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Abstract
The dynamic behavior of vortices in type II superconducting infinite strips is simulated with two types of triangular pinning
lattices: the regular one and a flattened triangular array that mimics the vortex lattice in a superconducting strip in the absence
of a pinning array. The calculations were made at zero temperature and perpendicular magnetic field. The size effects
are investigated for several strip widths maintaining the density and size of pinning centers unchanged. A driving force is
applied in the infinite direction to analyze the depinning process and the different dynamic regimes. For the regular triangular
pinning lattice, we found that there is a great richness of vortex dynamical phases because depending on strip width, part of
the vortices may stabilize in different interstitial positions and the depinning process depends on the commensurability of
each vortex chain. For the flattened triangular lattice, the system exhibits one ordered moving phase for narrower strips and
two moving phases for the larger strip. As the transport force increases, vortices in the larger strip go from a disordered to
an ordered phase. Moreover, the flattened lattice shows a much higher critical depinning force than the regular one due to
commensurability effects.

Keywords Superconductivity · Vortex dynamics · Dynamic phases · Surface effects · Vortex pinning

1 Introduction

Superconductors have always attracted the attention of
the scientific community due to possible technological
applications such as digital circuits, superconducting
electromagnets, and magnetometers. At the same time,
with the continuous advances in nanotechnology, the drive
for decreasing the size of superconducting devices is
unavoidable. In the nanoscale regime, size effects can be
crucial for many material properties, which makes studies
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aiming to understand the influences of sample size for
superconducting properties indispensable.

When a type II superconducting film is submitted to
an external magnetic field perpendicular to the sample
surface in the range Hc1 < H < Hc2 , quantized magnetic
flux lines penetrate the material, characterizing the mixed
state. The movement of these magnetic vortices creates
an electric potential that dissipates energy. In the absence
of external forces, these vortices arrange themselves in a
hexagonal vortex lattice, also called the Abrikosov lattice
[1]. However, when external forces are applied, e.g.,
temperature increase or the presence of a transport current,
these flux lines will freely move, dissipating energy [2].
A method to avoid the vortex motion is the introduction
of artificial pinning centers (APCs) [3, 4]. The APCs are
capable of pinning vortices at specific positions, hindering
the loss of superconductivity.

The vortex behavior under the influence of APC arrays
has been extensively investigated over the years. Periodic
pinning landscapes induce several matching effects that can
enhance the critical current for certain values of magnetic
field [5–19]. These matching effects are associated to
the commensurability between the vortex and the pinning
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lattices. As an example, it is usual to observe matching
effects and, consequently, critical current peaks when the
ratio between the applied magnetic field (H) and first
matching field (Hφ) is an integer or a rational fraction.

Recently, aiming to overcome some of the drawbacks of
periodic pinning lattices, different quasi-periodic pinning
arrays started to be tested, such as Penrose lattices
[20–24], hyperbolic tessellations [25], and conformal
pinning arrays [26–32]. As an example, Ray et al. [26]
proposed the construction of pinning lattices by applying
a conformal transformation, showing promising results.
They demonstrated that this pinning landscape can avoid
the high fluctuations of the critical current as a function
of the applied magnetic field with the conformal (angle-
preserving) transformation sustaining high values of critical
current over a much wider range of fields than the other
pinning geometries.

However, most of the research regarding dynamical
properties of vortex lattices under the influence of pinning
arrays were made with type II superconducting films with
a width much larger than the London penetration depth (λ).
For mesoscopic samples, where the width is comparable
with λ, most of the theoretical work focused on studies
of superconductors with different geometries within TDGL
theory [33–43]. Meanwhile, for semi-finite systems like
superconducting strips, we still have unanswered questions
which could help us to understand better how sample size
affects the vortex dynamics.

For finite superconductor samples, the surface creates an
energy barrier known as the Bean-Livingston surface barrier
[44]. The shielding Meissner supercurrents from the surface
repel the vortices. Meanwhile, the superconductor-normal
interface generates an attractive interaction, which was included
in the model of Bean and Livingston as an attractive interaction
between the vortices and their anti-images, to satisfy the
boundary condition at the surface [44]. The concurrence of
these two interactions is the origin of the energy barrier,
which leads to deformations of the perfect Abrikosov lattice
[45–47] and delays the vortex penetration [48].

