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a  b  s  t  r  a  c  t

This  work  proposes  a predictor  system  (multinodal  forecasting)  considering  several  points  of  an  electrical
network,  such  as  substations,  transformers,  and  feeders,  based  on  an  adaptive  resonance  theory  (ART)
neural  network  family.  It is  a problem  similar  to global  forecasting,  with  the  main  difference  being  the
strategy  to  align  the input  and  output  of  the  data  with  several  parallel  neural  modules.  Considering  that
multinodal  prediction  is  more  complex  compared  to global  prediction,  the  multinodal  prediction  will use
a fuzzy-ARTMAP  neural  network  and a global  load  participation  factor.  The  advantages  of  this  approach
are as  follows:  (1)  the  processing  time  is  equivalent  to the processing  required  for  global  forecasting  (i.e.,
lectrical system distribution
rtificial neural networks
daptive resonance theory

the additional  time  processing  is  quite  low);  and  (2)  Fuzzy-ARTMAP  neural  networks  converge  signifi-
cantly  faster  than  backpropagation  neural  networks  (improved  benchmark  in precision).  The preference
for  neural  networks  of  the  ART  family  is due  to the characteristic  stability  and  plasticity  that  these  archi-
tectures  have  to provide  results  in a fast  and  precise  way.  To  test  the  proposed  forecast  system,  the  results
are presented  for  nine  substations  from  the database  of  an  electrical  company.

© 2018  Elsevier  B.V.  All  rights  reserved.
. Introduction

Precisely knowing the electrical load is a prior condition for
mplementing strategies to provide consumers with quality, cost-
ffective electrical services (e.g., voltage, frequency, and waveform
hape). Most of the proposals found in the literature are for global
oad forecasting, which is the sum of all demanded loads. In this
ase, the predicted global load is divided considering the several
usses of the system using some heuristic method. This division
enerally leads to certain errors that can compromise the qual-
ty of the required studies for a power system’s operation (load
ow analysis, voltage, and angle stability, among other important
tudies). Thus, this work proposes to develop a multinodal load
orecasting method considering the load at several points of the
lectrical network, such as substations, transformers, and feeders,
ased on an adaptive resonance theory (ART) [1] family neural net-

ork. It is a similar problem to global load forecasting, with the
ain difference corresponding to the use of a strategy to prepare

he input and output data with several parallel neural modules

∗ Corresponding author.
E-mail address: thays7abreu@gmail.com (T. Abreu).

ttps://doi.org/10.1016/j.asoc.2018.06.039
568-4946/© 2018 Elsevier B.V. All rights reserved.
aggregated to a global predictor. Therefore, historical consumption
data provided by the electrical distribution systems are used. In this
system, the load behavior is expected to repeat with some uncer-
tainty. This uncertainty can be mitigated by utilizing exogenous
information from historical sources in the prediction system. Gen-
erally, this was implemented as in the classical example known as
the Box–Jenkins approach [2,3]. Today, researchers prefer the use
of intelligent techniques, e.g., artificial neural networks (ANNs) [4],
fuzzy logic [5], etc. However, multinodal prediction is complex in
comparison to global prediction. The multinodal prediction method
developed in this work employs two important resources: the use
of the fuzzy-ARTMAP neural network (FANN) proposed by Gross-
berg [1] and the use of a global load participation factor (GLPF) [6,7].
The advantages of this approach are: (1) the low processing time
in comparison to global forecasting and (2) using a FANN results in
solutions orders of magnitude faster than backpropagation (BP) [8],
which is a major benchmark of precision for ANNs. Full convergence
is not even assured with BP neural networks when using diversified
data. The preference for the ART family of ANNs [1] is due to the
characteristic stability and plasticity that these architectures have

to provide results quickly and precisely.

https://doi.org/10.1016/j.asoc.2018.06.039
http://www.sciencedirect.com/science/journal/15684946
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2018.06.039&domain=pdf
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It is emphasized that the stability analysis of neural networks is
n important matter considering the need to assure convergence
n the training phase. Reference [9] provides a study in this sense.

To test the proposed prediction system, the results are presented
onsidering substations of a power system centralized dataset
CDS) [10].

The load forecasting addressed in this paper is for 24 h in
dvance with 1 h (or ½ h) discretization. However, other resolutions
an be achieved with little modification.

