟧)∕𝜕⟦U⟧ is the tangent operator of the constitutive
relation between reaction force and the relative displacement.

2.2. Perfect bond

Perfect bond between concrete and reinforcing steel bars is herein
considered by adopting the rigid coupling scheme proposed by Biten-
court Jr. et al. [24]. In this case, the displacement compatibility
between the two non-matching meshes is described by a linear elas-
tic relation between the reaction force and the relative displacement –
see Equation (8). Accordingly, a high elastic stiffness value is assumed
for the components C̃ in the matrix of elastic constants, C defined in
Equation (9):

𝐅 = 𝐂[[𝐔]] = 𝐂𝐁𝐞𝐃e, (8)
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Fig. 5. Problem with two curved reinforcing layers: (a) numerical model; and (b) total strain distribution.

Fig. 6. Steel stress for the model with two curved reinforcing layers.

Fig. 7. Reinforcement undergoing slip after deformation.

𝐂 =
⎡⎢⎢⎢⎣
C̃ 0 0

0 C̃ 0

0 0 C̃

⎤⎥⎥⎥⎦
. (9)

It is important to note that C̃ plays the role of a penalty parameter
on the relative displacement, and because of the equilibrium conditions,
the interaction force F in Equation (8) must be bounded. Hence, when
the elastic constants tend towards a sufficiently high value, the rela-

tive displacement components ⟦U⟧ approach zero within the normal
constraints of the machine precision.

According to Bitencourt et al. [24] the use of C̃ varying from C̃ ≅ 106

to C̃ ≅ 109 (N/mm) is recommended for rigid coupling.

2.2.1. Example: cylinder with curved reinforcing layers
A plane strain example is given in this section to illustrate the versa-

tility of the coupling procedure, namely in dealing with curved geome-
tries. The example consists of a thick cylinder subjected to external
pressure with curved reinforcing layers, as shown in Fig. 3(a). Based
on symmetry conditions, only a quarter of the cylinder is analyzed.
The concrete structure is discretized using standard triangular finite
elements, whereas the reinforcing layers are independently discretized
using two-noded truss elements. The two independent meshes are cou-
pled by four-noded triangular CFEs – see blue elements represented in
Fig. 3(b)). The rigid coupling procedure described in subsection 2.2 is
adopted using an elastic stiffness of C̃ ≅ 109N∕mm. Two cases are con-
sidered, with one and two levels of curved reinforcing layers. The mate-
rials are considered linear elastic as follows: As∕L = 0.025, Es∕Ec = 8,
and 𝜈 = 0.25.

In the following, results are compared with those obtained numer-
ically by Elwi and Hrudey [17] using quarter of thick ring analyses
under the same conditions as above.

Fig. 3(b) shows the quarter cylinder model. A total of 562 three-
noded triangular finite elements, 30 two-noded truss finite elements,
and 31 coupling elements are employed. As can be seen in Fig. 4, the
stress distribution along the steel layer is in good agreement with the
result by Elwi and Hrudey [17].

The numerical model with two reinforcing layers is depicted in
Fig. 5(a). A total of 562 three-noded triangular finite elements, 60
two-noded truss finite elements, and 62 coupling elements are used. In
Fig. 5(b), the total strain field is plotted on the deformed configuration,
which is in accordance with what is expected for this type of problem.

Fig. 8. Influence length of the coupling node.
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Table 1
Ingredients of the continuum damage model for the
bond-slip.

constitutive relation 𝜏b = (1 − d)𝜏b
effective shear stress 𝜏b = cn[[un]]
damage criterion 𝜙 = |𝜏b| − r ≤ 0
evolution law of the internal variable r = max[|𝜏b|]
damage evolution d(r) = 1 − q(r)

r

Fig. 9. Interface stress bond-slip relationship (monotonic loading) proposed by
the CEB fib Model Code [25].

The graph in Fig. 6 shows the stress distribution along the steel layers
(outer and inner). Also for this model, the results are in good agreement
with those by Elwi and Hrudey [17].