Theoretical studies demonstrated that the size effects influ-
ence properties like magnetization, vortex lattice geometry,
critical currents, and dynamical phases for superconducting
strips [45–53]. As an example, Carneiro [45] analyzed the
minimum energy configuration for several vortex lattices
in superconducting thin strips, observing changes in the
vortex configuration with the increase of the applied mag-
netic field. Meanwhile, de Souza Silva et al. [48] studied
matching effects, magnetization curves, and vortex states
in mesoscopic superconductors, concluding that the surface
barrier induces the formation of metastable vortex structures
and a hysteretic behavior. They also observed the pres-
ence of jumps in the magnetization curves, attributed to the
penetration and expulsion of vortices in the sample.

Another valuable result on mesoscopic samples is the
observation of vortex chains, as the applied magnetic field
increases [33, 45–48, 54]. Bronson et al. [47] studied the
pinning effects in mesoscopic systems, showing that in
the presence of pinning sites, the penetration of vortices
begins at lower magnetic fields when compared with the
same strip with no APCs. The explanation for this effect is
that the attractive pinning potential in the sample induces
the vortex penetration at lower values of magnetic field.
Recently, Vizarim et al. [53] also showed that the vortex
penetration may be influenced on how the pinning centers
are distributed in the sample.

Regarding dynamical properties for superconducting
strips, Reis et al. [49] simulated the vortex behavior in a
thin strip with the presence of a random pinning distribution
under the effects of an applied transport current in the finite
direction of the strip. The results show that for transport
forces above a critical value, vortices flow through narrow
channels due to the surface effect, reducing the vortex
diffusion in the transversal direction. Concerning the vortex
dynamical phases, they found a behavior similar to the
one observed for infinite samples with random pinning,
i.e., plastic flow, smectic flow, and the frozen transverse
solid phases. However, the plastic and smectic regimes
were observed in a reduced range of forces when the
strip width is reduced. Meanwhile, using the TDGL theory,
Berdiyorov et al. [51] also investigated the pinning effects
in the vortex dynamical phases. They simulated the strip in
three situations: without APCs, with square array of APCs,
and with a random pinning distribution. As a result, they
found that the inclusion of a pinning lattice reduces the
resistive state transition current. Moreover, they characterize
the vortex dynamical phases as (i) flux-flow states at low
currents, (ii) phase-slip phase at intermediate values of
applied current, and (iii) the hot-spot state at larger currents,
which evolves into a complete transition to the normal state.

In this work, we study vortex dynamical phases in
superconducting strips in the presence of APCs, aiming to
understand how the size of the sample affects the vortex
dynamical behavior. We perform our simulations using two
types of triangular pinning lattices: the regular one and a
flattened triangular lattice, which mimics the flattening of
the vortex lattice in strips due to the geometrical constraint.
In Fig. 1, both pinning arrays are plotted to overlap in
order to see the difference between the arrays. The flattened
triangular pinning array has the pinning sites dislocated
toward the center of the strip, mimicking the vortex lattice
deformed by the surface effect. We compared our results
with those for infinite superconducting films [5–7, 15–19,
55–59], searching for differences and similarities between
these systems. In order to analyze the effect of the strip
width, we computed three sample widths with the same
applied magnetic field and pinning density.
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Fig. 1 Pinning site locations used in the strip for Lx = 1.00λ, where
the black open circles represent the regular triangular pinning array
and the red open circles represent the flattened pinning array. The
grey regions in the figure illustrates the difference in the x coordinate
between the flattened and the regular pinning site positions. The
flattened pinning array mimics the flattening of the vortex lattice in a
superconducting strip due to the surface energy barrier. The lengths x

and y are normalized by 4ξ

The outline of the paper is the following. In Section 2, we
present the model used in our simulations. In Section 3, we
show our results using a regular triangular pinning lattice in
the strips. We show how the width of the strip influences
the number of dynamic phases and vortex regimes. In
Section 4, we show the results obtained using the flattened
triangular pinning array. We also highlight the differences
observed in the flattened lattice compared with the regular
one. In Section 5, we present the conclusions of this work,
emphasizing the main factors that influence the dynamical
behavior of vortices in strips and comparing the results
observed in strips with the infinite film cases.

2Model

In this work, we simulate a type II superconducting thin
strip, finite in the x direction and infinite in y, considering
vortices in the London limit interacting with two types of
triangular pinning landscapes, as shown in Fig. 1, the regular
one and a flattened pinning lattice.

