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High-static-low-dynamic-stiffness (HSLDS) nonlinear isolators have proven to have an advantage over linear isolators, because
HSLDS nonlinear isolators allow low-frequency vibration isolation without compromising the static stiffness. Previously, these
isolators have generally been assumed to have linear viscous damping, degrading the performance of the isolator at high
frequencies. An alternative is to use nonlinear damping, where the nonlinear behavior is achieved by configuring linear dampers
so they are orthogonally aligned to the excitation direction. This report compares the performances of single-stage and two-stage
isolators with this type of damping with the corresponding isolators containing only linear viscous damping. The results show
that both isolators with linear viscous damping and nonlinear damping reduce the transmissibility around the resonance fre-
quencies, but the results show that the isolators with nonlinear damping perform better at high frequencies.
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1 Introduction

One way to improve low-frequency vibration isolation
without having excessive static deflection is to use a non-
linear isolator [1]. A simple way to model this type of iso-
lator is to combine lateral linear springs with a linear
(vertical) spring orthogonal to the lateral springs [2–5], re-
sulting in an isolator that has high-static-low-dynamic-stiff-
ness (HSLDS), and many studies have shown there are many
ways to achieve this characteristic [1,6–11]. Recently, this
concept has been further developed as a two-stage isolator
[12–14]. In all these cases, the damping was due to a linear
viscous damper in parallel with the vertical springs.
Damping nonlinearity has also been widely investigated in

the context of vibration isolation, for example [15–22]. One
type of damping where the damping force is proportional to
the cube of the velocity has been studied by several re-
searchers [19–22]. The studies have shown that this type of
damping has some advantages compared to linear viscous
damping in overcoming the compromise between suppres-
sing the response at the resonance frequency and maintaining
good performance at high frequency. Ho et al. [23] studied a
single-degree-of-freedom nonlinear vibration isolation sys-
tem with both stiffness and cubic damping nonlinearity. They
used relatively simple analytical models to characterize the
system in terms of power flow, using output frequency re-
sponse functions (OFRFs). Recently, the effects of lateral
dampers, which offer some advantages compared to vertical
damping, have been considered in combination with a ver-
tical linear spring [24,25]. The studies showed that this ar-
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rangement has the advantage of improving the performance
at the resonance frequency without degrading the isolation
performance at high frequencies for both force and dis-
placement excited systems, provided that the level of ex-
citation is not too large.
This study investigates the differences between having

linear or nonlinear damping in an HSLDS vibration isolation
system. The two damping configurations are (1) a linear
viscous damper in parallel with the vertical spring and (2)
lateral linear viscous dampers in parallel with the lateral
springs (in this case, the nonlinear damping is due to the
geometry). The aspiration is that the merits of both me-
chanisms are combined by including both nonlinear stiffness
and nonlinear damping. The frequency range of vibration
should be increased, and the response around resonance and
the high-frequency vibration isolation should be improved.
Furthermore, a single-stage isolator and a two-stage isolator
are considered.

2 Single stage isolator

Figure 1 shows a lumped parameter model of a vibration
isolation system with stiffness and damping nonlinearity for
a suspended mass m. The stiffness nonlinearity is represented
by the horizontal spring kh and the vertical spring kv. Two
cases are compared: (1) when the system only has linear
viscous damping due to the vertical damper cv and (2) when
the system only has nonlinear dampers ch. If the mass is
excited with a harmonic force fe(t)=Fecos(ωt), the equation of
motion for the system is given by

mx c x c x x k x x F t+ + ( ) + ( ) = cos( ), (1)v n n e

where the nonlinear damping coefficient is given by cn(x)
=2chx2/(x2+l2) and the nonlinear stiffness term, which in-
cludes the vertical and horizontal stiffness, is given by kn(x)
=kv+2kh[1−lo/(x

2+l2)1/2], where l represents the dimension
shown in Figure 1. Although eq. (1) has been written with

both linear and nonlinear damping terms for conciseness,
these terms are also separately considered in the simulations
presented later to compare their effects. Eq. (1) can be
written in a non-dimensional form as

x x x x k x x F+ 2 + 2 ( ) + ( ) = cos( ), (2)v n n e

where x x x( ) = 2 / ( + 1)n h
2 2 and k x k( ) = 1 + 2n

l x1 1/ ( + 1) ;2 1/2 x x l= / , l l l= / ,o in which lo represents

the free length of the horizontal springs, k k k= / ,h v

c m= / (2 ),v v n c m= / (2 ),h h n in which ( )k m= / ,n v
1/ 2

F F k l= / ,e e v = / ,n t= .n If k = 1, then l 2/3 to en-
sure that the stiffness of the isolator does not become ne-
gative and have a snap-through characteristic.
For small displacements compared to the length l, eq. (2)

can be written as a Duffing equation in which the nonlinear
damping and stiffness terms in eq. (2) become x x( ) 2n h

