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A B S T R A C T

A challenging task when more than one HLA gene is evaluated together by second-generation sequencing is to
achieve a reliable read mapping. The polymorphic and repetitive nature of HLA genes might bias the read
mapping process, usually underestimating variability at very polymorphic segments, or overestimating varia-
bility at some segments. To overcome this issue we developed hla-mapper, which takes into account HLA se-
quences derived from the IPD-IMGT/HLA database and unpublished HLA sequences to apply a scoring system.
This comprehends the evaluation of each read pair, addressing them to the most likely HLA gene they were
derived from. Hla-mapper provides a reliable map of HLA sequences, allowing accurate downstream analysis
such as variant calling, haplotype inference, and allele typing. Moreover, hla-mapper supports whole genome,
exome, and targeted sequencing data. To assess the software performance in comparison with traditional
mapping algorithms, we used three different simulated datasets to compare the results obtained with hla-mapper,
BWA MEM, and Bowtie2. Overall, hla-mapper presented a superior performance, mainly for the classical HLA
class I genes, minimizing wrong mapping and cross-mapping that are typically observed when using BWA MEM
or Bowtie2 with a single reference genome.

1. Introduction

The human leukocyte antigen (HLA) complex comprehends the
most variable segment of the human genome. This complex plays a
central role in the immune response since HLA molecules are key fea-
tures for antigen presentation and immune response modulation [1].
HLA genes compatibility between recipient and donor influences graft
acceptance, therefore, HLA variability is frequently evaluated for clin-
ical purposes. Moreover, different HLA variants might be related to
differential immune responses against pathogens, susceptibility to au-
toimmune diseases, or even to specific tumors [2]. The classical HLA
class I genes, HLA-A, HLA-B, and HLA-C, are highly polymorphic loci
and encode a key molecule for antigen presentation to T CD8+ lym-
phocytes. The non-classical HLA class I genes, HLA-G, HLA-E, and HLA-
F, are conserved at the DNA and protein level and encode immune-
modulatory molecules [3–5].

Much effort has been made to characterize HLA polymorphisms and
complete sequences in worldwide populations. Most of the studies are

restricted to the coding region, or even to exon segments only.
However, with the advent of next-generation sequencing (NGS), or
massively parallel sequencing, information regarding introns and reg-
ulatory segments has been obtained, as well as the characterization of
many new allele variants, providing deeper insights regarding HLA
worldwide variability and extended haplotypes. This is particularly
evident for non-classical HLA class I genes [6–8]. In addition, NGS
strategies do allow the evaluation of several genes all at once, and also
allow the phase definition (haplotypes) among part of the variants
detected. Nevertheless, when two or more HLA genes are sequenced at
the same time using NGS methods, a challenging task is to achieve a
reliable read mapping. Because of the polymorphic and repetitive
nature of most of the HLA genes due to their paralogous origins, the
following issues may arise when raw data (the reads) are mapped to a
single reference genome.

First, the classical HLA class I genes are among the most variable
genes in the human genome. The International Immunogenetics
Database (IPD-IMGT/HLA database, version 3.31.0) describes more
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Fig. 1. Hla-mapper software workflow, from the input FASTQ to the outputted BAM files.
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than 12,893 class I alleles [9]. Because of the polymorphic nature of
classical HLA genes, the sequences (or reads) obtained by NGS methods
usually present too many nucleotide differences when compared with
the reference human genome. Thus, well-established aligners such as
BWA (the Burrows-Wheeler Aligner) and Bowtie2 [10,11] frequently do
not map classical HLA class I sequences correctly. Usually, when these
algorithms are used with default parameters, because of the high
polymorphism, many reads do not find a match in the reference
genome, leading to a mapping bias that underestimates HLA variability
and overestimates reference allele frequencies [12–14]. Moreover,
when a higher tolerance for mismatches is defined, many reads are
incorrectly mapped as explained below.

Second, mostly due to the high sequence similarity among HLA
genes, polymorphisms may lead a sequence to be more compatible with
the reference sequence of another HLA gene than with the reference of
the original gene. Thus, when the tolerance for mismatches is increased
to avoid the aforementioned mapping bias, this second issue leads to a
large number of reads mapping to more than one HLA gene into the
reference genome, or simply mapping to the wrong gene. In this sce-
nario, it is expected an overestimation of genetic diversity in segments
presenting a large number of incorrectly mapped reads. Third, de-
pending on the NGS method used, a large number of very short reads is
produced and they could exacerbate the issues already presented.