. Related works

Global load forecasting accounts for the majority of the publi-
ations available in the literature based on techniques such as ANN
11], fuzzy logic [12–14], genetic algorithms [13], classical proce-
ures [15–17], fuzzy-ART&ARTMAP ANN [18,19], ARIMA [2,3,16],
NN based on Levenberg–Marquardt [20] training method, ANN
y gradient descent learning [21], and load forecasting based on
ultiregression–decomposition model [22]. There are few publi-

ations dealing with multinodal load forecasting, which include
he following. In 1996, Chen et al. [23] realized a load forecasting

ethod for three substations serving different types of consumers
residential, commercial, and industrial). The proposal was to
mprove the prediction with ANN, considering the effect of tem-
erature on load demand. Hsu and Chen [24] propose a calculation
ethod for regional load forecasting (Taiwan region) using ANN
ith a backpropagation algorithm [8], and comparing this with

 regression model. They conclude that the ANN performance is
uperior to the regression models. Singh et al. [25] realize load fore-
asting with a feedforward ANN for a half-hour period of three days
n a multiregion in Australia. Altran [6] proposes a multinodal load
orecasting using a multilayer perceptron ANN, with training based
n backpropagation, but substituting the usual activation function
ith a radial basis one. Salgado et al. [26] realize a load demand

orecasting by bus using an ANN. In 2011, Nose-Filho et al. [7] have
roposed a generic short-term load forecasting model that can be
pplied to multinodal load forecasting using a general regression
eural network (GRNN) [27]. Two other methodologies were used:
ne predicts loads individually and another uses the participation
actors and global load forecasting. For example, in [28], the authors
ropose a methodology for predicting the electrical current in sev-
ral transmission lines based on a statistical method. Reference [29]
resents a system called MOSAIC that uses a bottom-up simulation
ool to determine the current and future consumption and pro-
uction load curve in an area of the electrical system. Reference
30] introduces the basic principles of an ANN with its training-
hase executed by a backpropagation method [4] for predicting
he short-term load of a distribution network.

Considering the importance of the mode of load forecasting in
everal points of the system, such as substations, transformer, and
eeders, the objective of this work is to develop a methodology
o solve load forecasting problems on the nodes of the system,
rom the point of generation to the consumer. Therefore, it is a
roposal with differentiated characteristics in relation to the spe-
ialized literature, i.e., the total load prediction is realized, as well
s the evaluation of the load distribution at several interest points
ccording to the user (electrical distribution companies, etc.) based
n FANN. The justification was presented previously, where the
rediction was executed very fast, always converging and with
esources that can be modified by changing the training strategy

f the neural network (including or removing components in input
nd output data), among other tasks that improve the solution qual-
ty without needing to retrain the neural network. It is a procedure
ased on incremental training (continuous learning) [1].
puting 71 (2018) 307–316

3. Proposed methodology

The multinodal load forecasting method proposed in this work
is based on ANN concepts [4] and the GLPF [6,7]. The ANN used is
the Fuzzy-ARTMAP [1], the implementation of which is presented
in Appendix A.

The prediction system is composed of two  important parts: (1)
global load forecasting (GLF) and (2) multinodal load forecasting
(MLF) (composed by n local prediction modules). Executing the GLF,
the MLF  is realized using several parallel modules, each predicting
the load of a considered bus (transformer, feeder, substation, etc.).
Utilizing these models, the proposal of load forecasting is formu-
lated.

3.1. Global load forecasting

The GLF by the ANN is formulated based on window movement
[31], a strategy for selecting input variables usually constituted by
load values associated with several times (present hour and past
hours) and various weather factors. The output corresponds to the
next hour’s load. The input and output vectors form a window,
which is delayed with a velocity of 1 h (or ½ h) until completing
the dataset available for the training phase. Once the training is
completed (i.e., a successful routine), the ANN is able to realize the
prediction. The successful prediction is evaluated on some tradi-
tional inference metric, for example, the mean absolute percent
error (MAPE) [31].

The formulation presented as follows, i.e., the vector represen-
tation (input and output of the ANN), is by line and not by column,
as is usually adopted in the literature. This is a recommendation
of authors [1] of the ART descendent ANN, where the algebraic
operations are easier and more intelligible.