The dynamical properties of vortex systems interacting
with pinning arrays were simulated by solving a set of
Langevin equations, as described in (1), using molecular
dynamics.

η
dri (t)

dt
= −

∑

i �=j,p

∇iUeff + Fy (1)

In this equation, the left term is the drag force, where η is the
Bardeen-Stephen [60] friction constant η = �0Hc2

/
c2ρn.

The first term on the right side of (1) represents the sum
of all forces present in the system, where the interactions
between the vortices i and j and the pinning centers p are
calculated. The force Fy results from the interaction of the
vortex and the applied transport current J, Fy = (

�0
/
c
)
J×

ẑ.
For simulations of an infinite superconducting thin strip,

we define the effective potential (Ueff), including the energy
expression provided by Carneiro [45] and the pinning
potential term, as described in (2).

Ueff = Uvv + Up + UH + US (2)

The potentials used in our model can be describe as follows:
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The potential Uvv(rij ) represents the interaction between
vortices and the interaction of the vortices with the images
excluding self-images, where Lx is the strip width, and k is
the index of the image boxes in the infinite direction Ly =
2λ

/√
3, modeled by the inclusion of periodic boundary

conditions in the y direction. The second term (UP (rip))

represents the vortex-pinning interaction, where CP is the
pinning strength and rip is the distance between a vortex
i and a pinning center p. The pinning sites were modeled
by a Gaussian function adjusting the pinning strength with
CP = 0.2Cv and considering the pinning range as ap = ξ .
The pinning density was maintained constant in this work
for all samples simulated, using np = 55.42/λ2.

The third term (UH (r)) is the energy related to the vortex
interacting with the screening Meissner supercurrents and
the fourth term (US(r)) is the potential energy given by
the interaction of the vortices and their self-images anti-
vortices outside the superconducting strip, as included by
Bean and Livingston [44] to satisfy the boundary condition
at the surface.

The external magnetic field was adjusted to H =
68�0

/
λ2 in order to match the vortex density with the

pinning density. Then, a careful minimization procedure
was performed using the Generalized Simulated Annealing
[61] method (GSA), where Ueff was minimized as a function
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of the vortices positions. We use η = 1, the length scales
normalized by 4ξ , the energy scale by Cv , the time scale
by 0.0016ηλ2/Cv , the magnetic field H by �0

/
λ2, and the

force scales by 25Cv/λ, where ξ is the coherence length and
λ the London penetration depth. We consider the Ginzburg-
Landau parameter κ = λ

/
ξ = 100. The transport current

was applied in the finite direction of the strip, creating a
driving force in the infinite direction. The force associated
with the transport current started at Fy = 0 and was
increased in steps of 
Fy = 0.002 up to Fy = 1.0. For each
force value, we performed 100,000 equilibration time steps
to obtain the time averages and the overall analysis.

To evaluate the depinning forces, we calculate the
time average of the vortex velocity, 〈Vy〉 = 〈Vy(t)〉 =
〈 1
Nv

∑
i

dyi

dt
〉, which is proportional to the macroscopically

measured voltage-current curve [62, 63]. The threshold
for considering the vortex system static is 〈Vy〉 = 1 ×
10−3. Moreover, to characterize the dynamical phases, we
plotted snapshots of the vortex trajectories and analyzed
the time average of the vortex velocity derivative which
is proportional to the differential resistance dV y

/
dFD =

ρ−1
f dE

/
dJ , where ρf is the flux flow resistivity.

3 Dynamical Phases on the Regular
Triangular Array

In order to analyze only the size effects in the regular
triangular pinning array, we investigate three samples with
different widths (Lx = 0.50λ, 0.75λ, and 1.00λ), but

with the same pinning density, size, strength, and applied
magnetic field. For this purpose, it was necessary to use
the GSA to search for the vortex ground state for each
sample. Then, the ground state was used as initial boundary
condition for the integration of Langevin equations.

The vortex ground state for the case of Lx = 0.50λ

is illustrated in Fig. 2a. As pointed out before, we are
interested in analyzing the vortex behavior under the
influence of a regular triangular pinning array at the first
matching field, that is, nv/np = 1, where nv and np

correspond to the vortex and pinning densities respectively.
In order to find the groundstate magnetic field, we compared
the energy of the states with N and N + 1 vortices in a
similar way as done by Venegas [64]. The minimization
shows that the first matching field is H = 68�0/λ

2,
therefore, this is the field value used in our simulations for
all sample widths. For the other strip widths, we used the
same field value and compared the energies of the system
with N and N + 1 vortices, choosing the vortex density and
configuration that corresponds to the minimum energy.

