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A B S T R A C T

Determination of physical, chemical and biological attributes with individual analyses is inadequate for im-
proving the understanding of soil conditions as a function of land-use change (LUC) in comparison to the natural
state of soil. For a more accurate soil condition diagnostic, it is necessary to consider various indicators related to
these characteristics, which requires the use of multivariate statistical analysis. The aim of this work was to
characterize, through multivariate analysis, different types of LUCs in an Oxisol as a function of the physical,
chemical and biological attributes and to clarify the relationship of these attributes with the quality of the soil in
comparison to these attributes in natural soil conditions, in the southern Amazon in Brazil. The land uses
evaluated in the municipality of Alta Floresta, state of Mato Grosso (MT), Brazil, were native amazon forest (ma),
degraded pasture (pd), managed renewed pasture (pn), permanent preservation area in recovery (app), crop area
(rice), forage sugarcane (ca) and reforested area with eucalyptus (eu). To characterize the physical and chemical
soil attributes, samples were collected in each land-use area, at depths of 0-0.10 and 0.10-0.20 m, and the
determination of soil microbial activity (biological attributes) was evaluated at a depth of 0-0.10m. The in-
terrelationship between the analyzed attributes was described by multivariate techniques, which included
hierarchical and non-hierarchical cluster analyses, principal component analysis, canonical correlation, and
structural equation modeling. The multivariate approach for the analysis of soil attribute data was efficient in the
identification of anthropogenic actions on areas in comparison to natural conditions. Together, the cluster
analysis and principal components analysis identified two groups that differed mainly in terms of anthropic
operations of soil tillage and liming. The land use that was most similar to the natural condition was degraded
pasture, which was mainly due to K and H+Al contents, soil microporosity and soil basal respiration. Structural
equation modeling indicated that the latent factor soil chemical attributes had three times greater interference
(-0.5828) than the latent factor soil physical attributes (0.1735) on the latent factor soil biological attributes.
Therefore, anthropic actions, especially the liming, modified soil acidity conditions, affecting the microorgan-
isms of its flora and changing the native fungal community of the soil that was evaluated.

1. Introduction

The loss of native vegetation coverage, land-use change (LUC), and
the inappropriate use of soil have led to the degradation of natural
resources and reduction of soil quality related to its physical, chemical
and biological attributes (Rojas et al., 2016). The economic and social
pressure for food production, as well as the inappropriate and un-
planned exploitation of natural resources, have caused degradation in

large areas, mainly through the inadequate conversion of natural en-
vironments into agricultural areas (Fonseca et al., 2007; Rojas et al.,
2016). The main impact of LUC is on in the soils, which are directly
responsible for the sustainability and productivity of natural and agri-
cultural ecosystems (Castilho et al., 2016; Novak et al., 2017; Sanabria
et al., 2016).

Studying the physical, chemical and biological attributes of soil in
different applications and comparing these attributes to those in areas
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without anthropic action makes it possible to quantify the magnitude of
the changes that have occurred due to different models of exploitation
(Brookes, 1995; Gomes et al., 2016). According to Reicher et al. (2009),
based on the sensitivity of these attributes, it is possible to establish the
occurrence of degradation or improvement of soil quality compared to
soil in a non-anthropized environment. According to Doran et al.
(1994), good levels of these attributes provide ideal conditions for the
growth and development of plants and favor maintenance of diversity
of the organisms that exist in the soil. Currently, there are several
techniques and methodologies used to evaluate soil microbial activity,
such as enzymatic activity and genetic fingerprinting. However, tech-
niques that characterize soil basal respiration (SBR) and carbon levels
of microbial biomass (MBC) are preferable due to the ease of their
application and lower costs; hence, these techniques are considered as
important tools in understanding changes in soil organic compartments.

In addition, it should be stressed that existing interrelations among
the physical, chemical and biological attributes control the processes
and aspects related to variance with time and space. Therefore, changes
in the structure of the soil and in its biological activity and fertility may
have impacts on agroecosystems, such as damage to soil quality and
productivity of crops (Brookes, 1995). Knowing the modifications that
occurred in the soil caused by its use provides information that can help
adapt management practices to enable crop output to be increased,
which thereby ensures the sustainability and conservation of the
agroecosystem.

Considering the soil as a complex system, resulting from the inter-
action of geological, topographical and climate factors, among others,
which together form indicators that characterize the soil, it is possible
to use multivariate analysis techniques to more efficiently explore the
correlations among these variables and determine those that contribute
more to soil characterization and/or soil changes (Gong et al., 2015;
Khaledian et al., 2017; Pragana et al., 2012; Rojas et al., 2016). Nazmi
(2013) used multiple linear regression models and equation modeling
with the aim of correlating latent factors (factors that are not ob-
servable on the field but are associated with correlated attributes ob-
served on the field) and determining the influence of these factors on
the physical, chemical and production attributes of wheat. It was con-
cluded that the measurements of physical and chemical attributes were
statistically significant for predicting and understanding the compo-
nents of wheat production using regression and structural models.
Therefore, multivariate techniques are promising for studies of land-use
and management practices that influence the quality and health of the
soils. Research with the aim of understanding indicators of soil quality
that best explain the changes that have occurred due to soil use may
contribute to enhancing soil quality if appropriate practices are em-
ployed. Given this context, the objective of this work was to char-
acterize different soil uses in the southern Amazon, as a function of the
physical, chemical and biological attributes to identify which key
properties can be used to characterize the soil, as well as to establish the
interrelation of the soil attributes with soil’ quality and natural condi-
tions of the systems, using multivariate techniques, mainly structural
equation modeling.