This paper considers the vectors a and b containing the input and
output data of the ANN, respectively. Taking the reference hour “h”,
the input vector a is defined by:

a = [LTE] (1)

where:
L: vector with the load information of hour h and past loads

(arbitrated according to strategies adopted by the user);
T: temperature vector;
E: vector containing exogenous information (time, weather fac-

tors, etc.).
Vector a is formed by analogic data (vectors L and T) and binary

data (vector E). Vector E includes chronologic data such as time,
date, and season among other parameters required by the load
predictor problem. As usual, the dimension of the analogic part is
inferior to that of the binary part. FANN does not have problems
with the dimensions of the input vector, nor with the dimensions
of the samples for the training phase. However, if necessary, the
dimension of vector E and, consequently, vector a, can be reduced
using a Fuzzy-ART module (unsupervised training) to form clusters,
which are also introduced in the binary codification. This procedure
can increase the efficiency of the load prediction calculation. It is
also emphasized that the FANN presents the advantage of using a
combination of analog and binary data.

In each window, vector L is composed of the hour load h, as
well as three or five correlated components corresponding to past
load values. Section 3 (Results and Discussion) presents the strategy
used in this paper. For example, the load values corresponding to
hours h, (h − 1), (h − 2), and (h − 3) are influenced by measurements
on the same day of the previous week and/or previous month. Vec-

tor T usually contains the load temperature, i.e., T ∈ �1. However,
this vector can contain the maximum and minimum temperatures
of the day, as adopted in some publications, or another strategy of
interest to the user.
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The ANN output corresponding vector is defined as:

 = [L(h + 1)] (2)

here:
L(h + 1) is the total electrical load referred to 1 h (or ½ h) in

dvance.
It is observed that vector b has only one component, i.e., b ∈ �1.

.2. Multinodal load forecasting formulation

The MLF  is realized similarly to the global predictor, i.e., for each
indow, the weight adjustment must be realized as in GLF in the

ther modules that compose the MLF. In this model the local mod-
les in every bus of the electrical system are parallel, i.e., they can
e processed independently.

The following strategy is proposed to improve the training
elocity of the local module. The input vector of each module is
ormed by the load value corresponding to the hour (h + 1), i.e., the
utput value of GLF plus three components corresponding to the
lobal load participation factor (GFPF) of hours (h), (h − 1), and (h

 2). In this case, the dimension is 4. Therefore, the following are
efinitions of such ANN vectors:

p = [Lp(h + 1)GLPFp(h)GLPFp(h−1)GLPFp(h−2)] (3)

p = [GLPFp(h + 1)] (4)

orp = 1, 2, ...,n.

here:
n: number of interested busses of the power system;
p: identification index of the interested bus;
GLPFp: global load participation factor associated with the p-th

us.
The variable GLPF is defined according to [6] and [7]:

LPFp (h) = Lp (h) /TL (h) (5)

here:
Lp(h): load value of bus p related to hour h;
TL(h): total load of the system (sum of all electrical loads

emanded of the power system) referred to hour h;
∑n

p=1
{Lp (h)}, k = 1, 2, . . . , n. (6)

Considering the parameter GFPFp,  as defined on Eq. (5), its
ehavior is less variant (well behaved), in comparison to the behav-

or of Lp (load corresponding to the p-th bus). Therefore, it is
ossible to use in each local module (in each considered bus) a

esser number of inputs than the global input vector module (aggre-
ated load). This reduces the processing time in local modules. For
xample, the experiment presented in Section 4 follows:

GLF = 6.80 s

MLF = 39.72 s(7ANN, thatis,  5.67 spersubstation);

here:
TGLF : total execution time of the global ANN training;
TMLF : total execution time of the local ANN corresponding to the

ean execution of the several local modules.

.3. Adjustment and selection of interest nodes
Considering the definition presented in Eq. (5), it is concluded
hat:

n

p=1

{
GLPFp (h)

}
= 1. (7)
puting 71 (2018) 307–316 309

Thus, if n is large, low values of GLPFp(h) are more likely,
which can consequently damage the performance of the ANN train-
ing. In this case, a multiplication factor (mfp) for each GLPFp(h)
is suggested, as the result of this multiplication shows the most
appropriate values for the ANN training. When predicting, an
adjustment must be made, i.e., the division of GLPFp(h) by mfp.
For example, the GLPF is considered small if its mean is less than
0.05 (5%). However, it is emphasized that every Ib (ARTb input
vector) has the same size M,  and small values of the compo-
nents are compensated with the concept of complementation (Eq.
(A.3)). Therefore, there were no inaccuracies introduced, as already
observed in experiments.