2.3. Non-perfect bond

The non-rigid version of the coupling scheme proposed by Biten-
court Jr. [24]. is used to represent the loss of bond by allowing a rel-
ative displacement between concrete and reinforcement. For this type
of application, a local system of coordinates, (𝐧, 𝐬, 𝐭), oriented such that
axis n is aligned with the reinforcement must be defined. This later on
will allow describing the slip of the reinforcement along its axis against
the concrete matrix – see illustration in Fig. 7. Thus, the relative dis-
placement and the corresponding reaction force can be expressed as
[[u]] = R[[U]] and f = RF, respectively, where R is the orthogonal
rotation matrix between local and global reference systems.

The model for the loss of bond can be easily represented by assuming
different values for the coupling constants defined in the local coordi-
nate system as follows:

𝐜 =
⎡⎢⎢⎢⎣
cn 0 0

0 cs 0

0 0 ct

⎤⎥⎥⎥⎦
. (10)

To ensure a rigid coupling in the two directions orthogonal to the
reinforcement bar (allowing slip only in the direction of the bar), Biten-
court et al. [24] recommend the use of cs = ct = c̃ varying from 106 to
109 (MPa/mm).

In general, bond-slip models establish a relationship between the
local (shear) stress, 𝜏, acting at the reinforcement-matrix interface, and
the relative displacement (interface slip), s. Since the CFE defines an
interaction force between the concrete matrix and reinforcement at the
coupling node, one may consider that this force results directly from
the bond (shear) stress, 𝜏b, on the bonded area (reinforcement-matrix
interface) in the neighborhood of the coupling node. Therefore, assum-

ing that the bond stress is constant in such neighborhood, and that the
influence length contributing to the resultant corresponds to the aver-
age of the half distances defined between the node “j” and the adjacent
nodes belonging to the reinforcement, “i” and “k” – see Fig. 8 – the
interaction force may be expressed as:

fnj
= 𝜏b([[unj

]])P Lj, (11)

where Lj = (Lij + Ljk)∕2 is the influence length and P is the perimeter
of the cross-section of the reinforcement. Note that the slip, s, is given
by the relative displacement along n, i.e., s = ⟦un⟧. Since the shear
stress develops in the longitudinal direction of the reinforcement, it
only contributes to the interaction force in that same direction. The
remaining transverse components of the resultant can be expressed as:

fsj = c̃[[usj ]]P Lj (12)

and

ftj = c̃[[utj ]]P Lj. (13)

In the following section, a constitutive model based on continuum
damage mechanics is used to describe the relationship between the
bond stress and relative slip.

3. Constitutive models

3.1. Bond slip

The main ingredients of the constitutive model herein proposed for
the bond-slip behavior are listed in Table 1, where cn is the elastic stiff-
ness, d ∈ [0,1] is the scalar damage variable, 𝜏b is the effective shear
stress, and r is the strain-like internal variable storing the maximum
value ever reached by |𝜏b| during the analysis. The function q(r) repre-
sents the hardening/softening law of the constitutive model, and it may
be adjusted to fit any bond slip model of type 𝜏b(s) by considering the
relationship q(r) = 𝜏b(r∕cn).

Taking as an example the model proposed by the CEB fib Model
Code [25] for monotonic loading (see Fig. 9), the bond stresses, 𝜏b,
between concrete and rebar for pullout and splitting failure are given
as a function of the relative displacement, s, along the axis of the rebar
as follows:

𝜏b(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜏bmax

(
s
s1

)𝛼

if 0 ≤ s ≤ s1

𝜏bmax if s1 ≤ s ≤ s2

𝜏bmax −
(𝜏bmax − 𝜏bf )(s − s2)

s3 − s2
if s2 ≤ s ≤ s3

𝜏bf if s > s3

, (14)

and the corresponding hardening/softening law is defined in terms of
the stress- and strain-like internal variables as:

q(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜏bmax

(
r∕cn
s1

)𝛼

se 0 ≤ r∕cn ≤ s1

𝜏bmax se s1 ≤ r∕cn ≤ s2

𝜏bmax −
(𝜏bmax − 𝜏bf )(r∕cn − s2)

s3 − s2
se s2 ≤ r∕cn ≤ s3

𝜏bf se r∕cn > s3

, (15)

where 𝛼, 𝜏bmax, 𝜏bf and si(i = 1,2,3) are the parameters of the model,
and depend on the concrete strength, the geometry of the rebar (ribbed
or plain), the confinement provided (confined or unconfined), and on
the bond conditions (good, or all other conditions).

3.1.1. Example: pullout test
A 3D pullout test is herein presented to assess the behavior of

the bar-concrete constitutive interaction defined above. The geome-
try, boundary conditions and imposed displacement are depicted in
Fig. 10. The embedded rebar is discretized using six two-noded truss
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Fig. 10. Pull-out test set-up (dimensions in mm).

Fig. 11. Evolution of average bond stress with respect to slip at both ends.

elements, whereas for the concrete, 7,544 four-noded tetrahedral finite
elements are used. To couple the two independent meshes, seven five-
noded tetrahedral CFEs are added – see blue elements in Fig. 10.

The concrete cylinder is assumed linearly elastic, with a Young’s
modulus of Ec = 30 GPa and a Poisson’s ratio of 𝜈c = 0.2. The
steel rebar is elastic perfectly plastic, with a Young’s modulus of
Es = 200 GPa and a yield stress of 𝜎y = 500 MPa. The non-rigid cou-
pling procedure is applied to the bond-slip behavior between the mate-
rials with a continuum damage model adjusted to the CEB fib Model
Code [25].

The constitutive parameters are defined for the two cases by the CEB
fib Model Code [25] recommendations for the following pullout fail-
ure conditions: good bond conditions - 𝜏bmax = 13.2 MPa, 𝜏bf = 5.3 MPa,
𝛼 = 0.4, s1 = 1.0 mm, s2 = 2.0 mm, s3 = 4.0 mm, cn = 103MPa∕mm
and c̃ = 109MPa∕mm; and all other bond conditions - 𝜏bmax = 6.6 MPa,
𝜏bf = 2.6 MPa, 𝛼 = 0.4, s1 = 1.8 mm, s2 = 3.6 mm, s3 = 4.0 mm,
cn = 103MPa∕mm and c̃ = 109MPa∕mm.

Fig. 11 shows the results obtained for the two cases considered in
terms of the average bond stress with respect to the slip at both ends
of the bar. As can be seen, the curve proposed by the CEB fib Model
Code [25] is properly approximated with only minor differences found
between loaded ends.

Fig. 12. Steel stress at the loaded end with respect to slip.

The steel stress versus slip at the loaded end is represented in Fig. 12,
together with the normal stress distribution along the bar at the maxi-
mum shear stress for both cases.

3.2. Concrete model

The concrete behavior in the following sections is described by the
rate-independent version of the continuum isotropic damage model pro-
posed by Cervera et al. [26]. In this model, the main ingredients are
defined separately for tension and compression, respectively using the
indices (+) and (−). Table 2 summarizes the main features.

In Table 2, ℂ is the fourth order linear-elastic constitutive ten-
sor; 𝝈 and 𝜺 are the second order strain and stress tensors, respec-
tively. In addition, after splitting the effective stress tensor in ten-
sion and compression components, 𝝈i denotes the ith principal stress
value from tensor 𝝈, and pi represents the unit vector associated
with the corresponding principal direction. The symbols ⟨·⟩ are the
Macaulay brackets. For the equivalent effective compression norm 𝝉