Figure 3 shows the average vortex velocity (〈Vy〉) and the
differential resistance (dVy/dFy) as functions of the applied
transport force (Fy). It is possible to see three distinct vortex
dynamic phases, indicated by changes in the slope of the
velocity curve and pronounced peaks in the differential
resistance curve. Each of them is directly associated to the
vortex regimes illustrated in Fig. 2.

The dynamic phases of regions II and III are illustrated
in Fig. 2. In region II, the vortex chains close to the
edge of the strip depin at the same transport force value
Fy = 0.178. Both channels of vortices flow in narrow and

Fig. 2 Main simulation box,
where open circles represent the
pinning centers and black dots
represent vortices, with
H = 68�0/λ

2, Lx = 0.50λ,
nv/np = 1, Cp = 0.2Cv , and
ap = ξ . Numbers on top of each
figures indicate the dynamic
phase according to the plot
shown on Fig. 3. a The static
phase, b the first moving phase,
where vortices near the edge of
the sample flow in narrow
channels, c the beginning of the
second moving phase, where
vortices flow in channels with
significant transversal
displacement, and d the second
moving phase with vortices
flowing in narrow channels with
small bumps due to the pinning
centers. The lengths x and y are
normalized by 4ξ
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Fig. 3 Average vortex velocity (〈Vy〉) and vortex derivative velocity
(dVy/dFy) as a function of the applied force (Fy) for the strip under
the influence of the regular pinning array with Lx = 0.50λ, Cp =
0.2Cv , and ap = ξ . Vertical dashed lines represent the dynamic phase
transitions

well-defined channels without interconnectivity. Region III
begins when the transport force reaches the value Fy =
0.608. In that case, the inner vortex chains depin together
in vortex channels with significant transversal fluctuations
(see Fig. 2c). After a further increase of the transport force,
the transversal fluctuation of vortices is reduced resulting
in four well-defined vortex channels, which can be seen in
Fig. 2d. It is also possible to see that the outer channels
behave differently compared with the inner channels. The
inner vortex channels flow with small bumps due to the
presence of the attractive pinning sites Meanwhile the outer
vortices flow in straighter channels because the surface
currents push them far from the surface and, consequently,
far from the outer pinning column.

It is interesting to point out that the depinning process
depends on the commensurability of each vortex chain.
For example, the inner chains are fully commensurate;
therefore, they can endure higher transport forces without
depinning when compared with non-fully commensurate
chains. The competition between the vortex-vortex and
vortex-surface interactions stabilize vortices near the edge
of the sample. Only a few vortices are trapped at the top of
the pinning sites, but most of them are interstitial vortices,
which provokes a premature depinning when compared
with the commensurate vortex chains near the center of the
sample.

Numerical simulations were also performed with Lx =
0.75λ using the same pinning size, density and applied
magnetic field than that used for Lx = 0.50λ. The
energy minimization process leads to the vortex ground
state illustrated in Fig. 4a with nv/np = 1.042. That is,
as the sample is enlarged, the same applied magnetic field
induces a higher vortex density. Figure 5 shows the 〈Vy〉 and

dVy/dFy as a function of the applied transport force Fy . In
this case, six distinct vortex dynamic phases are observed.
Each of them is directly associated to the vortex regimes
illustrated in Fig. 4.

The vortex ground state (see Fig. 4a) exhibits two fully
commensurate chains and four with different commensura-
bility degree. At Fy = 0.074 occurs the depinning transition
resulting in one narrow vortex channel in the left side of
the sample (see Fig. 4b). However, this vortex dynamic
phase remains just for a short range of transport force val-
ues denoted by region II of Fig. 5 At Fy = 0.090, which
corresponds to the beginning of region III, the outer vortex
chain in the right side of the sample depins forming a nar-
row channel of vortices (see Fig. 4c). It is interesting to note
that these channels close to the edge of the strip exhibit sim-
ilar commensurability degree but do not depin at the same
transport force. The explanation is related to the different
pinning landscape seen by each vortex chain. At Fy = 0.135
occurs another dynamic phase transition, where the vortices
move according to the region IV of Fig. 4d. In that case
there is a depinning of another vortex chain with vortices
moving in tortuous channels. After further increases in the
transport force, at Fy = 0.360 the last non-commensurate
vortex chain depin in a plastic flow with interconnectivity
with the neighbor channel (see Fig. 4e and the animation
of this regime in the Electronic Supplementary Material—
vortex4e.avi). As can be seen in Fig. 5, this vortex regime
exhibits several changes in the average vortex velocity and
peaks in the differential resistance curve. However, these
instabilities cease at Fy = 0.412, where the vortices move
in almost straight channels along the strip (see Fig. 4f). Note
that the regimes from Fig. 4e, f correspond to the same vor-
tex dynamic phase (region V), i.e., the vortex regime of
Fig. 4e is transient. The final depinning transition occurs at
Fy = 0.584, where the fully commensurate vortex chains
depin and all channels flow along the strip (see Fig. 4g).