This strategy, based on the use of GLPF, represents economy of
calculus and faster execution, mainly in the training phase. It imple-
ments a small variation spectrum around a mean value for every
interested node considered. Therefore, the ANN has more stable
behavior and converges to a solution more quickly. Fig. 1 shows
the typical behavior of a GLPF, corresponding to the substations of
the system for a 24-h period.

This way, the interested nodes can be selected for the nodal
prediction defined within:

I= {II ,IA} (8)

where:
II: set of interested nodes;
IA: aggregate nodes.
The II are individually treated as associated with the interested

multinodal loads. The load related to IA corresponds to the sum of
every load that does not belong to the II . Therefore, if dim{II} = m,
then dim{I} = m + 1.

3.4. Load forecasting calculation

Another advantage of the local modules that can be emphasized
is that the exogenous variables are dispensable, which are passed
to the modules of the MLF  by load L(h + 1) (1 h in advance). Thus,
the FANN is stable, with short execution time compared to a mul-
tilayer feedforward ANN trained by backpropagation [8], which is
one of the most commonly used in the literature, as discussed in
the Results and Discussion section.

Finally, the predicted values for 24 h are defined by the ANN as:

T́L (h) = b
′
1(h)x Lbase (9)

´Lp (h) = ´GLPFp(h) xT́L (h) (10)

forh = 1, 2, ..., 24;

where:
T́L (h): total predicted load for hour h;
b

′
1 (h): ANN output value (global predictor) for hour h;

Lbase: total load value taken as base of the normalization process;
Ĺ p (h): output value of the p-th ANN (local predictor) corre-

sponding to hour h;
´GLPF p(h): predicted value of the GLPF associated with the p-th

local module corresponding to hour h.
The execution training time, which represents the largest part

of the execution time considering the parallel prediction system, is
defined according to expression (11):

Ttotal=TGLF+TMLF < (m+1)TGLF (11)

where:
Ttotal: total execution time of the training predictor system
(global and multinodal).
From Eq. (11), it is clear that the total time to execute the FANN

(Ttotal) is less than (m+1) TGLF , as the mean execution time of the
local modules is less than the global execution time, because the
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Fig. 1. Typical

imension of vector ak (Eq. (3)) is less than that of vector a (Eq. (1)).
ccording to the literature, the FANN is more than a hundred times

aster when compared to a multilayer feedforward ANN trained by
ackpropagation [8], which is the most commonly used method to
olve the load forecasting problem.

Fig. 2 shows the load forecasting model as proposed in this
aper. The values calculated in this prediction system are the total
lobal load and the normalized loads on the several interested
usses. Therefore, these values must be converted into real values
in watts/megawatts).

.5. Proposed procedure for correction of multinodal forecasting

The first step of the prediction model is obtaining a global

rediction. This prediction can then be used to determine the

nterested node predictions. According to simulations, multinodal
redictions present greater error when compared to global pre-
ictions. To improve the accuracy of the multinodal prediction, an
vior of a GLPF.

algorithm is proposed to adjust the calculations as they are per-
formed.

Step 1: Considering the forecast corresponding to the time (h +
1), obtain the predicted values of: GLPFp (h + 1), for p ∈ I;

Step 2: Compute: sum =
∑

p ∈ I

GLPFp (h + 1) ;

Step 3: Compute: error = 1 – sum;
Step 4: | error | ≤ tol?, If yes, stop. Else, go to Step 5;
Step 5: GLPFp (h + 1) = (1 + error) GLPFp (h + 1), for p ∈ I. Return

to Step 2;
where:
tol is a predefined tolerance.

4. Results and discussion
It is necessary to normalize the results (Eq. (A.1)) in considera-
tion of the definitions of the input and output vectors of module GLF
(Eqs. (1) and (2)) of the FANN processing. This is necessary to main-
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orecasting system.
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Table 1
Parameters of the FANN.

Parameter Value

 ̌ 1
A 0.7
�abaseline 0.1
�b 0.99
�ab 1
E 0.05

Table 2
MAPEs.

Substation MAPE (%)

Sub1. 4.99
Sub3 3.42
Sub4 5.63
Sub5 4.76
Sub6 4.75
Sub7 3.31
Fig. 2. Load f

ain every component of vectors a and bpertaining to the interval
0,1]. As part of input vector a corresponds to the binary codifica-
ion vector E, the normalization can only be done in relation to the
ata provided on the global load (vector L) and temperature (vector
). For convenience, the loads and temperature must be normalized
eparately. Therefore, Eq. (A.1) of Step 1, Appendix A, is not neces-
ary once the constraint ai ∈ [0,[1]] is already satisfied. The other
ectors b, ak, and bk, for k = 1, 2, . . .,  n, satisfy this constraint as well.