−,
K =

√
2 (𝛽 − 1) ∕ (2𝛽 − 1) is a material property, which depends on the

ratio between the biaxial and uniaxial compressive strengths of the con-
crete, 𝛽. According to [26], typical values for concrete are 𝛽 = 1.16
and K = 0.171. Also in this table, 𝜎−oct and 𝜏−oct are the octahedral nor-
mal and shear stresses, respectively, obtained from 𝜎−. In the definition
of the damage criteria, r+ and r− are the strain-like internal variables,
which represent the current damage thresholds, being updated continu-
ously to control the size of the expanding damage surface. At the onset
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Table 2
Main features of the continuum isotropic damage model by Cervera et al. [26].

constitutive relation 𝝈 = (1 − d+)𝝈+ + (1 − d−)𝝈−

effective stress tensor 𝝈 = ℂ ∶ 𝜺

𝝈
+ =

⟨
𝝈

⟩
= ∑3

i=1
⟨
𝝈 i
⟩

pi ⊗ pi
𝝈
− = 𝝈 − 𝝈

+

equivalent effective norms 𝝉
+ =

√
𝝈
+ ∶ ℂ−1 ∶ 𝝈

+

𝝉
− =

√√
3
(
K𝜎−

oct + 𝜏−oct
)

damage criterion 𝜙+∕− (
𝜏+∕− , r+∕−

)
= 𝜏+∕− − r+∕− ⩽ 0

evolution law of the internal variable r+∕− = max
(
r+∕−0 , 𝜏+∕−

)
damage evolution d+∕−(r+∕−) = 1 −

q+∕−
(

r+∕−
)

r+∕−

hardening/softening law q+ (r+) = r+0 eA+
(

1−r+∕r+0
)

q− (r−) = r−0 (1 − A−) + r−A−eB−
(

1−r−∕r−0
)

Fig. 13. 3D uniaxial tension and compression test: (a) set-up; (b) normalized
stress versus strain curve obtained numerically; (c) deformed configuration
under compression and (d) under tension loading.

Fig. 14. Tension stiffening example: geometry, boundary conditions, imposed
displacement and coupling scheme.

of the analysis, the initial values attributed to the damage thresholds are
r+0 = ft and r−0 = fc0, where ft is the tensile strength and fc0 the compres-
sion stress threshold for damage. The two parameters, A− and B−, are
defined so that the stress-strain curve satisfies two previously selected

points of the uniaxial compression test.
To satisfy the mesh objectivity condition, the energy dissipated in

tension must be properly related to the fracture energy of the mate-
rial. Therefore, the softening parameter A+, is derived from the ratio
between the material fracture energy and the characteristic length, lch,
such that:

1
A+ = 1

2H

(
1
lch

− H
)

⩾ 0, (16)

where H = f2
t ∕2EGf is written in terms of the tensile strength ft, the

elastic modulus Ec, and the tensile fracture energy Gf. The characteristic
length depends on the spatial discretization and in this paper is assumed
to be given by the square root of the finite element area and by the cubic
root of the element volume, respectively for 2D and 3D problems.

It should be noted that, from Equation (16), the characteristic
length implies a limitation on the maximum size of the finite elements
employed in the discretization, since lch ⩽ 1∕H.

3.2.1. Example: uniaxial tension and compression test
A simple example concerning a 3D uniaxial test is presented in this

section to illustrate the constitutive behavior of concrete under ten-
sion and compression. Fig. 13(a) shows the test set-up composed by
six four-noded tetrahedral finite elements. The parameters adopted are:
Young’s modulus Ec = 30 GPa; Poisson’s ratio 𝜈 = 0.2; tensile strength
ft = 2.0 MPa; compression stress threshold for damage fc0 = 12 MPa;
fracture energy Gf = 0.25 N/mm; and the compressive parameters
A− = 1.0 and B− = 0.89.

The numerical response is depicted in Fig. 13 for both compression
and tension loading. As can be concluded, the damage model describes
the expected behavior.