The BWA developers do acknowledge the issues presented above.
They created the bwa.kit to improve HLA read mapping based on al-
ternative contigs and known HLA sequences from the IPD-IMGT/HLA.
However, its use is not straightforward and the data obtained might
bias downstream genotyping procedures as discussed later. In addition,
other attempts to evaluate the efficiency of many mappers and variant
call methods in complex regions have been made, but mapping im-
provement depends on the mapper and variant caller combination
[15,16].

All the issues introduced above could be circumvented if the reads
of each HLA gene were tagged with different indices, but this strategy is
cost ineffective. Usually, the aim is to sequence all HLA genes from a
given individual in a single sequencing run, tagging each individual
with specific indices, thus allowing the evaluation of many samples at
the same time. Additionally, research groups could be interested in
other non-HLA genes that may be sequenced together with HLA, or
even in evaluating HLA from whole genome sequencing.

Although many companies have introduced different NGS HLA-
typing kits and specific applications to call HLA alleles, these products
are mainly focused on reporting pre-defined alleles from the IPD-IMGT/
HLA database, for clinical purposes. In this context, they are usually
restricted to the segments tracked by the aforementioned database,
which does not include the complete upstream regulatory regions and
the complete 3′ untranslated segments. In addition, these applications
usually produce good results when the HLA typing kits from the same
manufacturer are used. However, they may not be suitable when al-
ternative approaches to characterize HLA genes are applied (e.g., when
other non-HLA genes are included in the sequencing). These applica-
tions are usually not freely available.

Many publicly available typing tools have recently been developed
to call HLA alleles from NGS data [14,17], including HLAminer [18],
HLA-VBseq [19], HLAreporter [20], OptiType [21], and others. In
general, these tools report only the HLA typing and do not properly
handle new HLA alleles. Moreover, they usually do not output aligned
(BAM/SAM) files that can be further processed (for instance, to infer
SNP genotypes).

To achieve a better evaluation of HLA genes when several HLA
genes are sequenced together or when other genes outside the HLA
complex are also included, we developed hla-mapper to optimize read
mapping for HLA class I genes. hla-mapper uses a scoring system in
order to address each read pair to the most likely gene, providing a
reliable map of those sequences, as described in the methods section.
Here we present the hla-mapper application, comparing its mapping

accuracy with other aligners such as BWA and Bowtie2.

2. Methods

2.1. The hla-mapper software

The input for hla-mapper is composed of paired-end FASTQ files
from amplicon, exon, or whole-genome sequencing. The software has a
trimming algorithm to remove short reads (the default value is 70 nu-
cleotides) and low-quality segments, identifying the largest sequence
fragment for each read in which all nucleotides present a quality value
higher than 97% (Q≥ 15). This process assures that only high-quality
sequences pass forward to the scoring stage (Fig. 1).

After the trimming process, hla-mapper identifies all read pairs
presenting sequence resemblance with any class I HLA gene sequence,
by using a k-mer approach. In this step, all possible 15-mer motifs are
computed, considering every HLA sequence available in the hla-mapper
database. Subsequently, every read pair with both sequences presenting
at least one of these motifs is considered as a possible HLA sequence.
This approach is particularly useful when dealing with whole genome,
whole exome sequencing, or when other non-HLA sequences are pre-
sent. This feature may be turned off when the input includes only HLA
class I gene sequences. After the initial read pair selection, hla-mapper
sorts the preselected pairs into subgroups according to the similarities
with each HLA class I gene. At this point, a read pair might be pre-
selected for more than one gene (Fig. 1).

At the scoring stage, hla-mapper uses the BWA ALN/SAMSE algo-
rithms [10] to align each read against a database of known HLA se-
quences from IPD-IMGT/HLA [9] and from curated HLA sequences
provided by the hla-mapper database. The parameters used for BWA
ALN are “maximum number or fraction of gap opens= 2” and the “max
#diff (int) or missing prob under 0.02 err rate= 10”. The BWA SAMSE
algorithm is used with default parameters. For each read, hla-mapper
measures the number of mismatches between this read and each HLA
class I sequence in the database, registering the lowest number ob-
served and with which reference it was associated. A mismatch score is
calculated for each read by summing the number of soft-clipped bases
(calculated from the CIGAR string) and the number of mismatches at
the aligned segment (calculated by using the NM:i field at the SAM file).
The algorithm allows a maximum of 6 mismatches for any read. Reads
not attending this criterion are excluded. Then, for each read pair, a
divergence score is calculated for each class I gene by summing the
mismatch score of the forward and reverse sequences observed for each
gene. If any sequence of a read pair failed to align against a given gene
reference, this pair is no longer considered for that specific gene. When
a given read pair presents the same divergence score for more than one
gene, the pair is excluded by default and placed within the unmapped
sequence files. This feature may be turned off, forcing these pairs to
map with MQ=0. After scoring each read pair, they are assigned to the
HLA class I gene presenting the lowest divergence score. Then, gene-
specific paired-end FASTQ files are created (Fig. 1). All read pairs not
assigned to a class I gene are placed at FASTQ files containing the
unmapped sequences.

