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A B S T R A C T

The presence in raw sugarcane of low levels of solid impurities from soil particles and green and dry/brown
sugarcane leaves is relevant to improving sugar mill production performance. Two ranges of impurities for raw
sugar manufacturing processes need to be characterized from 0 to 5 wt% (desired material) and 8 to 10 wt%
(undesired material); these ranges are denoted as 1 and 2, respectively. Laser-induced breakdown spectroscopy
(LIBS) combined with chemometrics is used to detect chemical elements and different impurity ranges in leached
raw sugarcane solutions. The potential use of LIBS based on leached solutions immobilized in a polyvinyl alcohol
(PVA) polymer requires approximately 2 h sample preparation time. LIBS data are assigned to the above two
impurity ranges using fusion of multiple classifiers. Most classifiers require a training set and optimization of a
tuning parameter to select the best model; however, the sum fusion across a tuning parameter window used for
classifying the samples in this study is a process that does not require either. The classification results are 97%
accuracy for both ranges; 94% and 100% specificity for ranges 1 and 2, respectively; and 100% and 94% sen-
sitivity for ranges 1 and 2, respectively. The classification results indicate potential for future applications in
sugarcane refineries.

1. Introduction

The scientific literature lacks methods to determine solid impurities
in sugarcane before the raw material is introduced into an industrial
stream. This information is indispensable for improving milling effi-
ciency and maximizing the use of raw materials saving time, cost and
energy. The impurities in raw sugarcane must be monitored since they
decrease profit margins for manufacturers and can compromise the
yield and quality of extracted sugarcane juice [1].

The literature contains numerous articles describing the impurities
that form during sugar or ethanol production. In this paper, these im-
purities are referred to as “Type A”. Cole et al. [1], for instance, cor-
related increases in mechanical plant harvest of unburnt sugarcane with
high starch concentrations in raw sugar. Starch, fructose and dextran
[2] are examples of impurities that form during sugar and ethanol
production processes and can hinder both the crystallization [3] and
clarification [4] steps. In addition, high concentrations of chemical
elements, such as calcium, magnesium, or compounds, like silica and

oxalate, can compromise the crystallization process [5,6].
In addition to impurities that form during industrial processes, im-

purities can be introduced into the processes; these are referred to as
“Type B” in this paper. These impurities are from materials such as soil
or large amounts of green or dry/brown vegetal parts of the sugarcane
plant, as shown in Fig. 1. As noted in the previous sentences, studies on
the characterization of Type B impurities are absent, and this paper
addresses this issue.

The diagram in Fig. 1 shows an estimation of the quantities of Type
B impurities that come from the sugarcane plant (green and dry/brown
leaves) and soil. These values were obtained from technical reports
[7,8]. To the best of our knowledge, no data have been published on the
total impurity content. However, there is a general consensus that the
impurity content is approximately 10 to 20%. The amounts of these
materials depend on the sugarcane variety and harvesting system. Over
the last 5 years, burnt sugarcane has been banned in several countries,
including Brazil. As a result, the amount of Type B impurities has
alarmingly increased, causing the industrial process to be unpredictable
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and difficult to control. Additional drawbacks are the increases in the
composition complexity, toxicity and vinasse volume upon the addition
of several chemical compounds that are used to establish process con-
trol [9]. Currently, no method exists to reduce Type B impurities, and
manual stalk separation, which is the most valuable part of the su-
garcane plant, is impractical on an industrial process scale.

Sugarcane is a complex plant, and in contrast to potato or beet
plants, efficiently cleaning sugarcane on a large industrial scale is not
easy. Sugarcane impurities interfere with the milling process and cause
damage and energy power losses. Type B impurities can increase the
number of dark particles in sugar and the concentrations of starch,
dextran and chemical compounds (Type A impurities), ultimately re-
ducing the final product quality.

High-yield sugarcane manufacturing processes depend on raw ma-
terial characterization [10,11]. The fiber content of sugarcane is rou-
tinely determined in industrial facilities and is an important parameter
used to calculate grower payments. Juice extraction depends on the
fiber content in sugarcane. Thus, establishing an equilibrium between
the impurities, mainly Type B, and reliable material introduced in a
system is important. Some impurities and fiber are the main con-
stituents of bagasse [12–14], which is used for second-generation en-
ergy production [15], plasticizers [16] and biomass [17].