2. Materials and methods

2.1. Area of study

The field experiment was carried out in the rural property named
the Maringá Farm, located in Alta Floresta, on the MT 206 road km 165,
whose geographical coordinates are 9° 50′ 23.86″ south latitude and 56°
13′ 22.89″ west longitude and is located at 280m above sea level
(Fig. 1). The region has a rainy tropical climate, type Am according to
the Köppen classification, with short dry periods and long rainy periods,
temperatures range from 25 to 27 °C, and the average precipitation is
2243mm. The soils of the experimental areas are classified as Oxisols.
The terrain was classified as moderately flat.

The land uses selected were the following: native forest area (ma),
characterized as dense ombrophylous forest, with an area of 11.5 ha;
degraded pasture (pd) with Brachiaria brizantha since 1993 and with 5
years of fertilization at 120 kg ha−1 of Thermophosphate (16.5% of
P2O5), with an area of 10.5 ha; renewed pasture (pn), cultivated with
Brachiaria brizantha since 2016 with an application of 150 kg of mono-
ammonium-phosphate (MAP) and 3.0Mg ha−1 of limestone, with an
area of 26.3 ha; permanent preservation area (ppa) in recovery, which
was established with Brachiaria brizantha in 1993, and in 2014, the
pasture was eliminated and primary and secondary native forest species
were introduced for reforestation, with an area of 5.1 ha; farming area
(la), which had contained Brachiaria brizantha since 1997 but was
eventually removed, with conventional soil tillage (plow) to carry out
rice planting, with a seeding fertilization of 150 kg ha−1 of mono amino
phosphate (MAP-10% of N and 50% of P2O5) and an application of
120 kg ha−1 of 20-00-20 on the covering, harvest occurred in 2016/
2017, with an area of 22.5 ha; forage sugarcane area (ca), whose
planting was performed in 2003, with an application of limestone at
2.5 Mg ha−1 and fertilization of 120 kg ha−1 of N:P2O5:K2O (00-20-20),
annual covering fertilization with 120 kg ha−1 of 20:00:20, and pre-
viously, the area had contained Brachiaria brizantha since 1993, with an
area of 7.6 ha; reforestation area (eu) with eucalyptus since 2012,
without any type of fertilization or limestone application, and the area
had contained Brachiaria brizantha since 1997, but it was eventually
removed, with conventional soil tillage (plow), with an area of 4.5 ha
(Fig. 1). An evaluation of the native forest area (Amazon Forest) was
used as a reference for the analysis because it represents the conditions
before anthropic actions.

2.2. Determination of the soil’s biological, physical and chemical attributes

The collection of soil samples was made with the aid of an auger,
totaling ten repetitions, at the 0-10-m layer in each treatment. In the
field, the samples were kept in styrofoam coolers with ice until their
transportation to the Laboratory of Soils and Foliar Analysis of the
University of Mato Grosso State – UNEMAT, Campus of Alta Floresta,
where they were sieved (2mm) and kept under refrigeration until the
analyses were made. The analysis was based on the procedures pro-
posed by Silva et al. (2007a) for determining the soil basal respiration
(SBR), and the determination of its microbial biomass carbon (MBC)
was performed according to the recommendations of Silva et al.
(2007b).

The analyses were made at the Laboratory of Soils and Foliar
Analysis at the University of Mato Grosso State – UNEMAT, Campus of
Alta Floresta. To determine the porosity of the soil, the tension table
method was employed, which was adapted from Kiehl (1979). The non-
deformed soil samples were properly prepared (the inner surface of the
ring was protected with a tissue that was slightly larger than the ring’s
diameter, such that the excess bent over the ring’s surface and was tied
with an elastic band) and saturated through the gradual elevation of a
water blade on a tray, until it attained 2/3 of the samples’ height, ac-
cording to Embrapa (1997). Then, the following analysis procedures
were conducted. After being saturated, the samples were placed upon
the tension table, the level vial was lowered to the level of suction
corresponding to 0.60m of water column height (-0.006MPa), and
then, water from the macropores was removed (% of pores with dia-
meter of 0.05mm). After being weighed, before (saturated) and after
the table (until draining stopped, when a constant weight is attained for
the sample), the volume of the macropores was determined using Eq.
(1) (EMBRAPA, 1997).

= ⎛
⎝

− ⎞
⎠

×Ma
W saturated W after tension table

Total volume
100

(1)

After removing the water from the macropores (% of pores with
diameter of 0.05mm), the samples were dried in greenhouse circulation
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at 105 °C for 24 h. After being weighed, before (drained at -0.006MPa)
and after (dried in greenhouse), the volume of the micropores was
obtained using Eq. (2)(EMBRAPA, 1997).