For some HLA alleles, the IPD-IMGT/HLA database sequence com-
prehends the segment between the proximal promoter (around position
-300) up to a partially characterized 3′ untranslated region (3′UTR).
However, there is no information regarding complete promoters, in-
trons, or 3′UTR segments for most of the known alleles. This is parti-
cularly evident for HLA-A, HLA-B, and HLA-C. Nonetheless, this data-
base comprehends known HLA sequences that were properly cloned
and confirmed by Sanger sequencing.

To circumvent the lack of reference sequences regarding the 5′
upstream, 3′UTR, and intron segments, the hla-mapper database pre-
sents curated and manually analyzed sequences that have not been
described at the IPD-IMGT/HLA database (mainly for the regulatory
segments) or that have partially been characterized at the
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aforementioned database (a list of references regarding these sequences
is available in the software manual). In addition, the user may also add
locally known HLA sequences to improve the hla-mapper scoring
system.

After the scoring stage, each gene-specific paired-end FASTQ file is
then mapped using the hg19 or hg38 sequences as references, with a
less restrictive approach and allowing a higher mismatch rate. At this
point, hla-mapper uses the BWA MEM algorithm [10] to map, for in-
stance, HLA-A specific FASTQ files against an adapted version of the
reference genome that only includes the HLA-A sequence as a reference.
This procedure is repeated for each class I gene. The BWA MEM algo-
rithm is used with default parameters, except for the “penalty for a
mismatch= 2”, minimizing mapping failure of highly divergent se-
quences. The hla-mapper BAM files are then corrected regarding map-
ping positions, making them compatible with the GRCh37 (hg19) or
GRCh38 (hg38) genome references (the default is hg38). Finally, gene-
specific BAM files are created. These BAM files can be further processed
to infer genotypes and haplotypes following any suitable method for the
user, such as the GATK package (Genome Analysis Toolkit) [22,23].

All steps described above are automatically performed by a single
program and using a single command. hla-mapper supports HLA class I
genes (HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, and HLA-G) and it is
compatible with Linux and macOS. hla-mapper is freely available for
download at www.castelli-lab.net/apps/hla-mapper.

2.2. Assessing hla-mapper performance by comparison with other mapping
algorithms

To assess the hla-mapper performance (version 2.0, with database
version 2.1), we compared its results with the ones obtained using two
different well-established aligners, BWA MEM (version 0.7.16a) and
Bowtie2 (version 2.3.3). BWA MEM and Bowtie2 were used with de-
fault parameters. We compared the performance of these three methods
using three different datasets, each one simulating a targeted sequen-
cing of 1000 virtual samples.

In order to simulate the targeted sequencing, for each virtual
sample, we selected two allele sequences of each HLA class I gene (HLA-
A, HLA-B, HLA-C, HLA-E, HLA-F, and HLA-G). These allele sequences
were retrieved from the IPD-IMGT/HLA database version 3.31 based on
the frequencies already reported in the Brazilian population. Brazilians
were selected because (a) HLA-E, HLA-F, and HLA-G complete varia-
bility has already been evaluated for the same sample [6–8]; (b) HLA-A,
HLA-B, and HLA-C complete variability has already been evaluated
(data not published) for this same sample; (c) Brazilians are highly
admixed and a great number of different alleles is usually observed.
Consequently, we used this data to obtain allele frequencies from each
HLA class I gene in a real population sample. The algorithm for allele
sequence selection considered the reported frequency of each allele in a
way that, when considering the entire dataset, all alleles presented a
frequency that resembles the ones observed in a real population sample.

For each sample, a set of 700 random fragments of approximately
600 nucleotides was produced for each allele sequence. Each fragment
was transformed into two reads, a forward (the 5′ end of the fragment)
and a reverse (the 3′ end of the fragment, complemented and inverted),
to simulate 2×150 or 2×250 paired-end sequencing. Additionally,
we inserted random mutations to simulate sequencing errors, with a
maximum of 5 mutations per read. To track the allele sequence used to
produce each read pair, reads were identified according to the name of
the allele used to generate them.

