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Abstract This contribution deals with fast Earth–Moon
transfers with ballistic capture in the patched three-body
model. We compute ensembles of preliminary solutions us-
ing a model that takes into account the relative inclination of
the orbital planes of the primaries. The ballistic capture or-
bits around the Moon are obtained relying on the hyperbolic
invariant structures associated to the collinear Lagrangian
points of the Earth–Moon system, and the Sun–Earth system
portion of the transfers are quasi-periodic orbits obtained
by a genetic algorithm. The trajectories are designed to be
good initial guesses to search optimal cost-efficient short-
time Earth–Moon transfers with ballistic capture in more re-
alistic models.

Keywords Earth–Moon transfers · Invariant manifolds ·
Genetic algorithms · Ballistic capture orbits

1 Introduction

The modern trend of reducing the cost of space missions
influences every aspect of their design, starting from the se-
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lection of suitable spacecraft transfer trajectories and orbits.
In this context, multi-body low-cost trajectories are impor-
tant assets for continued space exploration with affordable
budgets, and have been employed by an increasing number
of missions, notwithstanding their design and optimisation
are more complex than the patched conics approach and re-
quire a combination of dynamical systems theory and global
and local optimisation techniques.

Particularly, in the case of Earth–Moon mission design,
while direct transfers are very demanding in terms of cost
(i.e., high change in velocity which translates into high pro-
pellant mass fraction), multi-body gravitational dynamics
generate low-cost trajectories and allow new mission pro-
files other than the ones obtained by using the traditional
conics solutions.

For example, the rescue trajectory for JAXA’s Hiten mis-
sion to the Moon was enabled by the hyperbolic invariant
manifolds of the Lagrangian points of Earth–Moon and the
Sun–Earth systems (Belbruno and Miller 1990, 1993; Koon
et al. 2000, 2001; Sousa Silva and Terra 2012; Topputo
et al. 2005). More recently, the two spacecrafts of NASA’s
GRAIL mission also reached the Moon using invariant tubes
(Chung et al. 2010) and the ARTEMIS mission probes nav-
igated into orbit around the Earth–Moon system Lagrangian
points (Sweetser et al. 2011; Folta et al. 2012, 2014).

In order to take advantage of the dynamics of the pla-
nar Circular Restricted Three-Body Problem (CRTBP), the
restricted four-body system Sun–Earth–Moon–Spacecraft
(SC) is decomposed into two CRTBP: the Sun–Earth–SC
(SE) and the Earth–Moon–SC (EM) systems. This approx-
imation, known as the patched three-body approach, pro-
vides preliminary solutions that can be used as initial guess
for a numerical procedure that converges to a full four-body
solution (Gómez et al. 2004; Koon et al. 2006).
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The standard transfers found using this approach are
low-energy solutions that require long transfer time, usually
more than 100 days. The long time of flight, tof , is due to
the fact that the transfer trajectories are formed by manifold
guided solutions, namely, non-transit orbits associated to a
Lyapunov orbit around L1,2 of the SE system and transit or-
bits associated to a Lyapunov orbit around L2 of the EM
system.

Recently, alternative short-transfer-time solutions have
been shown to exist in the ideal patched three-body approxi-
mation connecting quasi-periodic orbits on two-dimensional
tori of the SE system with L1 or L2 transit solutions of
the EM system. By replacing the non-transit orbits in the
first part of the transfers by quasi-periodic orbits around the
Earth in the SE system, tof is reduced to about 10 days, while
still providing ballistic capture at Moon arrival (Sousa-Silva
and Terra 2014, 2016).

This contribution deals with obtaining ensembles of tra-
jectories in a variation of the patched three-body approxi-
mation, that takes into account the relative inclination of the
orbital planes of the primaries, that are designed to be good
initial guesses to search optimal fast Earth–Moon transfers
with ballistic capture in more refined models.

The paper is organized as follows: Sect. 2 describes the
mathematical model, the alternative invariant transfers ex-
ploited in our approach and the patched three-body approach
with tilted planes. In Sect. 3, a strategy to detect ballistic
capture solutions in the EM system is proposed. Specifically,
a sequence of numerical experiments based on hyperbolic
invariant sets of the mathematical model is introduced to
obtain ballistic capture solutions satisfying design require-
ments. Then, in Sect. 4, the SE dynamics is explored in an
optimisation problem to produce fast low-cost EM transfers
with different perigee altitudes. An overview of the full EM
trajectories is presented in Sect. 5. Conclusions are made in
Sect. 6.

2 Mathematical model of the four-body
system

To a first approximation, the Sun–Earth–Moon–SC can be
modeled as two coupled coplanar CRTBPs: the SE and
the EM systems (Koon et al. 2000, 2001). So, in Sect. 2.1
we describe the dynamic equations of the CRTBP. Then in
Sect. 2.2 we briefly review the patched three-body approxi-
mation and finally, in Sect. 2.3 we introduce a patched three-
body approximation with tilted planes.