= ⎛
⎝

− ⎞
⎠

×Mi
W after tension table W dried

Total volume
100

(2)

Through Eq. (3), the total volume of the pores in the soil (%) filled
with water and/or air in the samples was determined, according to
EMBRAPA (1997):

= +TPV Ma Mi (3)

The bulk density (g cm−3) was obtained using the mass from the
sample dried in greenhouse circulation at 105 °C (subtracting the
weight of the tissue, elastic band and the ring from the total weight)
and the corresponding ring volume, using Eq. (4)(EMBRAPA, 1997):

=Bd W dried
ring volume (4)

The chemical attributes were analyzed at the Laboratory of Soils
and Foliar Analysis of the University of Mato Grosso State – UNEMAT,
Campus of Alta Floresta, according to the methodology described by
EMBRAPA (1997) for the following: pH in CaCl2; organic matter (OM);
exchangeable aluminum (Al), calcium (Ca), magnesium (Mg) and po-
tassium (K) contents; available phosphorus (P) and potential acidity
(H++Al−3). The effective CEC, sum of the bases (bases), saturation by
bases (V) and saturation by aluminum (m) were calculated from the
analytical data. The granulometry (contents of clay, silt and sand) was
determined via the densimeter method after slow-stirring for 16 h
(Camargo et al., 1986).

2.3. Statistical analyses

Initially, each attribute was described through descriptive statistical

analysis of the data, as well as the existence of misleading values
(multivariate outliers). Subsequently, the multivariate normality hy-
pothesis was evaluated, followed by application of the following mul-
tivariate statistical methods: principal components analysis (PCA),
clustering analysis, canonical correlation analysis (CCA) and structural
equation modeling (SEM).

CCA, comprising most of the attributes studied, was employed for
data set reduction in linear combinations and generated scores for the
first two canonical variables that explain the maximum possible total
variation (Cruz and Regazzi, 1994). Unlike PCA, which aims to max-
imize the total explained variance, CCA aims to maximize the existing
correlation of the output variable sets (Hair et al., 2005). Consider X as
a random vector whose dimension is (p+q×1), with sample covariance
matrix + × +S p q p q( ) ( ) . Let X(1) (p×1) and X(2) (q×1) be the vectors de-
fined as the partitions of the original vector X, representing a group
with p variables (biological attributes) and another one with q (phy-
sical-chemical attributes), respectively. For the random vector X, the
covariance matrix is represented as follows (Johnson and Wichern,
2002):

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ +
× ×

× ×

S
S S

S S
p p p q

q p q q
(p q) x(p q)

( )
(11)

( )
(12)

( )
(21)

( )
(22)

(5)

The covariances between pairs of variables belonging to both
groups, X(1) e X(2), are contained in × ×S e Sp q q p( )

(12)
( )
(21) , and the pq elements

that compose them measure the association between the two groups.
The study of these associations occurs through canonical variables,
which are constructed from linear combinations of biological variables
represented by U, and the physical-chemical ones represented by V,
which are defined as:

U= aTX(1) (6)

Fig. 1. Schematic map indicating the location of the studied sites: ma) native forest; pd) degraded pasture with Brachiaria brizantha; pn) renewed pasture, cultivated
with Brachiaria brizantha; app) permanent preservation area in recovery; la) rice planting; ca) forage sugarcane and eu) reforestation area with eucalyptus.
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V=bTX(2) (7)

where a and b are non-zero vectors of the coefficients of these linear
combinations chosen to maximize the correlation between the variables
of the canonical pair, thus ensuring that the canonical variables are not
correlated to the remaining pair. Min(p,q) canonical pairs are obtained.
The eigenvalues, their respective eigenvectors and, consequently, the
correlations and canonical variables were obtained from the standar-
dized variables, through substitution of the variances and covariances
matrices by the respective correlation matrices of the original variables.
Before carrying out CCA, it was verified that the cross-correlation ma-
trix was different from zero, thus verifying that the sets of variables
were independent or non-correlated. To do so, a formal test was done,
which has the multivariate normal distribution of the data set, as as-
sumed.

In addition to CCA, a clustering method was used, with the aim of
discriminating the uses of the soil that presented higher similarity, and
to cluster these uses, the generalized Mahalanobis distance matrix was
applied. Next, the PCA method, which according to Manly (2004) de-
scribes data variation in a few indices that are linear combinations of
the variables and are non-correlated between themselves, was em-
ployed. The PCA method (Eq. (5)) consisted of carrying out a rigid
rotation in the original coordinate axes system, such that the new axes
were in the direction of the data’s highest variability, and the coeffi-
cients of the new axes are the eigenvectors of the data’s sampling
covariance matrix.