As previously stated, we used 3 different datasets to evaluate the
hla-mapper performance. The first dataset (dataset 1) consisted of 1000
virtual samples with HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, and HLA-G
sequences, simulating a 2× 250b sequencing procedure. The allele
frequencies resemble the ones reported for a Brazilian population
sample. The second dataset (dataset 2) also consisted of 1000 virtual
samples with HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, and HLA-G

sequences, simulating 2× 250b sequencing. However, the HLA alleles
were mutated in order to generate new sequences, by introducing up to
5 random mutations for each original allele sequence. These mutations
consisted of nucleotide exchanges or single nucleotide deletions. Thus,
this dataset simulates the sequencing of samples with only new HLA
alleles, besides the sequencing errors introduced for each read. The
third dataset (dataset 3) also consisted of 1000 virtual samples, but, in
order to simulate a more complex mapping task, we added four HLA
class I pseudogenes (HLA-H, HLA-J, HLA-K, and HLA-L). The read sizes
were reduced to 150b, simulating a 2×150b sequencing. All datasets
were further processed by hla-mapper, and also by BWA MEM and
Bowtie2 using chromosome 6 from hg38 as a reference.

Mapping performance was evaluated by five metrics: (a) apparent
mapping failure, indicating the rate of reads that failed to map or were
mapped more than once; (b) real mapping failure, indicating the rate of
reads that failed to map or reads that were mapped to the wrong gene;
(c) gene-specific unmapped sequences, indicating the rate of reads from a
specific gene that were not mapped at all; (d) gene-specific mapping
failure, indicating the rate of reads from a given gene that failed to map
to the right gene; and (e) pairwise cross-mapping rates, indicating the rate
of reads from one gene mapped to another.

2.3. Assessing HLA typing tools performance when data is pre-processed
with hla-mapper

In order to evaluate whether pre-processing data with hla-mapper
would improve the performance of HLA typing, we have tested the
following tools using dataset 3: HLAminer [18], HLA-VBseq [19], Op-
tiType [21], with updated databases (IPD-IMGT/HLA version 3.31),
and the trial version of NGSEngine version 2.8.1 (from GenDX) using
the complete class I database (that includes the non-classical loci,
IMGT/HLA version 3.29). All these typing tools were used with default
parameters. We compared the results when these tools were used di-
rectly (the raw data as input) and when the hla-mapper FASTQ files
(pre-processed with hla-mapper) were used as input.

3. Results

3.1. Hla-mapper performance at datasets 1 and 2

hla-mapper performance was assessed in three datasets, as described
earlier. The results for dataset 1 and 2 (that do not include HLA pseu-
dogenes) are shown in Tables 1 and 2. Here we assessed the hla-mapper
performance when dealing with simulated samples that resemble an
actual population sample with known alleles (dataset 1, Table 1) and
when dealing with only new HLA sequences (dataset 2, Table 2). In
these datasets, there were 8.4 million read pairs (2 alleles× 700 frag-
ments× 6 genes× 1000 samples).

Hla-mapper presented the highest rate of the apparent mapping failure
metric, in which 0.1% of the reads failed to map for both datasets.
When the real mapping failure metric is taken into account, we observed
higher values when compared with the apparent mapping failure. This is
related to the presence of many reads mapped to the wrong gene. In this
scenario, for both datasets, higher rates were detected for Bowtie2,
followed by BWA MEM. Thus, although these two algorithms present a
low proportion of reads that fail to map, they present a higher mapping
error rate. The best performance for this metric was achieved by hla-
mapper, since almost all reads were successfully mapped to the right
gene.

When the proportion of gene-specific unmapped sequences is eval-
uated, BWA MEM and Bowtie2 usually do not fail to map sequences
(not necessarily in a correct fashion, as revealed by the next metric),
while the proportion of unmapped reads using hla-mapper is slightly
higher (around 0.1%) for both datasets (Tables 1 and 2).

Regarding mapping accuracy of individual reads (i.e., the gene-spe-
cific mapping failure metric), it can be noticed that mapping accuracy
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varies according to the method used and the HLA class I gene. The
highest error rate was observed for classical genes. The worst perfor-
mance was observed for Bowtie2 for classical class I genes. Overall, the
best performance was achieved by hla-mapper when considering the
classical class I genes individually, or all genes together. Although da-
taset 2 comprehends only new HLA sequences (that are not present at
the hla-mapper database), hla-mapper performance for dataset 2 is
practically equal to dataset 1. Regarding non-classical HLA class I se-
quences, all methods reach good results in this metric, probably due to
the lower extent of sequence diversity of these genes.