2.1 The circular restricted three-body problem

In the CRTBP, the equations of motion of a spacecraft in the
gravitational field of two primaries P1 and P2 are given by

ẍ − 2ẏ = Ωx,

ÿ + 2ẋ = Ωy,

z̈ = Ωz,

(1)

where Ω is the effective potential given by

Ω(x,y, z) = x2 + y2

2
+ 1 − μ

r1
+ μ

r2
+ μ(1 − μ)

2
, (2)

with r2
1 = (x+μ)2 +y2 +z2 and r2

2 = (x−1+μ)2 +y2 +z2

being the square of the dimensionless distances from the
spacecraft to P1 and P2 respectively, where μ, the normal-
ized mass of P2, is the mass parameter of the system. We
recall that μ = m2/(m1 + m2), where m1 and m2 are, re-
spectively, the masses of P1 and P2, and that the distance
from P1 to P2 is normalized to one (Szebehely 1967).

The primaries are assumed to be in circular orbits around
their common center of mass and are not affected by the
spacecraft. The system of Eq. (1) refers to the synodic di-
mensionless frame, that rotates with P1 and P2, with origin
at the barycentre of the primaries, considering the usual di-
mensionless unit. The primaries, P1 and P2, are located, re-
spectively, at (−μ,0,0) and (1 − μ,0,0) and their orbital
period with respect to an inertial frame with origin at the
barycentre of the primaries system is 2π .

The Jacobi integral is given by

J (x, y, z, ẋ, ẏ, ż) = 2Ω(x,y, z) − (
ẋ2 + ẏ2 + ż2) = C, (3)

and the system has five equilibrium points: L1, L2, and L3,
located on the x-axis, and L4 and L5, located at (−μ +
1/2,∓√

3/2). The values of C at the equilibrium points de-
fine the five possible Hill region configurations, correspond-
ing to distinct transport possibilities through phase space. In
the EM system, the value of C at L1 is C1 = 3.20034491.

If the motion of the spacecraft is restricted to the orbital
plane of the primaries, z(t) = ż(t) = z̈(t) = 0, so the last
line of Eq. (1) is suppressed and the phase space is four-
dimensional. Moreover, the motion of the spacecraft is re-
stricted to a three-dimensional surface due to the energy-like
integral. Then the model reduces to the planar CRTBP.

2.2 Earth–Moon transfers in the patched
three-body approach

The patched three-body approximation was introduced in
Koon et al. (2000, 2001) to take advantage of the dynamical
structure of the CRTBP to obtain preliminary solutions of re-
stricted four-body systems to be later refined into more pre-
cise models (Koon et al. 2006). In Gómez et al. (2004) the
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results obtained by patching CRTBPs were extended to the
spatial case. The key difficulty in using two spatial CRTBPs
consists in finding trajectories inside the intersections of in-
variant manifolds of higher dimension (Parker and Lo 2005;
Parker 2006; Zanzottera et al. 2012; Anderson and Parker
2012; Parker and Anderson 2014).

Patched three-body Earth–Moon transfers are two-piece
solution arcs that connect an initial geocentric orbit to a final
selenocentric orbit. The first arc consists of a non-transit or-
bit associated to a Lyapunov orbit Γ of the SE system, that
is, an orbit that departs from the Earth following the stable
manifold Ws associated to a Lyapunov orbit Γ around ei-
ther LSE

1 or LSE
2 , approaches Γ and then goes back to the

EM system region following the unstable manifold Wu of
the same orbit. On the other hand, the second arc is a transit
orbit associated to a Lyapunov orbit Γ of the EM system,
namely, a solution inside the stable tube of a periodic orbit
around LEM

2 (Belbruno and Miller 1990; Koon et al. 2000,
2001). The transfers obtained are low energy transfers with
long transfer times, of the order or 90 days.

However, there are alternative solutions in the planar
patched three-body approach which connect quasi-periodic
orbits on two-dimensional tori of the SE system with both
LEM

1 or LEM
2 (Sousa-Silva and Terra 2014, 2016). In this

case, the transfer times reduce to about 10 days, while the
�v increases with respect to the standard patched three-
body solutions.

2.3 Patched three-body approach with tilted planes

The orbit of the Moon around the Earth is inclined by about
5.1◦ with respect to the ecliptic plane, which is defined as
the plane of the mean motion of the Earth around the Sun,
and crosses the ecliptic in two points, the lunar nodes, as
depicted in Fig. 1.