2

and k x x( ) ( + ),n
2 respectively, where k= 1 2

l l(1 ) / and k l= / . The nonlinear damping is proportional
to the square of the displacement, so the damping is small for
small amplitudes of displacement and large for large am-
plitudes of displacement. The actual and approximate stiff-
ness and damping terms are plotted in Figure 2(a) and (b),
respectively, for k = 1 and l = 0.7. The figure shows that the
actual and approximate stiffness and damping terms are si-
milar for non-dimensional displacements, because the dif-
ference is less than 0.2. In the following analysis, the small
displacement (less than 0.2) approximations are valid. This is
not a severe restriction, as the displacements of a practical
system are unlikely to be 20% of the length of the horizontal
spring or damper. It is also assumed that the maximum value
of the excitation force is such that analytical results are valid
[4,24].
Applying the harmonic balance method [26] and assuming

a solution of the form x X( ) = cos( + ) yields

X X F( ) + 3
4 = cos , (3)2 3

e

X X F+ 1
4 = sin , (4)v h

3
e

where the terms containing cos(3 ) or sin(3 ) are ne-
glected. The amplitude-frequency relationship can be de-
rived from eqs. (3) and (4) as

X X X X F( ) + 3
4 + 2 + 1

2 = . (5)2 3
2

v h
3

2

e
2

This is a quadratic equation in Ω2 that can be solved to
yield

X X= + 3
4

1
2 2 + 1

21,2
2

v h
2

2

Figure 1 (Color online) Model of a single-stage HSLDS isolator.
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X F X X
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4 , (6)

e
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v h
2

4
2

v h
2

2
2 4

1/ 2 1/2

which are the two stable branches (called the resonance and
non-resonance branches) of the frequency response curve.
The non-dimensional transmitted force through the springs

and the dampers of the isolator, and the force is provided by

f x x x x x= 2 + 2 + + . (7)t v h
2 3

The transmitted force has the form F cos( + ),Tt where

F X X X= + 3
4 + 2 + 1

2 . (8)t
2

2
2

v n
2

2 1/ 2

The modulus of force transmissibility is determined by
T F F= / . (9)F t e

Thus, the magnitude of the transmissibility for the re-
sonance and non-resonance branches can be determined by
substituting the two solutions for 1,2 in eq. (6) into eq. (8)
and combining with eq. (9) to give

T

X X X

F=

+ 3
4 + 2 + 1

2
, (10a)F 1

2
2

1
2

v h
2

2 1/2

e

T

X X X

F=

+ 3
4 + 2 + 1

2
. (10b)F 2

2
2

2
2

v h
2

2 1/ 2

e

The peak transmissibility corresponds to the peak dis-
placement response, which can be determined by noting that
eq. (6) are equal at this frequency; hence,

F X X

X X X

+ 1
4 + 1

4

+ 1
4 + 3

4 = 0 . (11)

e
2

v h
2

4
2

v h
2

2
2 4

The solution to eq. (11) gives

{
( )

X

F

= 1
4 + + 1

4

3 2

/ 1
2

3
2 , (12)

max v
4

v
2

v
4

v
2

2

v
3

h v
2

v h e
2 1/2

v
3

h v
2

v h

1/2

The frequency at the maximum transmissibility can be
derived by substituting eq. (12) into eq. (6) to provide

F

F

= 1
2 + + 3

1
2 2 + 1

3 + + 3 . (13)

F max
2 e

2

v
2

1/2

v h
2 e

2

v
2

1/2 2 1/2

The maximum force that can be applied so the peak in the
response occurs at = 1 can be determined by rearranging
eq. (13) to provide

}( )

F = 1
4

4
3 (1 )

× 1
2

3
2 + 1

4

/ 3 2 , (14)

max v
4

v
2

2

v
3

h v
2

v h v
4

v
2

2

v
3

h v
2

v h
1/2

Figure 2 (Color online) Nonlinear parameters for the single-stage isolator for k = 1, l = 0.7, solid line: exact results; dashed line approximate results; (a)
nonlinear stiffness (including the vertical stiffness); (b) normalized nonlinear damping ratio.
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whereFmax is similar to the case when the isolator has a linear
rather than a nonlinear damping, which is discussed in ref.
[4]. The mathematical details for Fmax are given as follows
when the horizontal dampers are removed [4]