When the pairwise cross-mapping rate is considered, two major issues
emerge. The first one is the cross-mapping between HLA-A and HLA-H,
in which many HLA-A reads (around 4%) are addressed to HLA-H when
using BWA MEM or Bowtie2 (Tables 1 and 2). The second one is the
cross-mapping between HLA-B and HLA-C, in which a high proportion
of reads from one gene is mapped to the other when using BWA MEM or
Bowtie2. Both issues are circumvented when using hla-mapper.

3.2. Hla-mapper performance at dataset 3

The results for dataset 3 (that include HLA pseudogenes and smaller
read sizes) are shown in Table 3. For this dataset, there are 14 million
read pairs (2 alleles× 700 fragments× 10 genes× 1000 samples).
Here we opted to not compute the apparent mapping failure because hla-
mapper would not map at least 40% of the reads as these are derived
from HLA pseudogenes. The real mapping failure rates were similar to
the ones observed for datasets 1 and 2, with Bowtie2 presenting the
highest rate (worst performance), followed by BWA MEM. In general, a
higher gene-specific unmapped sequences metric is observed for Bowtie2
considering classical genes, and for hla-mapper considering non-

classical ones. When gene-specific mapping failure is taken into account,
Bowtie2 presented the worst performance, followed by BWA MEM.
Overall, the best performance was achieved by hla-mapper, in which
reads from all genes presented a mapping failure below 0.63%.

Cross-mappings involving HLA-A and HLA-H were observed when
using any of the algorithms except hla-mapper. Since dataset 3 presents
HLA pseudogene sequences, it can be noticed that a high proportion of
HLA-H reads also map to HLA-A when using BWA MEM or Bowtie2,
mainly the last one. Finally, as dataset 3 presents smaller read sizes
(150b), a higher rate of cross-mapping between HLA-B and HLA-C can
be noticed for all algorithms, except for hla-mapper.

3.3. Typing tools performance after hla-mapper pre-processing

We used dataset 3 (with pseudogenes and smaller read sizes) to
evaluate the HLA typing performance of the following tools: HLAminer,
HLA-VBseq, OptiType, and NGSEngine from GenDX. For HLAminer, the
overall accuracy (both alleles called correctly) was increased from
21.8% (no pre-processing) to 49.5% (after hla-mapper). It should be
mentioned that HLAminer calls only 2-digit alleles (different HLA
proteins). For HLA-VBseq and OptiType, the same results were obtained
with and without hla-mapper pre-processing, with an overall accuracy
of 98% at the 4-digit level. This high OptiType accuracy is compatible
with previous reports [14].

For NGSEngine, the overall accuracy increased from 45.1% to
97.3% after hla-mapper pre-processing. However, it should be men-
tioned that the majority of the correct calls before hla-mapper pre-

Table 1
Rates, in percentage, for apparent mapping failure, real mapping failure, gene-
specific unmapped sequences, gene-specific mapping failure and pairwise cross-
mappings, for dataset 1.

Parameters BWA MEM Bowtie2 Hla-mapper

Apparent mapping failure 0.0001% 0.0142% 0.1031%
Real mapping failure 1.0077% 2.0769% 0.2027%

Gene-specific unmapped sequences
HLA-A 0.0003% 0.0198% 0.1005%
HLA-B 0.0001% 0.0388% 0.1030%
HLA-C 0.0001% 0.0249% 0.1029%
HLA-E 0.0001% 0.0003% 0.1075%
HLA-F 0.0000% 0.0004% 0.1033%
HLA-G 0.0000% 0.0011% 0.1017%

Gene-specific mapping failure
HLA-A 3.4591% 4.4307% 0.1788%
HLA-B 0.8176% 2.8071% 0.2064%
HLA-C 1.7678% 3.9884% 0.2057%
HLA-E 0.0006% 0.1980% 0.2151%
HLA-F 0.0003% 0.1877% 0.2066%
HLA-G 0.0006% 0.8494% 0.2034%

Pairwise cross-mapping rates*

HLA-A to HLA-B 0.0006% 0.0912% 0.0000%
HLA-A to HLA-H 3.4774% 4.0757% –
HLA-A to HLA-J 0.0021% 0.0781% –
HLA-A to HLA-K 0.0000% 0.0610% –
HLA-B to HLA-C 0.8153% 2.6557% 0.0003%
HLA-B to HLA-H 0.0022% 0.0790% –
HLA-C to HLA-B 0.0011% 3.8652% 0.0001%
HLA-E to HLA-A 0.0000% 0.0619% 0.0001%
HLA-G to HLA-A 0.0000% 0.1165% 0.0000%
HLA-G to HLA-H 0.0001% 0.0557% –
HLA-G to HLA-J 0.0000% 0.5580% –

– Hla-mapper does not align sequences against these genes. Instead, sequences
from these genes are placed into FASTQ files containing unmapped sequences.
* Pairs of genes presenting rates higher than 0.05% for at least one algo-

rithm.