The fiber and impurity amounts introduced in a system (Type B) or
formed during an industrial process (Type A) are correlated with the
amount and quality of the resultant juice and the yields of the final
products, i.e., sugar and ethanol. To rapidly predict the fiber content
(%) in raw sugarcane bagasse, laser-induced breakdown spectroscopy
(LIBS) has been used in combination with multivariate calibration [12].
The LIBS technique applies a short laser pulse to the sample surface to
form a plasma at approximately 10,000 K [18]. The interaction between
the plasma and matter produces an emission spectrum, and the spectral
information can be used for qualitative and quantitative chemical
analyses. In a study published in 2016, Romera et al. [12] used LIBS to
determine the fiber content in sugarcane bagasse. The most relevant

information from the spectra was selected, and the atomic lines of C,
Mg, Na, H, N, K and ionic lines of Ca were used for a partial least
squares (PLS) regression analysis. A promising correlation between the
reference fiber content values and those predicted by the PLS model
was obtained for samples containing moisture [12].

No governmental standard exists for the determination of Type B
impurities in raw solid sugarcane materials. The first attempt to es-
tablish such a method was published by our research group [19]. This
research indicated that the aqueous extracts from sugarcane, soil and
green/brown vegetal part mixtures should be studied. The liquid ex-
tracts were immobilized using a polyvinyl alcohol (PVA) polymer, and
several LIBS emission lines were correlated to the impurity amounts.
LIBS is a suitable technique for a direct solid analysis, but Type B im-
purities are miscellaneous materials with irregular shapes. In this case,
the main goal was to immobilize [20,21] aqueous solutions obtained
after leaching several solid mixtures. This procedure requires only 2 h
of sample preparation time and can be easily incorporated into a sugar
or ethanol production chain.

In our previous study, only a qualitative inference about the dis-
crimination of different samples was discussed. The two mixture ranges
were divided according to the real conditions of sugarcane crops. For
instance, a sugarcane stalk inevitably has some solid dust residues from
the field. In Australia, for the clarification and filtration unit operations
of raw sugar manufacturing processes, the cane supply soil levels can be
between approximately 2 wt% and 10wt% [22].

An ideal chemometric classification model with a high analytical
frequency can be obtained using LIBS emission line spectra as finger-
prints [23]. The literature presents several examples of classification
techniques, e.g., k nearest neighbor (kNN), soft independent modeling
of class analogy (SIMCA), PLS for discriminant analysis (PLS-DA) and
linear discriminant analysis (LDA) [24]. Each technique has specific
characteristics and can present different prediction classes, including
contradictory and inconclusive results. To classify the data, many
chemometric methods are available with different criteria to establish
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Green leaves
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impurities 
( 8.0 wt%)

Fig. 1. Diagram of Type B impurities (vegetal parts and soil) and their estimated quantities (wt%) in sugarcane plants denoted by numbers in parentheses.

W.N. Guedes, F.M.V. Pereira Microchemical Journal 143 (2018) 331–336

332



the best model. In this study, a sum fusion method across a tuning
parameter window, which was introduced by Brownfield et al., was
used for data classification by using 17 classification techniques. The
outputs of each classifier are normalized across the classes to unit
length and summed to obtain a classification consensus, thus providing
results with greater confidence [25]. The main advantage is that no
thresholds, weights, or training for optimization of classifiers are used
to classify the data from a well-established, versatile analytical tech-
nique, e.g., the application of LIBS with chemometrics as an analytical
method to address an agricultural issue.

2. Materials and methods

2.1. Samples

In this study, a set of 60 leached solution samples was prepared from
12 mixtures composed by sugarcane stalk (desired material) and un-
desired solid materials (Type B impurities), such as soil and vegetal
parts (green and brown). Table 1 presents the compositions of the 12
mixtures; the final content of each sample was 100wt%. The sampling
process consisted of five samples for each mixture described in Table 1.
These mixtures were transferred to plastic bags and individually mixed
with 200mL of deionized water at room temperature for 2 h for the
leaching procedure. Because the resulting leachates are visually ex-
tremely heterogeneous, containing small soil, stalk and leaf particles,
from each 200mL, 50mL were transferred into plastic flasks. Before
each sample collection, the plastic bags were manually mixed for ap-
proximately 2min.