{ }( ) ( )F = 4
3 2 + 3 2 . (15)max

v
2

v
2 2

v
4

v
2

1/ 2

To investigate whether it is better to place the damper in
parallel with the vertical spring or if it is better to place
dampers in parallel with the horizontal springs, the force
transmissibilities for both cases are plotted in Figure 3. Also
shown for comparison is a faint grey line that represents the
transmissibility of the system with the horizontal springs and
dampers removed and with = 0.005v . For these simula-
tions, the amplitude of the excitation force is set so that
F F= 0.1 =0.0022e max , where Fmax represents the force that
causes the jump-down frequency to occur at = 1 when the
linear damping ratio is set to = 0.05v . Figure 3(a) shows
that the vertical damper is effective in reducing the response
around the resonance frequency, but the vertical damper
degrades the vibration performance at high frequencies. In
addition, Figure 3(b) shows that the horizontal dampers are
not as effective around the resonance frequency, but they do
not degrade the isolator performance at high frequencies in
the isolation region. Higher damping could, however, im-
prove the performance at resonance. Thus, horizontal dam-
pers offer a clear advantage compared to vertical dampers for
the low level of excitation considered. At higher amplitudes
of excitation or with higher damping, the horizontal dampers
may generate undesirable harmonics, as discussed in ref.
[25].

3 Two-stage vibration isolation system

3.1 Force transmissibility

Figure 4 shows a lumped parameter model of two-stage
nonlinear vibration isolation system. It consists of the sus-
pended mass, m1, and an intermediate mass, m 2. The upper
stage has horizontal springs, kh1, a vertical spring, kv1, a
horizontal linear viscous damper, ch1, and a vertical linear
viscous damper, cv1. The lower stage also has horizontal and
vertical springs and lower horizontal and vertical linear
viscous dampers. With the single-stage isolator, the vertical
and horizontal stiffness elements are considered together, but
the horizontal and vertical dampers are separately con-
sidered.
The system is excited harmonically with force fe(t)=

Fecos(ωt), and the matrix equation of the motion is given by

Mx + C x x + K(x)x = f( ) , (16)

where
m

mM =
0

0 ,1

2
{ }x

xx = ,1

2

F tf = cos( )
0

,e

x

c c x x
l x x

c c x x
l x x

c c x x
l x x

c c c x x
l x x

c x
l x

C( )=

+ 2 ( )
+ ( )

2 ( )
+ ( )

2 ( )
+ ( )

+ + 2 ( )
+ ( )

+ 2
+

,
v1

h1 1 2
2

1
2

1 2
2 v1

h1 1 2
2

1
2

1 2
2

v1
h1 1 2

2

1
2

1 2
2 v1 v2

h1 1 2
2

1
2

1 2
2

h2 2
2

2
2

2
2

x

k k l
x x l

k k l
x x l

K( ) =

+ 2 (1
( ) +

)

2 (1
( ) +

)

v1 h1
01

1 2
2

1
2

v1 h1
01

1 2
2

1
2

Figure 3 (Color online) Comparison of the effects of linear and nonlinear damping on the force transmissibility for high-static-low-dynamic-stiffness
isolation, for k = 1, F F= 0.1 =0.0022e max , and l = 0.7; (a) horizontal damping = 0h and vertical damping is changed; solid line, = 0.005v ; dashed line,

= 0.05v ; and dotted line, = 0.1v ; (b) vertical damping = 0v and horizontal damping is changed; solid line, = 0.05h ; dashed line, = 0.5h ; and dotted line,
= 1h . The faint grey line represents the linear isolator that only has vertical stiffness and damping with = 0.005v .
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k k l
x x l

k k l
x x l

k k l
x l

2 1
( ) +

+ 2 1
( ) +

+ + 2 1
+

v1 h1
01

1 2
2

1
2

v1 h1
01

1 2
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1
2

v2 h2
02

2
2

2
2

and lo1 and lo2 represent the initial lengths of the horizontal
springs, and l1 and l2 represent their lengths when they are in
the horizontal position in upper and lower stages, respec-
tively. With the single-stage isolator, approximations are
made for small amplitudes. Also, setting l1=l2, eq. (16) can be
written in a non-dimensional form as

Mx + C x + C x x + K x x = f( ) ( ) , (17)^
v n

where µM = 1 0
0 ,

x
xx = ,1

2

Ff = cos( )
0

,^ e

x

x x x x
x x x x x

K( ) =

+ ( ) ( )