Let =X X X X[ , , ..., ]p
T

1 2 be a random vector with p attributes, sam-
pling covariance matrix ×Sp p with eigenvalues ≥ ≥ ≥ ≥λ λ λ... 0p1 2 .
Equation 9 describes the PCA method in its matrix form:

⎡
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(8)

where =e e e e( , ..., )i
T

i i ip1 2 is an eigenvector of dimension 1xp with
⋅ =e e 1i

T
i , and ⋅ =e e 0i

T
j , with ≠i j for the latter condition and i and j

ranging from 1 to p for both conditions.
Finally, SEM was used to assess the effect of the physical attributes

(physical attributes latent factor, PA) and the chemical attributes
(chemical attributes latent factor, CA) on the variables related to the
microbial activity of the soil (microbial activity latent factor, MA). SEM

is a statistical technique designed to work with multiple related equa-
tions simultaneously; it provides a series of advantages compared to
some more familiar methods, and offers a general structure for the
linear modeling (Monecke and Leisch, 2012). SEM aims to test the
validity of the theoretical models, which define causal and hypothetical
relations between variables. Such relations are measured by the para-
meters of the model, which represent how expressive the effect of the
independent variables is on the dependent variables (Marôco, 2010).
The model is composed of two sub-models; one is the measurement
model that correlates the attributes with their respective latent factors,
and other model is the structural model that correlates the latent fac-
tors. Thus, the aim was to identify the effects of the latent factors for the
physical attributes (PA) and chemical attributes (CA) of the soil on the
latent factor related to the attributes of biological activity (BA) of the
soil, in other words, to simultaneously identify how the soil’s physical
and chemical attributes influence its biological activity.

The method for estimating the parameters was through partial least
squares (Wold, 1966, 1982, 1985), in which the explained variance of
the latent factors is maximized by estimating the relationship between
the partial models in an iterative sequence of ordinary least squares
(Monecke and Leisch, 2012). This method is more advantageous in si-
tuations where the sample size is small, the data are not normally
distributed, and complex models with many observed variables and the
relationships are estimated (Hair et al., 2011; Ravand and Baghaei,
2016), thus being highly recommended for the data in the present
study. To check the reliability of the blocks formed by the variables in
study, the Dillon-Goldstein’s Rho measure was applied, which must be
higher than 0.7 (Tenenhaus et al., 2005). All analyses were performed
using the statistical software R, which is free and open source (R
Development Core Team, 2017).

3. Results

The dendrogram obtained by the hierarchical clustering analysis is
presented in Fig. 2. Each time that expressive changes occur in the
Euclidian distance values between the recordings defined as sampling
points in the uses of the soils studied, it is possible to relate the for-
mation of groups of similar accesses, regardless of the depth of analysis
(0-0.10 and 0.10-0.20m). For the 7 soil uses studied, the observed
variations in the Euclidian distance values were approximately 25 and
30 (Fig. 2). The results indicated two clusters (groups I and II), and

Fig. 2. Dendrogram of the hierarchical clustering analysis that shows the formation of two groups for the uses of soil evaluated, according to the physical, chemical
and biological attributes studied.
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group II can be divided into two subgroups at the Euclidian distance of
25 (groups IIa and IIb). In group I, similar accesses were identified for
the observations regarding the uses for forage sugarcane soil (ca) and
renewed pasture (pn). In group IIa the accesses gathered were mainly
those related to the uses for native Amazon forest (ma) and degraded
pasture (pd). On the other hand, in group IIb, the accesses observed
were mainly those related to farming (la), permanent preservation area
(app) and reforesting with eucalyptus (eu).

Fig. 3 depicts the results for the non-hierarchical clustering analysis
(k-means), which presents the standardized means of the physical,
chemical and biological attributes of the soil, highlighting each vari-
able’s individual behavior for the groups identified (I, IIa and IIb).
Group I (pn and ca) presented the highest values of OM, when com-
pared those values in the remaining groups (II). Similar results were
observed for the CEC of the soil and, consequently, V. On the other
hand, the no and ca (group I) areas presented the lowest values of
microbial biomass carbon (MBC), indicating low retention of decom-
posed carbon from the vegetal material deposited in the soil, in contrast
to high values of soil basal respiration. For group IIa (ma and pd), the
highest MBC and SBR values were observed, compared to the remaining
groups.

Table 1 shows the results for the principal component analysis, with
the eigenvalues and correlation coefficients for verifying the formation
of the groups observed in the hierarchical clustering analysis. The re-
sults indicate that 40.63% of the total variability was explained by the
first principal component (PC1); the second principal component (PC2),
explained 26.26% of the variability, totaling 66.89% of the variability
contained in the original data. Moreover, the screeplot (Fig. 4) identi-
fied the third principal component with an eigenvalue that was higher
than the unity, explaining 11.01% of the total variability of the data.
The sum of the three principal components explained 77.90% of the
variability contained in the original set of data. This amount of ex-
plained variation was adequate to generate the same three groups ob-
served in the previous analysis of hierarchical clustering (Fig. 2).

The biplot graphical representation, which expressed the correlation
of the variables with the principal components, is shown in Fig. 5, again
indicating the formation of groups and sub-groups: I, IIa and IIb. The
discriminatory power of each variable within a principal component
may be measured by the linear correlation coefficients between each
variable and the respective principal component.