The precision of the load forecast can be evaluated according to
he concept of MAPE [31]:

APE = 1
NA

∑NA

h=1

∣∣∣∣
yactual (h) − yforecast (h)

yactual (h)

∣∣∣∣ × 100 (12)

here:
MAPE: mean absolute percent error;
NA: number of hourly samples of the time series;
yactual (h): reference value (comparison) related to hour h;
yforecast (h): predicted value at hour h.
To evaluate the performance of the prediction, the maximum

rror parameter can also be used (Emax). These two  parameters
MAPE and Emax) are the most frequently used in the literature
n load forecasting. Additionally, they are used for comparative
nalysis with the prediction methods.

The database used for the simulations is from a company in New
ealand [10], and is available online. It is a system composed of nine
ubstations. The substations are organized as follows, considering
he sets II and IA (Eq. (8)):

I= {Sub1,Sub3,Sub4,Sub5,Sub6,Sub7}

A= {Sub2,Sub8,Sub9}.

here:
Subi: i-th substation;
IA: aggregate nodes.
The database is divided into two parts: (1) training and (2) pre-

iction. For the training phase, the period is from December 8-th,
007 to January 7-th, 2008, forming 1488 vectors with a discretiza-

ion of 30 min. The prediction (24 h in advance) is defined as January
-th, 2008. The parameters used in this experiment are shown in
able 1.

Fig. 3 shows the real and predicted global loads (24 h in advance).
Subaggregate (Sub2, Sub8, Sub9) 3.85

Global 2.91

Figs. 4 and 5 show the local load prediction (substations) with
Sub7 and Subaggregate, respectively, taken as examples.

Table 2 shows the MAPE for global and local predictions.
According to the results presented in previous literature, the

MAPEs are satisfactory (less than 5%, except for Sub4, which is
slightly higher at 5.63%).

This experiment has been realized using a Dell XPS PC with a
Core i7-4770 Intel processor @3.40 GHz and 8.0 GB RAM, running a
Microsoft Windows 64-bit operating system

We  consider that the tests presented in this work show that
this proposal is promising, in addition to being fast and stable, and
provides good results with precision similar to those obtained by
backpropagation neural networks (BNNs) (benchmark in precision,
though very slow).

According to reference [32], a classical experiment elaborated in
reference [33] (two spirals apart), a BNN needed 20,000 epochs to
conclude the training, whereas, in relation to the same experiment,

the FANN was trained with only five epochs. This is obviously a sig-
nificant difference with respect to processing time, in favor of the
FANN. Another advantage is its plasticity; for example, we  can use
new data and change the structure, such as by increasing or reduc-
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ng the quantity of input data components, without destroying the
nowledge previously acquired. It is emphasized that most of the
eural networks available in the literature do not exhibit plasticity.

Other comparative studies, considering different ANNs, have
een presented in the specialized literature with this emphasis,
.g., in [34–37]. The results from the comparative studies show
hat the ANN model is a superior method for load forecasting,
wing to its ability to handle load data and its lower MAPE. These
ublications also emphasize the advantages of applying neural net-
orks in relation to classical methods. The principal advantage is

he lack of necessity to model the load, i.e., it is not necessary to
etermine a correlation between the cause (input data) and effect
output, which is the load forecasted one hour in advance). Neu-

al networks can use the quantity and quality of several types of
nformation, once the importance (sensitivity) of the load to be
redicted on the data used in input is determined automatically.
l and predicted).

Moreover, the sensitivity can be extracted by neural networks [38]
after concluding the training phase with the values of the internal
parameters of the neural network (from the information field of
synapse weights and nonlinearities). This procedure can be used
to select important (more sensitive) input variables and eliminate
others that contribute little or not at all to obtaining a good load
forecasting. Considering this assumption, we think that the pro-
posal is innovative.