A 200mg random sample was obtained from each 50mL sample,
and 800mg 10% (w/v) PVA was added to each sample. This mixture
was mixed and transferred to a pre-adapted drying support. After
heating for 2 h at 50 °C in an oven, an immobilized sample in solid PVA
(leachate) was obtained. The resulting 60 immobilized samples pre-
sented thin and plain polymer films suitable for LIBS technique direct
analysis [19].

2.2. LIBS dataset

The leachates were measured using a LIBS instrument with a
1064 nm Q-switched Nd:YAG laser (Applied Spectra, Fremont, CA,
USA) [19]. The number of independent variables for each spectrum was
12,288 with a resolution between 0.06 and 0.12 nm for the 6-channel
charge-coupled device (CCD) spectrometer with a spectral window
ranging from 186 to 1042 nm. The laser experimental setup was 80mJ
of laser pulse energy on a 100 μm spot which corresponding to laser
fluence of 1000 J/cm2, at a 5 Hz repetition rate and a 1mm/s ablation
rate. The spectrum acquisition time was 1.05ms and the delay time was

0.5 μs.
At least 500 LIBS emission spectra were obtained per samples and a

data matrix was tested using the mean of these spectra. The spectra
were not preprocessed for the calculations. The datasets were evaluated
using ranges based on the sum of the fractions of the vegetal parts and
soil in wt%; the ranges of 0–5 and 8–10 had 25 and 35 samples, re-
spectively (Table 1). These ranges were divided according to the values
expected in sugar factories. A principal component analysis (PCA) of
the mean LIBS signals from the leached solutions of raw sugarcane with
Type B impurities showed that the samples with between 8wt% and
10wt% impurities tended to separate, and the Ca and Mg emission lines
had more influence on the segregation than was observed in our prior
study [19]. For this study, the impurity ranges between 0wt% and 5wt
% and between 8wt% and 10wt% were defined as ranges 1 and 2,
respectively. The first range (from 0wt% to 5wt%) represents the
material ideally suitable for a production system.

2.3. Data classification

The main goal of sum fusion is to combine the results obtained from
17 classifiers resulting in a classification consensus. The fusion input
matrix is the classifiers in the rows and the ranges in the columns. To
calculate the sum, raw values in each row are normalized to the unit
length for each classifier, in order to eliminate magnitude differences
among the output values of the classifiers.

A MATLAB code was applied to calculate the sum fusion classifi-
cation across the tuning parameter window with 17 classifiers [25]. The
tuning parameter window consists of a window of multiple values of
number of eigenvectors or nearest neighbors (NNs) or latent variables
(LVs) that is used to structure the classifiers in blocks. Table 2 shows six
classification methods that require a tuning parameter. In the case of
these classifiers the tuning parameter varied from 1 to 23. Eleven
classifiers are based on comparing a sample xi to the sample class mean
x, such as cosθ, Euclidean distance, determinant, inner product corre-
lation, unconstrained Procrustes analysis (PA), constrained PA (for 2
classifiers), and extended inverted signal correction difference (EISCD)
(for 4 classifiers); no tuning parameter is required and one value is the
output matrix for each one.

In this study, the maximum tuning parameter value for the eigen-
vectors, LVs, and NNs (see Table 2) is 23. For example, for a given
classifier, such as the Mahalanobis distance (MD), the MD values are
obtained from eigenvector 1, then eigenvectors 1 and 2 for the second
window, and 1 to 3 for the third window until the last window, in our
case 23. Hence, the maximum window results is 23 in MD classifier. The
tuning parameter value is based on the rank of the smallest class where
eigenvectors are obtained from the singular value decomposition (SVD)
of X.

The classification capability was assessed as the accuracy, specifi-
city, and sensitivity using the following parameters: true positive, false
negative, true negative, and false negative. The values of these para-
meters were calculated using a leave-one-out cross-validation on each

Table 1
Solid fraction compositions for the leached solution dataset.

Mixture Sugarcane stalk
(wt%)

Impurities (wt%) Sum of Type B
impurities (wt%)

Range

Vegetal
parts

Soil

8 95 5 0 5 1 (n=25)
9 95 0 5 5
10 97 3 0 3
11 97 0 3 3
12 100 0 0 0
1 90 10 0 10 2 (n=35)
2 90 0 10 10
3 90 5 5 10
4 92 8 0 8
5 92 5 3 8
6 92 3 5 8
7 92 0 8 8

Table 2
Tuning parameter-based classifiers.