Based on the linear correlations between the attributes of the set of
variables related to the microbial activity in the soil, as well as the set of
physical-chemical attributes of the soil (Fig. 6), it was observed that the
microbial biomass carbon presented significant positive correlations
(p < 0.05) with the concentrations of clay, Al and saturation by Al in

the soil, and significant negative correlations (p < 0.05) with the
concentrations of silt, Ca, Mg and organic matter in the soil. Soil mi-
crobial biomass presented significant positive correlation coefficients
(p < 0.05) with soil microporosity and organic matter concentration
and a significant negative correlation with the macroporosity of the soil
(p < 0.05). Soil basal respiration (Fig. 6), in turn, presented significant
positive correlation coefficients with soil microporosity and clay con-
centration and a significant negative correlation with the sand con-
centration in the soil (p < 0.05).

The canonical correlations are presented in Table 2, with their re-
spective canonical R2 and the significance test performed. All canonical
correlations were shown to be significant (p < 0.05), presenting values
equal to 0. 7866 and 0.6267. However, the first pair of canonical cor-
relations explains approximately 45% of the joint variation of the
variables, thus being the most important pair for the interpretation.
Through the significance of the correlations presented, it may be

Fig. 3. Standardized means of the attributes studied in different uses of the soil,
according to the non-hierarchical clustering analysis k-mean.

Table 1
Eigenvalues, amount of explained variance, correlation coefficients and eigen-
vectors between the physical, chemical and biological attributes of the different
uses of the soil and the three first principal components.

Components PC1 PC2 PC3

Eigenvalue 4.06 2.62 1.10
Explained

variance
(%)

40.63 26.26 11.01

Cumulative
variance
(%)

40.63 66.89 77.90

Correlation (eigenvector)
MBC 0.72 (0.36) −0.21 (-0.13) −0.03 (0.03)
SBR −0.13 (-0.06) −0.30 (-0.19) 0.81 (0.78)
mi 0.09 (0.04) −0.75 (-0.46) 0.39 (0.38)
K −0.13 (-0.06) −0.70 (-0.43) −0.01 (0.01)
Ca −0.95 (-0.47) −0.05 (-0.03) −0.09 (−0.09)
Al 0.88 (0.44) −0.18 (-0.11) −0.23 (−0.23)
H+Al 0.53 (0.26) −0.74 (-0.46) −0.26 (−0.26)
OM −0.62 (-0.31) −0.59 (-0.36) −0.16 (−0.14)
CEC −0.50 (-0.25) −0.70 (-0.43) −0.32 (−0.31)
V −0.95 (-0.47) 0.13 (0.08) −0.05 (−0.05)
Interpretation Ca content, soil

organic matter and
base saturation in
contrast with carbon
of the microbial
biomass and Al
content

Index of K, H+Al
content, CTC and the
soil microporosity
(chemical and
physical interaction)

Index of soil basal
respiration

Fig. 4. Screeplot of the principal components analysis, indicating the eigen-
values that are higher than the unity, used for interpreting the results.
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concluded that the groups considered are not independent. The cano-
nical R2 found was equal to 0.62 for the first canonical pair and 0.39 for
the second canonical pair. Therefore, Uk was the best linear combina-
tion on predicting Vk and vice-versa, with k=1 and 2. Thus, the
standardized values of the pair of canonical variables with the highest
correlation (U1 and V1) can be seen in Fig. 7. It may be inferred that the
high values of the canonical variable that presented the physical-che-
mical variables (V1) were associated with the high values of the ca-
nonical variable that represents the variables related to the biological
attributes of the soil (U1) since they present a positive linear associa-
tion.

The correlations between the original variables of a set of char-
acteristics and the canonical component that represents them (Uk and
Vk), called canonical loadings, as well as the correlations between the
variables of a set and the other canonical component, known as cross
canonical loadings, are presented in Table 3. Such values are helpful for
understanding the meaning of the canonical variables; the higher the
absolute value of a canonical loading is, the higher the association
between the original variable and its respective canonical component. It
was observed that the total proportions, which were explained sepa-
rately by the canonical variables U1 and V1, were equal to 50.49 and
21.57, respectively, that is, the variable U1 represented 50.49% of the
total variation of the group of variables related to soil biological attri-
butes, and V1 represented 21.57% of the total variation of the group of
physical-chemical variables of the soil.

For the physical-chemical variables of the soil (Table 3), the highest

canonical correlation values in modulus were observed for aluminum
saturation (−0.67), calcium concentration in the soil (0.52), silt con-
centration (0.51) and magnesium concentration (0.50). The physical-
chemical variables that presented higher associations with the biolo-
gical component were silt, Ca, Mg, Al, and saturation by aluminum.
Therefore, the high values for U1 (low values for MBC) were associated
with low values for the attributes related to aluminum and high values
for the concentrations of silt, Ca and Mg.