We also performed simulation with Lx = 1.00λ, aiming
to understand the size effects in the dynamical phases of
superconducting strips. Using the same pinning parameters
and applied magnetic field, we found the vortex ground
state illustrated in Fig. 6a, with nv/np = 1.031. Note again
that as the sample width is enlarged with the same applied
magnetic field, the vortex density changes. In Fig. 7, we
show the 〈Vy〉 and dVy/dFy as a function of the Fy . As
a result, it is possible to see six distinct vortex dynamic
phases. Each of them is directly associated to the vortex
regimes illustrated in Fig. 6.

Figure 6a illustrates the vortex ground state for the
strip with Lx = 1, 00λ. In the central region of the strip
the number of vortices exceeds the number of pinning
centers, i.e., there is a formation of incommensurate vortex
chains. Besides that, the chains next to the edge of the
sample exhibit vortices stabilizing themselves in interstitial
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Fig. 4 Main simulation box, where open circles represent the pin-
ning centers and black dots represent vortices, with H = 68�0/λ

2,
Lx = 0.75λ, nv/np = 1.042, Cp = 0.2Cv , and ap = ξ . Numbers on
top of each figures indicate the dynamic phase according to the plot
shown on Fig. 5. a The static phase, b the first moving phase, where
vortices near the left edge of the sample flow in a narrow channel, c
the second moving phase, where vortices of the right edge of the strip
depin in a narrow channel, d the third moving phase where the chain of

vortices in which the number of vortices exceed the number of pinning
sites depin in a tortuous narrow channel, e the beginning of the fourth
moving phase, where the last non-fully commensurate vortex chain
depin in a plastic flow with interconnectivity (see also the animation of
this regime in the Electronic Supplementary Material—vortex4e.avi),
f the fourth moving phase where all channels flow almost linearly, and
g the fifth moving phase where the fully commensurate vortex chains
depin and all vortices flow. The lengths x and y are normalized by 4ξ

positions due to the surface barrier pushing vortices toward
the center of the sample. Our calculations show that there
are several vortex transient motions below the depinning
current (region I), which can be seen by small fluctuations in
the differential resistance curve. A similar type of transient
motion was already reported before in simulations with
infinite samples [65–67]. This kind of motion reorders the
vortex lattice into a new static one. As an example, we can
see the vortices close to the right edge of the sample: in the
ground state only one is pinned and in Fig. 6b, three vortices
are pinned due to the transient effects.

When the transport force reaches its critical value Fy =
0.098 the depinning occurs, where vortices begin to flow in
a narrow channel in the left side of the sample, denotated
by region II (see Fig. 6b). At Fy = 0.144, three vortex

chains depin at the same time initiating region III (see
Fig. 6c and the animation of this regime in the Electronic
Supplementary Material—vortex6c.avi). The central chains,
where the number of vortices exceeds the pinning centers,
depin together exhibiting almost straight channels with
small bumps. Meanwhile, the chain next to the right edge
of the sample starts to depin In the lower part of the figure
vortices move by tortuous trajectories and in the upper
part, all of them join forming only one straight channel
At Fy = 0.156, the dynamic phase denotated as region
III stabilizes. Vortices that initially were moving through
tortuous channels are now moving through almost straight
channels (see Fig. 6d). After a further increase of the
transport force, the depinning of the last non-commensurate
vortex chain in a plastic flow with interconnectivity occurs
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Fig. 5 Average vortex velocity (〈Vy〉) and vortex derivative velocity
(dVy/dFy) as a function of the applied force (Fy) for the strip under
the influence of the regular pinning array with Lx = 0.75λ, Cp =
0.2Cv , and ap = ξ . Vertical dashed lines represent the dynamic phase
transitions