Fig. 15. Crack pattern for 𝛿 = 2 mm: good bond conditions (a) coarse mesh, (b) medium mesh, and (c) fine mesh; and all other bond conditions (d) coarse mesh, (e)
medium mesh, and (f) fine mesh.
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Table 3
Definition of the three finite element meshes.

Type of mesh Number of elements

two-noded trusses four-noded tetrahedrals five-noded tetrahedrals CFEs total number of elements

coarse 30 2617 31 2678
medium 60 21,528 61 21,649
fine 80 50,650 81 50,811

Fig. 16. Tension stiffening test: reaction force versus imposed displacement
curves for good bond conditions.

Fig. 17. Tension stiffening test: reaction force versus imposed displacement
curves for all other bond conditions.

4. Numerical applications

This section presents three complex structural examples selected to
demonstrate the advantages of the new coupling technique.

4.1. Tension stiffening

In this first example, a tension stiffening test is performed numer-
ically in a reinforced concrete specimen. Focus is given to the mesh

Fig. 18. Total iso-displacement contour representing the evolution of the crack
pattern obtained with the fine mesh and good bond conditions: (a) 𝛿 = 0.2 mm;
(b) 𝛿 = 0.6 mm; (c) 𝛿 = 1.0 mm; (d) 𝛿 = 1.4 mm; and (e) 𝛿 = 2.0 mm.

sensitivity of the bond slip model and, consequently, also of the crack
spacing.

The geometry, boundary conditions and imposed displacement are
illustrated in Fig. 14. The test set-up consists of a concrete prism with
a cross-section of 100 × 100 mm2 and 1000 mm length. A single rebar
with diameter of 𝜙 = 16 mm is placed along the centroid of the cross-
section.

The mesh sensitivity is assessed by considering different discretiza-
tions for the rebar and concrete (see Fig. 15). Table 3 summa-
rizes the type and number of elements for the three selected cases
(coarse, medium and fine meshes). In all simulations, the concrete
behavior is described by the continuum damage model proposed by
Cervera et al. [26] with the following parameters: Young’s modu-
lus E = 35 GPa; Poisson’s ratio 𝜈 = 0.2; tensile strength ft = 3.0 MPa;
compression stress threshold for damage fc0 = 19.2 MPa; fracture
energy Gf = 0.25 N/mm; and the compressive parameters A− = 1.0
and B− = 0.89.

The bond-slip behavior between steel and concrete is represented
by the non-rigid coupling procedure with the continuum damage
model adjusted to the CEB fib Model Code [25], as described in sub-
section 3.1. Two sets of parameters are defined for the ribbed bar,
splitting failure and unconfined conditions, by considering a concrete
of fck = 32 MPa: good bond conditions - 𝜏bu,split = 8.8 MPa, 𝜏bf = 0,
𝛼 = 0.4, s1 = s2 = 0.23 mm, s3 = 0.28 mm; for all other bond con-
ditions - 𝜏bu,split = 6.16 MPa, 𝜏bf = 0, 𝛼 = 0.4, s1 = s2 = 0.97 mm,
s3 = 1.16 mm. In both cases, the following coupling parameters are
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Fig. 19. L-shaped panel test: (a) set-up; (b) coupling scheme between rebars and concrete.

Fig. 20. Plain concrete L-shaped panel: load versus vertical displacement of the
loaded point.

adopted: cn = 103MPa∕mm and c̃ = 109MPa∕mm.
Fig. 15 shows the crack pattern at 𝛿 = 2 mm obtained with the three

meshes, for both good bond conditions (Fig. 15(a), (b) and (c)) and all
other bond conditions (Fig. 15(d), (e) and (f)). It can be concluded that
for the employed meshes the results are mesh-independent, since the
location and number of cracks remain the same. In addition, as it was
already expected from the literature, the number of cracks for good
bond conditions is higher.

The reaction force versus imposed displacement is shown in Figs. 16
and 17, respectively. In all cases, the results are very similar indepen-
dently of the mesh size.