Table 2
Rates, in percentage, for apparent mapping failure, real mapping failure, gene-
specific unmapped sequences, gene-specific mapping failure and pairwise cross-
mapping, for dataset 2.

Parameters BWA MEM Bowtie2 Hla-mapper

Apparent mapping failure 0.0002% 0.0142% 0.1033%
Real mapping failure 0.9815% 2.0512% 0.2032%

Gene-specific unmapped sequences
HLA-A 0.0003% 0.0171% 0.1060%
HLA-B 0.0004% 0.0389% 0.1026%
HLA-C 0.0003% 0.0259% 0.1048%
HLA-E 0.0001% 0.0008% 0.1040%
HLA-F 0.0000% 0.0008% 0.1036%
HLA-G 0.0000% 0.0018% 0.0991%

Gene-specific mapping failure
HLA-A 3.3280% 4.2824% 0.1910%
HLA-B 0.8048% 2.7889% 0.2052%
HLA-C 1.7555% 3.9808% 0.2092%
HLA-E 0.0004% 0.2038% 0.2081%
HLA-F 0.0000% 0.1859% 0.2072%
HLA-G 0.0004% 0.8651% 0.1983%

Pairwise cross-mapping rates*

HLA-A to HLA-B 0.0003% 0.0958% 0.0000%
HLA-A to HLA-H 3.3460% 3.9308% –
HLA-A to HLA-J 0.0018% 0.0770% –
HLA-A to HLA-K 0.0004% 0.0600% –
HLA-B to HLA-C 0.8032% 2.6478% 0.0001%
HLA-B to HLA-H 0.0022% 0.0771% –
HLA-C to HLA-B 1.7536% 3.8601% 0.0000%
HLA-E to HLA-A 0.0001% 0.0636% 0.0001%
HLA-E to HLA-B 0.0000% 0.0528% 0.0000%
HLA-E to HLA-H 0.0000% 0.0468% –
HLA-F to HLA-A 0.0000% 0.0508% 0.0000%
HLA-G to HLA-A 0.0001% 0.1159% 0.0000%
HLA-G to HLA-H 0.0000% 0.0599% –
HLA-G to HLA-J 0.0000% 0.5719% –
HLA-G to HLA-K 0.0000% 0.0435% –

– Hla-mapper does not align sequences against these genes. Instead, sequences
from these genes are placed into FASTQ files containing unmapped sequences.
* Pairs of genes presenting rates higher than 0.05% for at least one algo-

rithm.
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processing were related to non-classical genes (HLA-G, HLA-E, and HLA-
F), and the accuracy for the classical genes was no higher than 4%. In
contrast, after hla-mapper pre-processing, the accuracy for all genes
increased and reached 100% for all classical genes. These results do
indicate that, if other genes are included in the sequencing (in this case,
some HLA pseudogenes), hla-mapper should be used to pre-process data
before typing class I genes with NGSEngine. This issue is probably re-
lated with the NGSEngine database used, which does not include HLA
pseudogenes. Finally, we are not sure whether NGSEngine supports
datasets with HLA genes that are not included in the software database
or datasets containing non-HLA genes. The HLA alleles of each virtual
sample from dataset 3 are available at Table S1.

3.4. Comparing hla-mapper and BWA.kit performances

As previously mentioned, BWA developers present a set of scripts
(bwa.kit) for HLA-related reads mapping improvement. These scripts
use alternative contigs and known HLA sequences from the IPD-IMGT/

HLA to re-estimate mapping quality of reads with ambiguous mappings.
After applying this post-processing tool in some samples from dataset 3,
we noticed that it depleted the sequencing depth within certain gene
segments (mainly exons). This phenomenon was particularly evident
when reads with low mapping quality (MQ) were removed. For in-
stance, the mean sequencing depth observed in the middle of HLA-B
exon 3 (at dataset 3) was 140 when using hla-mapper, but 12 when
using bwa.kit and 8 when reads with MQ=0 are removed. Although
the remaining reads after the bwa.kit post-processing are usually cor-
rectly mapped, the low sequencing depth at these important segments
might bias SNP genotyping inference, downgrading the usability of this
tool.