5. Conclusion

This paper presents a new prediction model for load predic-

tion up to 24 h in advance, based on the use of a FANN. The load
forecasting is constituted by global prediction, i.e., considering the
sum of all loads on the system, as well as in each node (busses
of the electrical system). It is achieved without additional com-
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Fig. 4. Local load prediction

utational processing time costs, as the modules are processed in
arallel. A reduced quantity of data is used to execute the local node
raining, thus reducing the time for calculating each local mod-
le. The total training execution time is half of that required for
lobal prediction training. The time for training the FANN is sub-
tantially less than that required for traditional backpropagation
raining [8], which is considered a benchmark in the literature.
he advantages of the FANN are its quality in terms of stability,
lasticity, and results that satisfy the exigencies of the users. The
se of a GLPF presents a better behavior (less variation around a
ean value) than the corresponding local load. This increases the

recision of the results, providing errors of generally less than 5%
similar to those presented in the literature), with only the error for
ub1 above this threshold. Another improvement is the adjustment

rocedure of the GLPF based on the application of pro rata correc-
ions. This concept is intended to demonstrate that it is possible to
ealize adjustments without prejudicing the results and encourage
iated with substation Sub7.

new upgraded algorithms. One of the qualities of the ART fam-
ily architecture (including the FANN) is that application-tailored
adjustments can be made to provide the best results.

Thus, we highlight the following advantages and disadvantages
of the methodology proposed for multinodal load forecasting. The
advantages include fast training, as well as ease of changing the
necessary strategies (different from those already established in
the literature) to improve the results or including new data with-
out destroying the previously acquired knowledge (incremental
training). Another advantage is that the FANN architecture has no
stability problems when employing a large database, which is a
problem for most of the neural networks available in the literature;
i.e., this neural network (FANN) always converges. The disadvan-
tages include that to obtain high-quality solutions, it is necessary to

elaborate a good plan of the input and output variables of the neu-
ral network, mainly owing to the use of binary codification with
analogic quantities. Moreover, using FANN, the quantity of com-
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Fig. 5. Local load pred

onents of the input vector is doubled (see Eq. (A.4) – Appendix
) in comparison with those of other neural networks. Finally, we
mphasize that considering the field of load forecasting, it is possi-
le to investigate new techniques based on ANN, such as reservoir
omputing [39] and deep learning [40–42].
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ppendix A. A – fuzzy-artmap neural network

FANN is a combination of two techniques: adaptive resonance
heory [1] and fuzzy logic [5]. It is constituted by two unsupervised
referred to Subaggregate .

Fuzzy ART ANNs interconnected by a module called inter-ART. The
neural modules ARTa and ARTb process the input vector (vector a)
and output (vector b), respectively. The inter-ART module realizes
the matching (input–output mapping) with the two modules ARTa
and ARTb providing the extraction of the knowledge (training or
learning) from the FANN, in a supervised mode, i.e., it is based on
input and output stimuli. Fuzzy logic is aggregated to the ARTMAP
architecture to improve the solutions, which provides an intelligent
increment to the neural architecture. The input and output of the
FANN must be pre-processed considering two  principal objectives:
(1) normalization, i.e., each component of the input and output vec-
tors must be between 0 and 1; (2) the quality of the solutions is
dependent on the ability of the user, and on the codification of the

components a and b.

Fuzzy-ART and FANN work according to the following phases:
(1) training phase; and (2) analysis phase (prediction). The training
phase is realized offline with the presentation of the input stimulus
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for unsupervised training) and input and output (supervised train-
ng). Such stimuli are elaborated from examples extracted from

 database and/or simulations. Three layers constitute Fuzzy-ART
odules: F0 (input layer), F1 (comparison layer), and F2 (recog-

ition layer for category filing), implemented according to the
ollowing steps:

Step 1: Input Data (Stimulus)
The input data are vector a = [ a1 a2 a3 . . . aM], with dimension

. This vector is normalized to avoid a proliferation of categories
beyond the minimum necessary), therefore:

¯
 = a / ‖ a ‖1 (A.1)

here:
ā: normalized input vector;

a‖1 =
M∑

i=1

∣∣ai

∣∣ (norma − 1).  (A.2)

The application of an ART descendent ANN combined with Fuzzy
ogic (the case addressed in this work), needs the variables and
arameters pertaining to the interval [0,1]. Therefore, if these com-
onents originally satisfy this restriction, the execution of Step 1
ould be dispensable, or at least optional.

Step 2: Codification of the Input Vector
The codification, called complement, is realized to preserve the

agnitude of the information, i.e.:

¯
c

i = 1 − āi (A.3)

here:
āc

i
: i-th component of input normalized complementary vector.