Finally, the cracking process is plotted in Fig. 18 for different stages
of loading using total iso-displacement contours for the model with good
bond conditions and fine mesh.

4.2. L-shaped panels

The L-shape panels experimentally tested by Winkler et al. [27] are
herein numerically simulated using plane stress conditions with an out-

Fig. 21. Reinforced L-shaped panel test: load versus vertical displacement of the
loaded point.

of-plane thickness of 100 mm. In this example, two cases are considered:
plain concrete and reinforced concrete with a welded orthogonal rein-
forcing mesh defining an angle of 45◦ with the edges of the panel, as
illustrated in Fig. 19. The lower horizontal edge is fixed and a vertical
load is applied at a distance of 30 mm from the vertical right edge.

In both panels the concrete is discretized using 1886 three-noded
triangular finite elements. The damage model described in section
3.2 is adopted with the following parameters: Young’s modulus
Ec = 20 GPa; Poisson’s ratio 𝜈 = 0.18; tensile strength ft = 2.65 MPa;
compression stress threshold for damage fc0 = 17.7 MPa; fracture
energy Gf = 0.08 N/mm; and the compressive parameters A− = 1.0
and B− = 0.89.

For the reinforced L-shaped panel, the rebars are discretized using
456 two-noded truss finite elements. The rebars are assumed elastic per-
fectly plastic, with a Young’s modulus of Es = 179.1 GPa and a yield
stress of 𝜎y = 526.3 MPa. Perfect bond conditions are assumed using
480 five-noded tetrahedral coupling finite elements (see Fig. 19(b))
with elastic coupling parameters of C̃ = 109N∕mm.

The numerical results regarding both applied load versus displace-
ment curve and crack propagation are compared with experimental
data. Figs. 20 and 21 show the curves obtained for the plain and rein-
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Fig. 22. Crack propagation: plain concrete (a) experimental and (b) numerical; and for reinforced concrete (c) experimental; and (d) numerical.

Fig. 23. Reinforced concrete corbel: (a) set-up; (b) reinforcement layout; and (c) symmetry conditions applied.

Table 4
Material parameters for the concrete damage model.

Young’s modulus E = 21.87 GPa
Poisson’s ratio v = 0.2
Tensile strength ft = 2.26 MPa
Compression stress threshold for damage fc0 = 18.0 MPa
Fracture energy Gf = 0.1 N/mm
Compressive parameters A− = 1.0 and B− = 0.89

Table 5
Material parameters for the steel
reinforcement.

Young’s modulus Es = 206 GPa
Yield stress 𝜎y = 430 MPa
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Fig. 24. Force versus displacement: experimental and numerical results.

forced concrete panels, respectively. In both cases, the experimental
and numerical results are in good agreement.

Cracking initiates at the inner corner and then propagates towards
the opposite side of the L-shaped specimen. The crack patterns obtained
in both cases are illustrated in Fig. 22 for a vertical displacement of
1 mm and 10 mm, respectively for the plain and reinforced concrete
panels. As can be seen, the results are also in very good agreement with
the experimental data showing the ability of the proposed approach to
predict the process of crack localization and propagation.

4.3. Reinforced concrete corbel

This section presents 3D numerical analysis of a reinforced concrete
corbel experimentally tested by Mehmel and Freitag [28]. Fig. 23(a)
illustrates the test set-up and geometry, while the reinforcement layout

is depicted in Fig. 23(b). Using symmetry conditions, only one-fourth
of the corbel is analyzed, as represented in Fig. 23(c).

The finite element mesh employed in this example is the same
shown earlier in Fig. 1, including the definition of CFEs.

The concrete is discretized using 53,665 four-noded tetrahedral
finite elements. Their constitutive behavior is simulated using the con-
tinuum damage model presented in section 3.2. The rebars are dis-
cretized by 1681 two-noded truss finite elements with an elastic per-
fectly plastic model. The material parameters adopted for the consti-
tutive models are summarized in Tables 4 and 5. The rigid coupling
scheme is used to represent the perfect bond between the reinforce-
ment and concrete, using 1701 five-noded tetrahedral coupling finite
elements (see Fig. 1(c) and (d)) with elastic coupling parameters of
C̃ = 109N∕mm.