4. Discussion

Much effort has been made in the development of typing tools to
call HLA alleles from NGS data. Many commercial or freely available
typing tools have recently been developed. Among the public ones, we
can find HLAminer, HLAreporter, HLA-VBseq, OptiType, ATHLATES,
PHLAT, HLAforest, and others. The major goal of these tools is HLA
typing, i.e., the definition of the two HLA alleles at each locus. Among
the commercial ones, we may cite NGSEngine (from GenDX) and HLA
Twin (from Omixon). Minor attention has been devoted to the devel-
opment of mechanisms to minimize the read mapping bias addressed
earlier. Moreover, many research groups focus on haplotype structure,
Linkage Disequilibrium levels, natural selection and evolution, case-
control association studies at the SNP and haplotype levels, and other
goals, in which an accurate BAM/SAM file is more important than the
allele typing. Besides, the above-mentioned tools usually do not eval-
uate the promoter segment. To circumvent all these issues, we devel-
oped hla-mapper.

hla-mapper was firstly introduced in the evaluation of the HLA-E
variability in two African population samples [24] and it successfully
assigned HLA-E sequences when several class I genes were sequenced
together. Later, this approach was used to address HLA-E and HLA-F
variability in Brazilian samples [7,8] and HLA-G variability in two
geographically distinct populations, Brazil and Cyprus [6]. The com-
parison among the results obtained with hla-mapper, BWA MEM, and
Bowtie2 demonstrated that BAM files produced by hla-mapper are more
accurate than the ones produced when using a single genome draft as a
reference. The hla-mapper scoring system minimizes cross-mappings
and wrong mappings. This scoring system relies on a database of pub-
lished sequences and also includes some unpublished ones, allowing the
scoring of introns and regulatory sequences, mainly the promoter seg-
ment. These unpublished sequences were manually curated and ob-
tained from either homozygous local samples or samples whose HLA
genes were sequenced independently. Together, the database sequences
cover around 1500 nucleotides upstream the first translated ATG up to
500 nucleotides downstream the 3′UTR segment of each HLA class I
gene. With this database, hla-mapper enhances the accuracy of the
scoring and mapping procedure at exons, introns and regulatory seg-
ments, thus reducing the incidence of false-positive and false-negative
mapping rates. The database comprises references for HLA-A, HLA-B,
HLA-C, HLA-E, HLA-F, and HLA-G, but hla-mapper is compatible with
data containing non-HLA genes (e.g., whole-genome sequencing) as it
preselects sequences before the scoring process.

Here we detected two major issues when mapping HLA class I gene
sequences directly with BWA or Bowtie2: cross-mappings between HLA-
A and HLA-H, and between HLA-B and HLA-C. HLA-H is commonly
observed as a low-frequency extra amplification when using HLA-A
specific primers [25]. In addition, HLA-H is also present in whole-
genome data. Therefore, a high genotyping bias for HLA-A, HLA-B, and
HLA-C (and also HLA-H) is expected when using BWA MEM or Bowtie2
directly. These errors are actually expected since HLA-A/HLA-H and
HLA-B/HLA-C pairs share more sequence motifs when compared with
others (Table S2). For instance, considering frequent alleles and a 70-

Table 3
Rates, in percentage, for real mapping failure, gene-specific unmapped se-
quences, gene-specific mapping failure and pairwise cross-mapping, for dataset
3.

Parameters BWA MEM Bowtie2 Hla-mapper

Real mapping failure 1.0033% 3.1307% 0.6000%

Gene-specific unmapped sequences
HLA-A 0.0005% 0.3157% 0.2967%
HLA-B 0.0004% 1.3763% 0.2928%
HLA-C 0.0004% 0.3408% 0.2977%
HLA-E 0.0000% 0.0005% 0.3112%
HLA-F 0.0000% 0.0009% 0.3063%
HLA-G 0.0000% 0.0079% 0.2975%

Gene-specific mapping failure
HLA-A 2.5060% 5.6479% 0.5885%
HLA-B 1.0800% 5.4614% 0.5861%
HLA-C 2.4326% 5.8561% 0.5954%
HLA-E 0.0006% 0.5126% 0.6226%
HLA-F 0.0001% 0.5388% 0.6125%
HLA-G 0.0002% 0.7675% 0.5951%