Table 4 presents the indicators of the three latent factors considered
in this study for the estimation method used for the structural equations
modeling. Reliability was observed for the latent factors PA (physical
attributes), CA (chemical attributes) and BA (biological attributes) be-
cause their respective values for the Dillon-Goldstein’s rho were higher
than 0.7. PA explained the following physical attributes: microporosity
(mi), porosity (po), Sand and Clay; CA explained the chemical

Fig. 5. Biplot graphic of the first and second
principal components from the PCA with all
observations in the uses of soil evaluated.
V= saturation by bases; Ca= calcium con-
centration; OM=organic matter in the soil;
CEC=capacity of exchange of cations in the
soil; SBR= soil’s basal respiration; SMB= soil’s
microbial biomass; K=potassium content in
the soil; mi=microporosity; H+Al=
hydrogen+ aluminum content in the soil;
MBC=microbial biomass carbon, and Al=
aluminum content in the soil.

Fig. 6. Correlation matrix between the soil’s biological and physical-chemical attributes. *The values are highlighted for significant correlation coefficients by the t-
test at 5% significance level.

Table 2
Eigenvalues and canonical correlations for the attributes of the soil studied.

Pairs of
canonical
variables

Canonical
correlation

R2 canonical
(eigenvalue)

χ2 DF p-value

(U1, V1) 0.7866 0.6187 88.5239 28 < .0001
(U2, V2) 0.6267 0.3927 30.1810 13 0.0044

highlighted value significant correlation coefficients by the χ2 teste test at the
5% level.
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attributes: pH, Ca, Mg, Al, Bases and V; and BA explained the microbial
biomass carbon (MBC) attribute; the remaining attributes presented
communality lower than 0.50 in their respective latent factors, and
thus, they were not considered.

Finally, Fig. 8 depicts the graphic representation of the structural
model with the regression coefficients. The coefficient that measures
how expressive the effect of PA is on BA was equal to 0.1735, whereas
the effect of CA on BA was equal to -0.5828. This finding indicates that
the latent factor formed by the chemical attributes (pH, Ca, Mg, Al,
Bases, V) influenced on the latent factor microbial activity of the soil
(microbial biomass carbon), in modulus by 3 times as much as the la-
tent factor physical attributes (mi, po, Sand, Clay), which shows that
soil microbial activity was controlled much more by soil chemical at-
tributes than soil physical attributes, in the uses studied.

4. Discussion

The results of Fig. 2 suggest that a predominant factor for differ-
entiating groups I and II was the improvement in soil fertility caused by
liming, which aimed at correcting soil acidity, and thereby increased
the concentrations of Ca and decreased the concentrations of Al in the
areas pn and ca, hence increasing the concentration of exchangeable
bases in the soil. In group II, not all areas presented limestone appli-
cation. Additionally, in the app, eu and la areas, there were decreases in
soil fertility compared to the remaining evaluated uses, as well as an
increase in soil density, which was due to the decrease in total porosity.
This density increase may be related to plowing of the soil and sub-
sequent agricultural machinery traffic. These agricultural activities are
often harmful, leading to a change in soil quality with different types of
land use and management because vegetation removal, soil compac-
tion, machinery use and loss of organic matter can increase the process
of erosion in the long run compared erosion in areas of native vegeta-
tion (Khaledian et al., 2017; Prosdocimi et al., 2016).

In group IIa, the similarity between the use of degraded pasture (pd)
and native amazon forest (ma) was due to the lack of plowing caused by
pasture formation, which consisted of native vegetation cutting with
subsequent vegetal matter burning and forage seeding, without soil
tillage (Fig. 2). Therefore, dp kept the original structure of the soil and
was similar to that observed in the native vegetation. Carneiro et al.
(2009) observed that when working with different classes of soils (la-
tosol and neosol) and uses (pasture, integration and annual crops) in the
Cerrado, in Brazil’s central-west region, non-plowing promoted the
protection of organic matter. It was also noted that physical protection
against microbial action caused by soil structure and grassy plant fas-
ciculated roots decreased the oxidation process, thus identifying a
group between the uses of pasture and native Cerrado in the Oxisol. For
group IIb, it is important to stress that the similarity between these three
areas was because they all had been used as pastures, providing a time
for conversion to annual uses equal to 5 years (eu and app) and 1 year
(la) (Balesdent et al., 2000).

Fig. 7. Dispersion graphic of the first pair of standardized canonical variables.

Table 3
Correlations between the microbiological, physical and chemical variables of
the soil from the canonical correlation analysis.

Variable Canonical loadings Canonical cross-loadings

U1 U2 V1 V2

MBC −0.9778 −0.2108 −0.782 −0.159
SBR −0.1863 0.9827 −0.223 −0.605
PVTE(%) 50.49 49.51
IR 47.74

Canonical loadings Canonical cross-loadings

V1 V2 U1 U2

TPV −0.21 0.09 −0.26 0.15
Ma 0.08 −0.18 0.10 −0.28
Mi −0.25 0.28 −0.31 0.45
Bd −0.02 0.04 −0.03 0.06
Sand 0.19 −0.23 0.23 −0.37
Silt 0.51 0.27 0.63 0.43
Clay −0.39 0.13 −0.48 0.21
P 0.21 −0.11 0.26 −0.17
Ca 0.52 0.27 0.64 0.43
Mg 0.50 0.19 0.61 0.31
H+Al −0.43 −0.10 −0.54 −0.16
OM 0.23 0.19 0.28 0.31
CEC 0.13 0.19 0.17 0.30
m −0.67 −0.27 −0.83 −0.42
PVTE(%) 21.57 10.52
IR 16.84

Table 4
Reliability and unidimensionality of the Latent Factors and evaluation of the
structural equation method.