Fig. 24 shows the applied force versus displacement. As can be seen,
the numerical model provides a good prediction of the experimental
ultimate load capacity. The crack propagation process is also depicted
for three different level of loads (Fig. 24(a), (b) and (c)). The compar-
ison with the experimental pattern at the ultimate load of P = 933 kN
shows the good match obtained – see Fig. 25. The distribution of the
normal stress in the steel reinforcements is also shown in this figure.

5. Concluding remarks

The present paper presents an alternative numerical formulation for
modeling the mechanical behavior of reinforced concrete structures.
The main novelty lies in the discrete representation of the rebars based
on coupling finite elements.

The formulation is generalized for the cases of perfect bond – rigid
coupling scheme – and loss of bond – non-rigid coupling scheme. A
damage model is proposed to describe the bond-slip behavior using
the recommendations of the CEB fib Model Code [25]. The concrete
behavior is simulated adopting a continuum damage model with dis-
tinct damage variables for both tension and compression. Such model
can be easily calibrated based on basic parameters obtained from exper-
imental characterisation tests.

Each component of the proposed numerical approach was presented
and validated progressively using three small case studies. First, a quar-
ter cylinder with curved reinforcing layers was simulated to study the
versatility when dealing with curved geometries and to assess the per-
formance of the rigid coupling scheme. The results obtained were in
good agreement with those by Elwi and Hrudey [17] obtained using a
different numerical technique to embed the rebars. Next, a pullout test
allowed to address the interaction between concrete and rebars using

Fig. 25. Numerical versus experimental results for P = 933 kN: (a) experimental crack pattern; (b) numerical crack pattern; and (c) normal stress in steel reinforce-
ments (MPa).
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the bond-slip relation defined by the CEB fib Model Code [25]. Finally,
an uniaxial tension and compression test was performed to assess the
main features of the concrete damage model.

Three complex numerical applications were then selected to assess
the performance of the proposed model in real concrete structures. First,
a tension stiffening test allowed to assess the mesh sensitivity of the
bond-slip model. Results obtained showed that the numerical model is
able to adequately capture the bond-slip response and its interaction
with the crack patterns. It was also shown that the results obtained are
independent of the mesh size.

In the second application both plain and reinforced L-shaped panels
were analyzed in a plane stress condition. Perfect bond was considered
to connect the mesh of reinforcements to the concrete. In both spec-
imens, the results obtained matched closely the experimental data by
Winkler et al. [27].

The final 3D numerical analysis focused on a reinforced concrete
corbel. The example had a complex arrangement of rebars with dis-
tinct diameters and inclinations. As was noted, the numerical model
was able to predict the ultimate load capacity as well as the crack pat-
tern obtained experimentally by Mehmel and Freitag [28].

It is also important to mention the limitations of the presented
approach. The analyses are restricted to quasi-static loading and the
failure process in concrete is modeled using a standard local con-
tinumm damage model. The rebars are represented by one-dimensional
finite elements (truss elements) and, as consequence, bending and
shear effects are not considered. In future works the authors intend to
enhance the approach by considering beam elements, dynamic analysis,
nonlocal damage models, as well as the discrete modeling of cracks.

Based on the results obtained from the numerical examples, it
can be highlighted that the model presented to embed reinforcements
based on CFEs effectively allows handling complex meshes for concrete
and reinforcements independently. Although the meshes can be non-
conforming, their interaction is adequately represented. The proposed
formulation does not increase the degrees of freedom of the global prob-
lem and effectively avoids the need for special algorithms to detect the
length of the reinforcement embedded in each parent element, while
simultaneously allowing for multiple reinforcement segments, with dif-
ferent directions, to be automatically included in each crossed element.
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