( ) + + ( ) +
,1

2
1 1 2

2
1
2

1 1 2
2

1
2

1 1 2
2

1
2

2
2

1 1 2
2

2 2
2

x
x x x x
x x x x x

C ( ) = 2
( ) ( )

( ) ( ) +
,n

n1 1 2
2

n1 1 2
2

n1 1 2
2

n1 1 2
2

n1 2
2

( )
( )

( )

c m

c m l l
c m c m

l l k l l
k k l l k k k

k k k k k k k l l

k l l µ m m F F k l

t k m x x l
x x l l l l l l

C = 2
+

,  = / (2 ),

= / (2 ),  = (1 ) / ,
= / (2 ),  = / (2 ),

= (1 ) / ,  = 1 2 (1 ) / ,

= 1 + 2 (1 ) / ,  = / ,

= / ,  = / ,  = 1 / ,

= 1 / ,  = / ,  = / ,

= / ,  = ,  = / ,  = / ,

= / ,  = / = / ,  ( ) = d( ) / d .
n

v
v1 v1

v1 v1 v2
v1 v1 1 n

h1 h1 1 n n1 h1
2 2

v2 v2 1 n h2 h2 1 n

n2 h2
2 2

1
2

h1

2
2

v2 h2 h1 h1 v1

v2 v2 v1 h2 h2 v1 1 h1
2 3

2 h2
2 3

2 1 e e v1 1

n n v1 1
1/2

1 1 1

2 2 2 1 o1 2 o2

The harmonic balance method is used to determine the
transmissibility in a similar manner as that for the single
stage isolator. The non-dimensional responses of the two-
stage isolator are assumed to have the form of

x
x

X
X

( )
( )

=
cos( + )
cos( + )

 , (18)X

X

1

2

1 1

2 2

The resulting amplitude-frequency matrix equation is gi-
ven by

X
X

(K M)X C X A
C X A = F
( ) +

+ ( ) , (19)
X v X

X X

2

n

where
X

X
X =

0
0

,1

2
A = 0 1

1 0 , FF = 0
0 0

,e

C=
cos sin
cos sin

,  = 2
+

,X
X X

X X

v v

v v v

1 1

2 2
v

1 1

1 1 2

X

X X X X

X X X X X

C ( ) =

2
1
4 ( + 2 ) 1

4 ( + 2 )
1
4 ( + 2 ) 1

4 ( + 2 ) + 1
4

,

n

n1 1
2

2
2

n1 2
2

1
2

n1 1
2

2
2

n1 2
2

1
2

n2 2
2

X

X X X X

X X X X X
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+ 3
4 ( 2 ) + 3

4 ( + 2 )
3
4 ( 2 ) + 3

4 ( +2 )+3
4

.
1
2

1 1
2

2
2

1
2

1 2
2

1
2

1
2

1 1
2

2
2

1
2

2
2

1 2
2

1
2

2 2
2

Assuming the non-dimensional force transmitted is given
by f F( ) = cos( + )t t T , the magnitude of the force can be
determined from:
F X

X
K X C X A

C X A
= ( ) +

+ ( ) , (20)
F F

F

t t t tv

tn

where X k k l k X lK ( ) = 0 2 (1 ) + / ,t v2 h2 h2 2
2

X XC C= 2 0  ( ) = 2 0 1
4 ,

= cos sin .

tv v2 tn h2 2
2

t T T

The force transmissibility is given by T F F= / ,F t e and this
can be determined by substituting the forces from eqs. (19)
and (20).

3.2 Numerical validation

The analytical results for the force transmissibility are ap-
proximately derived in this manuscript. The solid lines in
Figure 5 plot the force transmissibility of the two-stage
HSLDS isolation system with both heavy damping and light
damping. The approximate analytical results are compared
with the numerical results via direct numerical integration of

Figure 4 (Color online) Model of a two-stage HSLDS isolator.
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the equation of motion at each frequency of excitation. The
‘o’ in Figure 5 represents the numerical solution for both
increasing and decreasing frequency. The analytical and the
numerical results perfectly agree in the stable portions for
both heavy damping and light damping. To determine whe-
ther the method of harmonic balance correctly captures the
dynamic behavior of the parameters chosen, the frequency
response curves (FRC) of the two masses are plotted in
Figure 6(a) and (b) with the numerical results via the Runge-
Kutta scheme [27–31]. The figure shows that there is rea-
sonable agreement, and the method of harmonic balance can

be used for further investigation of the dynamic behavior.