Latent Factor Mod Variables DG.rho aut.1 aut.2 Type R² VME

PA A 4 0.74 2.24 0.98 Exógeno 0 0.56
CA A 6 0.96 5.28 0.48 Exógeno 0 0.88
BA A 1 1.00 1.00 0.00 Endógeno 0.50 1.00

PA= latent Factor Physical Attributes; CA= latent Factor Chemical Attributes;
BA= latent Factor Attributes Microbial Activity; A=Reflective Mode (Latent
Factor is the cause of Attributes); DG.Rho=Rho of Dillon-Goldstein; aut.1 =
eigenvalue 1; aut.2 = eigenvalue 2; VME=Average Variance Extracted.

Fig. 8. Graphic representation of the Structural Model with the regression
coefficients were: CA=Chemical attributes, PA=Physical attributes and
BA=Biological attributes.
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Low MBC values indicated a lower efficiency in the process of
carbon conversion, usually followed by high values of soil basal re-
spiration (SBR) (Novak et al., 2017). The carbon contained in the mi-
crobial biomass is the initial destination of this element in the process of
soil transformation (Fig. 3). Therefore, MBC is considered to be an in-
dicator of soil quality because it is sensitive to the early processes of
changes in OM due soil use and management. According to Alves et al.
(2011), a great number and diversity of factors (flora, microfauna, or-
ganic material deposition on the surface of the soil) in natural ecosys-
tems favor the maintenance of chemical and biological attributes in the
soil, especially in native vegetation areas or even in areas in recovery
with native species. High values of SBR occurred with substantial mi-
crobiological activity (Fig. 3), which was directly related to the avail-
ability of carbon in the soil and/or microbial activity (Allen et al.,
2011). Our results indicated that the highest values of SBR observed in
group I (pn and ca) were associated with high values of organic matter
in the soil, whereas the high values of SBR observed in group IIa were
related to high microbial activity.

The differences observed in the standardized means (Fig. 3) in re-
lation to the values of calcium concentrations in the soil and Al and Al
+H concentrations between groups I (pn and ca) and II (ma, pd, app, eu
and la) were due to the operation of liming in these areas, which was
performed before the experiments were carried out. Such conditions
enhance soil fertility and, consequently, the production of straw by
crops. Tate et al. (1991) similarly observed evidence of positive nutrient
correlations, such as K, Ca and S on the growth of microbial biomass in
the soil.

It can be inferred that for PC1, the attributes that presented the
highest correlation coefficients were (by order of importance): Ca
concentration (-0.95), V (-0.95), Al (0.88), MBC (0.72) and OM (-0.62)
(Table 1 and Fig. 5). These findings may have been due to the action of
liming in the management practices studied, which influenced the
chemical attributes, especially those related to soil acidity and micro-
bial biomass carbon (Pereira et al., 2013). Novak et al. (2017) observed
that biological and chemical attributes, such as MBC, SBR, Mg and K,
were the discriminatory variables in PC1 and were responsible for
mainly separating the native vegetation areas (Cerrado and Mata
Atlântica), with the two first principal components representing
77.42% of the variance contained in the original set of data. Such ob-
servations support the results presented in this work (Fig. 5). None-
theless, PC2 was shown to be an index of interaction among the che-
mical, microbial and physical attributes of the soil. By order of
importance, the variables that were responsible for discrimination in
group IIa, native Amazon forest and degraded pasture, are mi (-0.75),
H+Al (-0.74), K (−0.70) and CEC (−0.70). The relationship between
ma and pd was due to the similarity in relation to the biological and
chemical attributes (Fig. 5).

On the other hand, the SBR presented discriminatory power only in
PC3 (Fig. 5 and Table 1), with a correlation value of 0.81. Villani et al.
(2017) verified that the two first components explained 94% of the total
variance and that PC1 presented high correlations with MBC and the
ammonium concentration in the soil, which was mainly related to the
areas of forests, agroforests and pastures. Our results support the pre-
vious statements, indicating that the microbial biomass carbon re-
presents the efficiency of the microorganism community in the soil in
transforming the carbon from the deposited material. Further, micro-
bial biomass carbon is a variable sensitive to initial changes of C and is
thereby related to PC1.

The conversion of the soil of pastures and natural forests for agri-
cultural production, for high productivity purposes, causes significant
changes in the physical-chemical attributes and, consequently, biolo-
gical attributes of the soil. Such changes may be demonstrated by the
higher sensitivity of microbial biomass carbon expressed by the sig-
nificant correlation coefficients (p < 0.05) with the physical-chemical
attributes of the soil (Fig. 6). According to Gomes et al. (2016), who
studied changes in the physical-chemical attributes of chalky soils in

northeastern Brazil, the continuous use of soil in agricultural activities
makes it reach a steady state that is characterized by losses in physical
quality, which may be intensified in subsequent years of cultivation.
Therefore, these results (Fig. 6) support those presented in this work
and indicate that the proper management of soil entails the main-
tenance or improvement of chemical characteristics, as well as slight
physical and microbiological losses in the soil.