Therefore, the dimension of this vector is equal to 2M:

 =
[

ā āc
]

= [ā1 ā2 . . . āM āc
1 āc

2 . . . āc
M ] (A.4)

∥∥I
∥∥

1
=M (every vector with normalization and complementary

odification has the same size M).
Step 3: Activity Vector
The activity vector of F2 is represented by y = [ y1 y2 y3 . . . aN],

here N is the quantity of categories created in F2. Thus:

i= 1ifnodejofF2isactive; otherwiseitis0.  (A.5)

Step 4: Selection of Neural Network Parameters
The parameters used on the ART-Fuzzy ANN processing are:
1. Choice Parameter:  ̨ > 0;
2. Training Rate:  ̌ ∈ [0,1];
3. Vigilance Parameter : � ∈ [0,1].
Step 5: Weight initializing
First, every weight is equal to 1:

j1 (0) = wj2 (0) = wj3 (0) . . . = wj2M (0) = 1 (A.6)

This shows that there is no previously assumed active category.
Step 6: Chosen Category
Considering the input vector I in F1, for each node j in F2, the

hosen function Tj is determined by:

j =
∥∥I ∧ wj

∥∥
1
/(  ̨ +

∥∥wj

∥∥
1
) (A.7)

here:
∧:fuzzy operator AND defined by:

I ∧ w)i = min(Ii , wi), i = 1, 2, . . . , N. (A.8)

The category is chosen corresponding to the active J node, i.e.:
= arg{maxTj},j = 1, 2, ...,N.  (A.9)

bserving Eq. (A.9), if there is more than one active category, that
ith the minimum index will be chosen.
puting 71 (2018) 307–316 315

Step 7: Resonance or Reset
Resonance occurs if the vigilance criterion (Eq. (A.10)) is satis-

fied:
∥∥I ∧ wJ

∥∥
1
/
∥∥ I

∥∥
1

≥ � (A.10)

If the criterion defined by Eq. (A.10) is not satisfied, the device
called reset is set. At the reset, node J of F2 is excluded from the
searching process (according to Eq. (A.9)), i.e., one must set TJ = 0.
Then, a new category is chosen using Eq. (A.9) in the resonance
process. This procedure is repeated until a category satisfying Eq.
(A.10) is found.

Step 8: Weight Updating (Training)
When input vector I completes the resonance state, the weights

of the Fuzzy-ART ANN are adjusted according to:

wnew
J = ˇ

(
I ∧ wold

J

)
+

(
1 − ˇ

)
wold

J (A.11)

where:
J: index of active category;
wnew

J : updated weight vector;

wold
J : weight vector referred to the previous updating.

It is emphasized that if  ̌ = 1, the training is faster.
Implementing the FANN, the execution of modules ARTa and

ARTb follows the same procedure (Steps 1–8), associating, respec-
tively, the indices j(J) and k(K), mutatis mutandis. The indices J and
K show the winner neurons in ARTa and ARTb, respectively. At
module ARTb, the parameters ˛b, ˇb, and �b are arbitrated based
on experience. With respect to module ARTa, the algorithm is the
same, where ˛a and ˇa are considered fixed and �a is variable,
taking the following value:

�abaseline =
∥∥ Ia ∧ wa

J

∥∥
1

/
∥∥ Ia

∥∥
1

(A.12)

The parameter �a is incremented from the initial value (A.12), by
a small positive value (ε) until the value of �a does not satisfy Eq.
(A.10). The last value of �a that satisfies Eq. (A.10) is the correct
value of �a-max, which corresponds to the matching of the cate-
gories of the input and output patterns. The parameter �a, between
�abaseline and �a-max, can be run as few iterations, according to
Carpenter and Grossberg (1992). The input–output pairs (a, b),
associated to the modules ARTa and ARTb, are confirmed (the inputs
a and b are referred to the categories J and K active, respectively)
with the test of match tracking:

(xab)i =
∥∥yi ∧ wab

J

∥∥
1
/
∥∥yi

∥∥
1

(A.13)

(xab)i >�ab → the training pair (a, b) must be confirmed on the
weight matrices with indices J and K.

(xab)i <�ab → one must search another index J (in relation to
the input vectors Ia), maintaining the index K, until the resonance
criterion is satisfied. Where:

�ab :vigilance parameter of module inter-ART.
The weights wa and wb must be adapted using Eq. (A.11). In

relation to the weights wab, the procedure follows:

wab
JK

new = 1 (A.14)

wab
Jk

new = 0, fork /= K. (A.15)
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