3.3 Analysis of the different parameters

The force transmissibilities of the two configurations for the
two-stage vibration isolators are shown in Figure 7 for an
excitation force that is set to the same value as for the single-
stage isolator, i.e., F = 0.0022e and l = 0.7, µ = 0.2,

k k k= = = 1v2 h1 h2 . Also shown for comparison is a faint grey
line, which is the transmissibility of the system with the
horizontal springs and dampers removed, and with

= = 0.005v1 v2 . Figure 7(a) illustrates the effects on the
force transmissibility for the system that only has vertical
damping in both stages. The figure shows that although the
damping is effective at reducing the transmitted force at the
resonance frequencies, the damping is detrimental to the
isolation performance at high frequencies, as discussed in
ref. [11]. In addition, Figure 7(b) shows the effects of using
only horizontal damping in the two-stage isolator. Similar to
the performance of the single-stage isolator, the damping is
less-effective at reducing the response at the resonance fre-
quencies, but the damping does not degrade the isolation
performance at high frequencies.
The effects of the nonlinear stiffness and mass ratio are

investigated when the two-stage isolator only has horizontal
damping fixed at = = 0.05h1 h2 . Figure 8(a) shows the ef-
fect on force transmissibility when nonlinear stiffness is
changed by changing of horizontal stiffness in the two-stage
isolator. The figure shows that as the peaks of the force
transmissibility shift to lower frequencies, the isolation re-
gion is extended to lower frequencies. Figure 8(b) shows the
variations of the force transmissibility against the mass ratio.
In particular, the second peak shifts to lower frequencies, but
the first peak remains at almost the same frequency. The

Figure 5 (Color online) Comparison of force transmissibility between
HBM and numerical method. The parameters are l = 0.7, F = 0.0022e ,
µ = 0.2, k = 1v2 , k = 1h1 , k = 1h2 . HBM solution: stable solution (solid line),
unstable solution (dashed line). Numerical solution: black ‘o’. Light
damping = = 0.005v1 v2 , = = 0.005h1 h2 . Heavy damping = = 0.5v1 v2 ,

= = 0.5h1 h2 .

Figure 6 (Color online) The frequency response curve (FRC) of the two masses in the HSLDS isolation system with damping nonlinearity. The parameters
are the same as the parameters in Figure 5. (a) FRC of m1, (b) FRC of m2. HBM solution: stable solution (solid line), unstable solution (dashed line).
Numerical solution: black ‘o’.
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magnitude of force transmissibility is significantly reduced
at high frequencies.

4 Conclusions

This article shows the effects of using nonlinear stiffness and
damping in a single-stage and a two-stage vibration isolator.
The type of stiffness was of the HSLDS type, and all non-
linearities were introduced by the geometrical configuration.
The dampers were either aligned with the direction of ex-
citation or orthogonal to the direction of excitation. The re-
sults show the HSLDS was advantageous in all cases,
allowing the frequency range of isolation to be extended to
low frequencies without compromising the static stiffness.
Concerning the damping elements, the linear viscous

damping which was aligned in the direction of the force
excitation had good performance at the resonance fre-
quencies, but the linear viscous damping was detrimental to
the isolation performance at high frequencies. This con-
trasted with the dampers that were aligned orthogonally to
the direction of the force excitation, because they performed
well at high frequencies.
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Figure 8 (Color online) Comparison of the force transmissibility of the two-stage nonlinear isolator with different nonlinear stiffness or the mass ratio, and
the vertical damping and horizontal damping are fixed at = = 0v1 v2 . The parameters are the same as the parameters in the previous figures, = = 0.05h1 h2 .
(a) Effects of the nonlinear stiffness (k h1,k h2). Solid line, k k= = 0.2h1 h2 ; dashed line, k k= = 0.6h1 h2 ; and dashed-dotted line, k k= =1h1 h2 . (b) Effects of the
mass ratio µ. Solid line, µ = 0.2; dashed line, µ = 0.6; and dashed-dotted line, µ=1.

Figure 7 (Color online) Illustration of the effects on the force transmissibility of the two-stage nonlinear isolator if the upper and lower vertical damping
( v1, v2) and the upper and lower horizontal damping ( h1, h2) are changed. The parameters are the same as the parameters in the previous figures: (a) only
vertical damping; solid line, = = 0.005v1 v2 ; dashed line, = = 0.01v1 v2 ; and dashed-dotted line, = = 0.02v1 v2 ; (b) only horizontal damping; solid line,

= = 0.05h1 h2 ; dashed line, = = 0.5h1 h2 ; and dashed-dotted line, = =1h1 h2 . The faint grey line represents a linear isolator that only has vertical stiffness
and damping with = = 0.005v1 v2 .
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