Method Optimized
parameter

Tuning parameter
window

Partial Least-Squares Discriminant
Analysis (PLS2-DA)a

Latent variable (LV) 1–23

K Nearest Neighbors (kNN) Nearest Neighbors
(NN)

24–46

Mahalanobis Distance (MD) Eigenvectors 47–69
sinθ Eigenvectors 70–92
Q-residual (Q res) Eigenvectors 93–115
Divergence Criterion (DC) Eigenvectors 116–138

a Pseudo-variables are 1 for in class and –1 for out of class.
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range shown in Table 1. This process consists of removing one of the
samples from a range; then, the calculations are performed on the target
sample (removed sample) to be classified using all classifiers. Each
sample is removed one by one, and the process is repeated according to
the number of samples in each range. The smallest value of the two
sums determines to which range a sample belongs [25].

3. Results and discussion

The LIBS system used in this study provides spectra with high di-
mensionality, i.e., 12,288 variables (186 to 1042 nm) containing
thousands of atomic (denoted as I) and ionic (as II) lines, which re-
present a fingerprint of the chemical composition of leachate samples
obtained from the 12 different mixtures (n=60), as described in
Table 1. In this study, a variable selection was performed based on the
intensities of the emission lines with counts above 40 and high signal-
to-noise ratios (SNRs), which included the spectral ranges of Mg II,
279.55 and 280.27 nm; Ca II, 393.37 and 396.85 nm; and K I, 766.49
and 769.90 nm, as shown in Table 3. The referred chemical elements
were highly correlated with the samples in PCA for impurities ac-
cording to our previous study [19]. Other elements were also important
for the characterization of samples, such as C I, 193.09 and 247.86; Na
I, 589.00 and 589.59; H I, 656.30; N I, 744.23 and 746.83; and O I,
777.42. Consequently, the number of wavelengths was reduced from
12,288 to 634. Fig. 2 shows the fragment profiles of the LIBS spectra
after the variable selection. The green and red lines represent ranges 1
(desired material with 0 wt% to 5 wt% Type B impurities) and 2 (un-
desired material with 8 wt% to 10 wt% Type B impurities), respectively.
From the PCA plots shown in Fig. 3a, it is possible to verify a slight
tendency of separation for the mean-centered data; however, some
samples are overlapped in the first two PCs with 75% of explained

variance. Fig. 3b shows the most relevant chemical elements (from 1 to
10) correlated with the ranges of impurities by means of values of
loadings using the 634 variables, as described above.

In most cases, to achieve an accurate model, it may be necessary to
test more than one algorithm for classifying samples, for example, in
the case of overlapping score values for ranges 1 and 2 shown in Fig. 3a.
Fig. 4a and b are good examples showing the relevance of combining 17
classifiers. Each interval on the y-axis corresponds to a block of clas-
sifiers stacked with its respective output across a window of tuning
parameter values (in this study, the window tuning was 23). The target
for both examples in Fig. 4 was a sample to be classified as membership
of range 1 (0 wt% to 5 wt% impurities). The column sum of the row-
wise normalized-to-unit-length values in Fig. 4a (sample of mixture 12
with no impurities added, see Table 1) showed values of 48.3 for range
1 and 137.3 for range 2. In other words, the sum of the row values
computed in the majority of classifiers was smaller for range 1 and this
sample was correctly classified to range 1. The image in Fig. 4b for a
sample of mixture 9, range 1, with 5 wt% soil impurities (see Table 1)
shows correct classification to range 1, with the sum of the column
values being 90.4 for range 1 and 109.4 for range 2. However, if the
classifiers were calculated individually, it would be difficult to obtain
the correct range membership for this sample.

Fig. 4c shows that the two classifiers, PLS2-DA and kNN, can
achieve good accuracy but depend on the optimized number of LVs or
NNs. In PLS2-DA (Fig. 4c), after 3 LVs, a monotonic variation for 95%
accuracy is observed, as well as for the other figures of merit. However,
there is a discrepancy for kNN (Fig. 4d) after 4 NNs, when the highest
value for accuracy is approximately 92%. Nonetheless, in kNN, con-
sidering the quality parameters sensitivity and specificity, the number
of neighbors is inconsistent. Another implication is that developing a
classification model using these methods would require sets for training

Table 3
Description of the selected variables for the dataset composition.