at Fy = 0.360 (see Fig. 6e and the animation of this regime
in the Electronic Supplementary Material—vortex6e.avi).
However, at Fy = 0.386 the vortex regime stabilizes in
straight channels flowing through the strip (see Fig. 6f). At
Fy = 0.542, there is a new depinning transition leading to a
symmetric distribution of channels. In that case, the system
exhibits six moving channels and two trapped chains of
vortices (see Fig. 6g) However, this regime does not persist
for a wide range of transport force values. At Fy = 0.556,
the vortices that were trapped in the previous phase, depin
and flow through the strip with interconnectivity in the
outer channels (see Fig. 6h and the animation of this regime
in the Electronic Supplementary Material—vortex6h.avi).
Interestingly, vortices near the edge flow in thicker channels
while inner channels flow in narrower ones due to the higher
magnetic pressure, as shown in Fig 6i.

For all strip widths with the regular triangular pinning
array, even at high vortex speed, the vortices do not organize
themselves in a moving crystal phase.

4 Dynamical Phases on the Flattened
Triangular Array

The flattened triangular pinning array is a pinning
distribution that mimics the vortex lattice in a type II
superconducting strip without pinning centers. As we
are interested only in the size effects, three samples
with different widths (Lx = 0.50λ, 0.75λ and 1.00λ) are
simulated using the same pinning density, size, strength,
and applied magnetic field. For all strip widths, the vortex
ground state is fully commensurate with the pinning lattice,

Fig. 6 Open circles represent the pinning centers, and the black dots
represent vortices, with H = 68�0/λ

2, Lx = 1.00λ, nv/np =
1.031, Cp = 0.2Cv , and ap = ξ . Numbers on top of each figure
indicate the dynamic phase according to the plot shown on Fig. 7. a
The static phase, b the first moving phase, where vortices near the
left edge of the sample flow in a narrow channel, c the beginning
of the second moving phase, where vortices in the central region
and right edge depin together in a transient motion (see also the
animation of this regime in the Electronic Supplementary Material—
vortex6c.avi), d the third moving phase, e the fourth moving phase
where the last non-commensurate vortex chain depin in a plastic flow
(see also the animation of this regime in the Electronic Supplementary
Material—vortex6e.avi), f the fifth moving phase where the system
exhibits a symmetric distribution of channels, g the beginning of the
sixth moving phase, where all vortices move through the strip with
interconnectivity in the outer channels (see also the animation of this
regime in the Electronic Supplementary Material—vortex6h.avi), and
h where all vortices move without interconnectivity. The lengths x and
y are normalized by 4ξ
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Fig. 7 Average vortex velocity (〈Vy〉) and vortex derivative velocity
(dVy/dFy) as a function of the applied force (Fy) for the strip under
the influence of the regular pinning array with Lx = 1, 00λ, Cp =
0.2Cv , and ap = ξ . Vertical dashed lines represent the dynamic phase
transitions

as shown in Fig. 8a, c, and e. Figure 9 shows the 〈Vy〉 as a
function of the Fy for all values of strip widths. It is possible
to see that for the narrower strips, there are only two distinct
vortex phases; however, for the larger one, three vortex
dynamic phases can be observed. Besides that, all systems
exhibit the same critical depinning force value. Each phase
is directly associated to the vortex regimes illustrated in
Fig. 8.

The fact that the depinning force is the same for all
strips is because the pinning and vortex lattices are fully
commensurate in all the cases. Therefore, the vortex pinning
is maximum and the depinning occurs at the same force
value.

As shown in Fig. 9, it is evident that for Lx = 0.50λ

and 0.75λ, the dynamical behavior is different than for
Lx = 1.00λ For narrower strips, all vortices show only one
dynamical phase, where all of them behave as a perfectly
moving flattened triangular lattice. However, for Lx =
1.00λ and in the range of forces 0.684 ≤ Fy ≤ 0.770
(region II of Fig. 9), the vortices begin to move in disordered
thicker channels with small bumps. For Fy > 0.770,
vortices slightly reduce their average velocities and move
in narrower channels forming a perfectly moving flattened
triangular lattice That is, at Fy = 0.770 there is a dynamic
phase transition, where vortices change from a disordered to
an ordered phase. This behavior is similar to what was found
by Reichhardt and Olson Reichhardt analyzing particles
flowing in neighboring channels [68]. Comparing with
our case, here the system also exhibits a transition where
the velocities of the different vortex channel change from
a decoupled (where different channels exhibits different
velocities) to a coupled motion (where all channels move
with the same velocity).