The microbial canonical variable (U1) presented the highest values
in modulus of the canonical correlation for the microbial biomass
carbon (−0.9788) and soil basal respiration (−0.1863), (Table 3).
MBC presented high and negative canonical loading, indicating that
management practices with high values of MBC presented a trend of
high SBR values. Soil basal respiration presented a low value of cano-
nical correlation, which indicates low relative importance in the first
canonical correlation. Maluche-Baretta et al. (2006) applied canonical
correlation analysis between the groups of biological and chemical
variables of the soil used for apple tree cultivation in southern Brazil
and observed an inverse relationship between the MBC and SBR.

The highest canonical correlation values (Table 3) indicated that for
areas whose aluminum concentration was high, the concentrations of
aluminum and clay consequently presented lower concentrations of Ca,
Mg and silt, which was due to the application of limestone in the areas
of ca. and np. This result indicated that there was a contrast between
the concentration of aluminum, its saturation and the concentration of
clay compared to the concentrations of silt, magnesium and calcium in
the soil.

High canonical correlations were observed among the soil biological
and physical-chemical attributes, mainly among the microbial biomass
carbon and the chemical attributes of concentration and saturation of
aluminum in the soil (Table 3). This result can be observed through the
cross canonical loadings, in which MBC presented a higher correlation
with the physical-chemical component of the soil, and this component
was negatively associated with MBC. Thus, when V1 presented low
values (higher concentrations of aluminum and saturation by bases, and
lower values of silt, magnesium and calcium), and the MBC con-
centration was higher. Maluche-Baretta et al. (2006) also observed that
the microbial biomass carbon was influenced by the concentrations of
elements such as P, K, Ca and total organic carbon in the soil, which
supports the results presented in present work. Our results indicated
that the inter-group associations were established mainly by the influ-
ences of lower concentrations of MBC on low concentrations and alu-
minum saturation and higher values for the concentrations of silt, cal-
cium and magnesium.

In addition, Table 3 presents the values for the redundancy analysis,
indicating that 47.74% of the total variation of the biological attributes
was explained by the variation of physical-chemical attributes in the
soils for the evaluated uses in the first canonical correlation. On the
other hand, only 16.84% of the total variation of the physical-chemical
attributes was explained by the biological attributes of the soils studied
in the first canonical correlation. These results again show a higher
influence of the chemical attributes, mainly magnesium concentration
and saturation by aluminum, on the microbial activity in the soil.

Additionally, the unidimensionality of the latent factors was con-
firmed (Table 4), since the first eigenvalues of each latent factor were
higher than 1, and the second eigenvalues of each latent factor were
lower than 1 (Ravand and Baghaei, 2016). Furthermore, values of mean
extracted variance higher than 0.5 were observed (Table 4), indicating
the validity of the model. Additionally, R2 values equal to 0.50 were
found, which are considered moderate for the endogenous latent factor
(Hair et al., 2011). Therefore, the fitting values of the quality indicators
certified the validity of the estimation method used. The structural
equation (Fig. 8) modeling indicated the sensitivity of the biological
attributes to the chemical variations found in the uses evaluated in the
present study and supported their use for predicting changes in the
environment even before significant chemical changes occur due the
changes of land use and soil management (Maluche-Baretta et al.,
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2006). Their changes may have indicated slightly perceptible chemical
changes, which may substantially influence the biological character-
istics of the soil (Rojas et al., 2016).

5. Conclusions

The multivariate approach used to analyze the soil’s attributes was
able to identify the anthropic action over the areas in natural condi-
tions. The clustering analysis and principal components analysis to-
gether identified two groups that formed mainly due to the anthropic
operations of soil preparation and liming. The use of the soil that was
the closest to the natural condition (southern amazon forest) was the
degraded pasture, which was mainly due to the concentrations of K,
H+Al, as well as to soil microporosity and basal respiration.
Conversely, the uses of the soil that were the farthest from the natural
condition were the renewed pasture and the forage sugarcane, mainly
because of the calcium concentration, saturation by bases and alu-
minum, and microbial biomass carbon. The canonical correlation ana-
lysis highlighted the sensitivity of the microbial biomass carbon to the
initial changes in the soil physical-chemical attributes, such as satura-
tion by aluminum, calcium and magnesium concentrations in the soil,
as well as concentrations of clay and silt. From the structural equations
modeling, it may be inferred that the chemical attribute latent factor
had an influence three times higher than that of the physical attribute
latent factor over the biological attribute latent factor. Therefore, an-
thropic actions, especially liming, modified soil quality by reducing soil
acidity, affected the floral microorganisms. This scenario also likely
changed the native fungal community of the evaluated soils, which was
especially expressed by microbial biomass carbon.
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