Variables Emission lines (nm) Observed elements

1–80 192.87–193.21; 247.58–248.13; 250.72–250.78; 251.45–251.70; 251.95; 252.43–252.50; 252.86–252.92; 279.50–279.73; 279,85–279.90;
280.25–280.42; 285.24–285.29; 288.15–288.26; 385.89–385.97; 387.15; 388.10–388.42; 393.21–393.44; 396.72–396.95; 422.54–422.69;
431.97; 477.09–477.17; 477.55; 479.23; 479.69; 479.91; 480.22–480.44; 480.60–480.67; 480.82–481.13;

C, Ca and Mg

81–320 481.20–487.15; 487.22–490.94; 491.09–491.61; 491.83; 492.05; 492.28; 493.09–493.46; 505.14; 588.71–589.07; 589.12–589.22;
589.33–589.78; 648.23; 648.34; 648.50; 648.71–648.76; 648.87; 648.98; 649.08; 649.24; 649.40; 649.50–651.96;

Na

321–480 652.01–656.06; 656.12–660.06; H
481–543 660.11–661.68; 661.77–661.82; 661.97; 662.06; 715.56–715.79; 742.11–742.44; 743.85–744.39; 744.61; 746.34–747.42; 747.63; 747.85; N
544–548 766.39–766.60; 769.81–769.92; K
549–634 776.19–777.31; 777.42–778.33; 794.64–794.83; 795.03–795.13; 818.34–818.89; 819.54; 820.92–821.66; 822.03–822.40; 824.04–824.32;

844.36–844.71; 862.79–862.95; 867.75–868.62; 870.27–870.35; 871.05–871.21; 871.83; 904.63; 909.50–909.60; 938.62–938.71;
939.16–939.34; 940.59.
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and validation. To overcome this, the fusion process shows no need to
select the best tuning parameter window or classifier for the classifi-
cation for each range. The training could be eliminated since a window
of tuning parameter values was used.

The fusion of the classifiers shown in Fig. 5a and b shows slight
variations for the classification of quality measures up to the large
tuning parameter window of 23. The prior advantage of a fusion
method over a single classifier is the ability to make the classification
process easy and automatic, with no need for optimization of the tuning
window parameter. Additionally, no weights, thresholds or training are
required.

High values of the quality parameters were also achieved, in-
dependent of the tuning parameter value, as verified in Fig. 5a and b.
The accuracy was 97% for both ranges 1 and 2 at the largest possible
tuning parameter window. This result suggests the tuning parameter
window size can be set to the smallest rank of classes being evaluated
and agrees with previous observations [25]. The specificity was higher
for range 2 than for range 1; the values were between 100% and 94%,

respectively. The sensitivity was 100% for range 1 and 94% for range 2.

4. Conclusions

The new sum fusion classification approach showed that LIBS sig-
nals from leached solutions can be used to classify the impurity levels in
raw sugarcane without the need to select the best algorithm.

The high values of accuracy, specificity and sensitivity showed the
potential for using LIBS emission line fingerprints to identify Type B
impurities in raw sugarcane. For both assessed impurity levels, i.e.,
from 0 to 5 wt% (range 1) and from 8 to 10 wt% (range 2), 97% were
accurately classified using sum fusion across tuning parameter win-
dows.

In addition, the combination of LIBS data and this new algorithm is
promising for the development of classification models for raw su-
garcane impurities from different sources, which would help industrial
processes suffer less loss and achieve better control.

ba
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3
4

5 6

8910
7

Fig. 3. Scores (a) and loadings from a principal component
analysis (PCA) performed with 634 selected variables using
mean-centered data (b). For samples in ranges 1 (0–5wt%,
green circles) and 2 (8–10wt%, red circles), each number
represents the values of loadings for the following emission
lines (in nanometers), 1 and 2, C I, 193.09 and 247.86; 3,
both Mg II, 279.55 and 280.27; 4, both Ca II, 393.37 and
396.85; 5 and 6, Na I, 589.00 and 589.59, 7, H I, 656.30; 8,
both N I, 744.23 and 746.83; 9, K I, 766.49; and 10, O I,
777.42. I and II are atomic and ionic emission lines, respec-
tively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this
article.)
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