Fig. 8 Strips with the flattened triangular pinning lattice, where open
circles represent the pinning centers and black dots represent the
vortices, with H = 68�0/λ

2, nv/np = 1, Cp = 0.2Cv , and ap = ξ .
Numbers on top of each figure indicate the dynamic phase according to
the plot shown on Fig. 9. a The static and b moving phases for the strip
with Lx = 0.50λ; c the static and d moving phases for Lx = 0.75λ; e
the static phase, f the disordered moving phase (0.684 ≤ Fy ≤ 0.770)

and g the perfectly moving flattened triangular lattice for Lx = 1.00λ.
The lengths x and y are normalized by 4ξ
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Fig. 9 Average vortex velocity (〈Vy〉) as a function of the applied
transport force (Fy) for strips under the influence of the flattened
pinning array with Lx = 0.50λ, 0.75λ and 1.00λ, using Cp = 0.2Cv

and ap = ξ . The narrower strips show only two phases: the static (I)
and moving phases (II), where all vortices move in a perfectly flattened
triangular lattice. For Lx = 1.00λ, the system exhibits three phases:
the static (I) and two moving phases (II and III). Phase II corresponds
to a disordered regime and phase III to a perfectly moving flattened
triangular lattice. In all cases, the strips depin at Fy = 0.684

5 Conclusions

In summary, we simulated for the first time the vortex
behavior in thin superconducting strips of three widths
Lx = 0.50λ, 0.75λ and 1.00λ in the presence of a regular
triangular and a flattened triangular pinning array at zero
temperature. The pinning density and applied magnetic
field were the same for all samples to investigate the size
effects only. The vortex ground state was obtained with a
simulated annealing procedure, and then, a transport force
was applied along the infinite direction of the strip. For
the regular triangular pinning lattice, we found that in all
samples sizes, the depinning occurs by columns following
the degree of commensurability of each vortex chain.
Different than in infinite films, the Meissner supercurrents
push vortices toward the center of the sample, destroying the
commensurability of the chains close to the surface favoring
the depinning of vortices. However, this is not the only
mechanism that contributes to lower the critical depinning
force. As the strip is enlarged and the applied magnetic field
remains the same, the vortex density changes, provoking
that some vortices may stabilize in interstitial positions.
Moreover, the influence of the surface energy barrier
becomes less important, and the transversal fluctuation
of vortices is higher, favoring the arising of new vortex
dynamic regimes.

For the flattened triangular pinning array, we observed
that for all the calculated widths the critical depinning
force was the same (Fy = 0.684) and much higher than
in the strips with the regular pinning array. This may be
explained because the vortex and pinning lattice are fully
commensurate. For the narrower strips with the flattened
pinning array, we only observed one dynamical phase,
where vortices move in an ordered and perfectly flattened
triangular lattice. For Lx = 1.00λ, the system shows
two dynamic phases. The first one is characterized by
vortices moving through decoupled thicker channels with
different velocities. The second dynamic phase happens for
Fy > 0.770, where the vortices move in narrower coupled
channels forming a perfectly moving flattened triangular
array.

Comparing the dynamic phases obtained by our simula-
tions in strips with that of infinite films with same pinning
lattice [57], our results show that in the strips there is a
greater richness of dynamic phases. In infinite samples it is
observed only three dynamic phases: (i) the static, (ii) a sin-
uous moving phase with interconnectivity between channels
and (iii) a sinuous moving channel with smaller amplitude
[57]. That richness may be associated to the following idea:
in strips, as the width is varied at a constant field, the ratio
between vortices and pinning sites changes, giving rise to
several different ground states, with different degrees of
commensurability. Thus, as the strip width vary, the number
of vortex dynamical phases and regimes may also change.

The high critical depinning forces observed with the
flattened pinning lattice and the similarities between the
dynamical phases observed for these pinning arrays when
compared with the hexagonal lattice in infinite samples
show an indication of how to partially recover the results
obtained with regular pinning lattices in the infinite sample
limit. In the future, these results might be useful to carefully
obtain a systematic way of flattening regular lattices to
create efficient pinning lattices for superconducting strips
using the vast expertise from the scientific community on
infinite two-dimensional systems obtained throughout the
years.
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