Pairwise cross-mapping rates*

HLA-A to HLA-B 0.0037% 0.2824% 0.0000%
HLA-A to HLA-G 0.0015% 0.0957% 0.0000%
HLA-A to HLA-H 2.5281% 4.2857% –
HLA-A to HLA-J 0.0352% 0.4799% –
HLA-A to HLA-K 0.0006% 0.1015% –
HLA-B to HLA-A 0.0281% 0.1274% 0.0000%
HLA-B to HLA-C 1.0025% 3.5877% 0.0006%
HLA-B to HLA-H 0.1112% 0.3398% –
HLA-C to HLA-A 0.0345% 0.1336% 0.0000%
HLA-C to HLA-B 2.3970% 5.2476% 0.0002%
HLA-E to HLA-A 0.0001% 0.1824% 0.0001%
HLA-E to HLA-B 0.0000% 0.0671% 0.0000%
HLA-E to HLA-L 0.0000% 0.0591% –
HLA-F to HLA-A 0.0000% 0.1018% 0.0000%
HLA-F to HLA-G 0.0000% 0.0824% 0.0000%
HLA-F to HLA-H 0.0000% 0.1891% –
HLA-F to HLA-L 0.0000% 0.0637% –
HLA-G to HLA-H 0.0001% 0.2544% –
HLA-G to HLA-J 0.0000% 0.3325% –
HLA-H to HLA-A 0.1981% 3.5702% 0.0022%
HLA-H to HLA-K 0.0017% 0.0997% –
HLA-J to HLA-A 0.0000% 0.0950% 0.0000%
HLA-J to HLA-G 0.0002% 0.1632% 0.0000%
HLA-J to HLA-H 0.0000% 0.0685% 0.0000%
HLA-K to HLA-A 0.0001% 0.1983% 0.0000%
HLA-K to HLA-G 0.0001% 0.0528% 0.0000%
HLA-K to HLA-H 0.0006% 0.3444% –

– Hla-mapper does not align sequences against these genes. Instead, sequences
from these genes are placed into FASTQ files containing unmapped sequences.
* Pairs of genes presenting rates higher than 0.05% for at least one algo-

rithm.
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mer motif, which is the minimum read size considered by hla-mapper
when using default parameters, the pairs HLA-A/HLA-H and HLA-B/
HLA-C share 1.4% and 1.9% of all possible motifs, respectively. How-
ever, when using a 20-mer motif (the typical size of a primer), the pairs
HLA-A/HLA-H and HLA-B/HLA-C share 12.1% and 14.2% of all possible
motifs, respectively (Table S2). The scoring and mapping strategy
proposed by hla-mapper (Fig. 1) circumvents these issues and generates
accurate read mappings for HLA class I genes, even when only new HLA
alleles are considered (dataset 2). Moreover, hla-mapper performance
was superior even when smaller read sizes and HLA pseudogenes were
present (dataset 3).

A downside of hla-mapper is that the scoring system uses known HLA
sequences as a reference. Although mismatches are allowed in the
scoring process, minimizing the impact of new variable sites, hla-
mapper could exclude sequences carrying new large indels or a large
number of new point mutations. Thus, it is possible that reads from
samples presenting new alleles with several divergences in comparison
with known HLA sequences would not be properly mapped.
Nevertheless, as observed in dataset 2, the strategy used by hla-mapper
is straightforward and suitable to map HLA sequences to their proper
reference even when the dataset includes only new HLA alleles
(Table 2).

We evaluated the performance of some of the above-mentioned
typing tools when data was pre-processed with hla-mapper. While hla-
mapper pre-processing did not influence some tools performance,
others were much improved. For instance, we noticed a better perfor-
mance for HLAminer and NGSEngine. At least for the latter, this im-
provement was probably due to the database used by NGSEngine, since
there were no HLA pseudogenes included. NGSEngine performance
reached 100% for classical class I genes when data was pre-processed
with hla-mapper, mostly because the processed data no longer contains
HLA pseudogenes sequences. Since both HLA-VBseq and OptiType were
updated with complete HLA databases, that include pseudogenes,
typing accuracy was the same with or without hla-mapper pre-proces-
sing. Moreover, many typing tools are not compatible with whole-
genome data or they work quite slow when dealing with it. Since hla-
mapper preselects HLA sequences and creates gene-specific FASTQ and
BAM files, mapping accuracy would be greatly improved by pre-pro-
cessing the data with hla-mapper, as demonstrated for NGSEngine and
HLAminer, even for non-classical genes.

In conclusion, we hereby present a strategy and an application to
handle HLA NGS data in order to achieve an accurate sequence map-
ping of HLA sequences to the human reference genome (hg19 or hg38).
Many different genotyping, haplotyping, and allele calling methods
might be applied afterward using the hla-mapper outputs. hla-mapper is
freely available at www.castelli-lab.net/apps/hla-mapper and is com-
patible with most of the UNIX-based systems.
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