Fig. 1 Schematic representation of tilted EM and SE systems. We re-
mark that γ is defined with respect to the inertial SE frame, which
coincides with the synodical SE frame at the initial instant of time

The plane of the lunar orbit precesses with a period of
18.612958 years, but this motion is neglected due to being
considerably slow compared to Earth–Moon transfer times.

In this work, we include this inclination between the two
planar systems. As the duration of a transfer orbit will not
exceed a few days, we will assume that the direction of the
line of nodes is constant with respect to the inertial SE sys-
tem. Moreover, for our purposes, the x-axes of the SE syn-
odical system and of the SE inertial system coincide at the
origin of time. So, the direction of the line of nodes is given
by γ , the angle that departs from the axis connecting the Sun
and the Earth at the initial instant of time, as shown in Fig. 1.
As the dynamics of both systems are assumed to be planar,
the patching point of the complete EM transfer is on the line
of nodes.

The direction of the line of nodes can be chosen based
on ephemeris data to have a date with a convenient config-
uration of the primary bodies. For example, just to consider
a concrete case, γ0 = 1.9495 rad corresponds to an epoch
t0 = 6504.3 MJD2000 (i.e., October 22, 2017, 19:11), with
ϕSE

0 , the angle between the direction of the vernal equinox
and the x-axis of the SE synodical system at the origin of
time, is 0.5163 rad.

Thus, departing from the leg of the trajectory in the
EM planar barycentric synodic frame, we apply a sequence
of geometric transformations that lead to the SE planar
barycentric synodic reference frame. This set of transforma-
tions is detailed in the Appendix and includes a clockwise
rotation around the EM z-axis, a translation of the origin
from the EM barycenter to the Earth position, a generic ro-
tation around the line of nodes N̂ of the angle i = 5.145◦,
a scaling transform from the EM to the SE system, a trans-
lation of the origin from the Earth to the barycenter of the
SE system, and finally a rotation around the SE z-axis of
tSE . The direction of the line of nodes is given by N̂ =
(cos(γ0), sin(γ0),0).

Another angle is required to describe the involved geom-
etry, namely, ϕEM = β + γ , which represents the phase of
the EM system with respect to the SE system. However it is
worth underlining that this angle does not coincide, in gen-
eral, with the angle between xSE and xEM due to the incli-
nation of the EM system with respect to the SE system.

In this work, the mass parameters of the EM and of the SE
systems are, respectively, μEM = 1.21506683 × 10−2 and
μSE = 3.03591 × 10−6. It is worth noting that μSE includes
the mass of the Moon along with the mass of the Earth, so, in
effect, the SE system corresponds to the Sun–(Earth–Moon)
PCRTBP. For the scaling transformation, we use the Moon’s
average distance to Earth dEM = 3.8440 × 105 km, and the
Earth’s average distance to the Sun dSE = 1.4960 × 108 km.
The scaling of time is given by tSE = (tEM/ωM)ωE , with
ωM = 2.6617 × 10−6 rad/s and ωE = 1.99095 × 10−7 rad/s.
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Fig. 2 Setup of the numerical experiments of the EM system with the
relevant dynamical invariant sets

3 Earth–Moon portion of the transfer

In order to find preliminary transfers in the patched three-
body approximation with tilted planes, the first task is to
assess transit orbits of the EM system to define the energy
levels that provide natural capture with long-time of perma-
nence around the Moon and adequate capture profiles.

Unlike the traditional Poincaré section approach of find-
ing a single point simultaneously inside the manifold tubes
of the EM system and outside the tubes of the SE system, we
perform two numerical experiments that detect an ensemble
of possible capture solutions.

Figure 2 illustrates the setup of the numerical experi-
ments. First, we define two Poincaré sections which allow
the throughout exploration of the four-dimensional phase
space subjected to a fixed value of C corresponding to a
given level of energy of the EM system. Let Σ1 be the sec-
tion given by x = 0.75, ẋ > 0, located at the left side of
LEM

1 , with xLEM
1

= 0.8369. Also, let Σ2 be the section given

by x = xMoon
EM = 1 − μEM , ẋ > 0.

For the first numerical experiment, we compute 200 Lya-
punov orbits around LEM

1 with values of the Jacobi con-
stant starting from Ci = 3.20034490 and reaching Cf =
3.02043948 by continuation, where Ci is just below CEM

1 =
3.20034491, which is the energy level at which the neck
around LEM

1 opens and transit between the Earth and the
Moon realm becomes possible. Then, we grow the outer
branch of the stable manifold, Ws

o , associated to each
Γ (LEM

1 ) until the trajectories on the manifold reach the
Poincaré section Σ1.

For each value of C, the smallest rectangle in the (y, ẏ)

plane that contains the cut of Ws
o of Γ (LEM

1 ) in Σ1 is dis-
cretized in a grid of 500 × 500 points. The two-dimensional

grid of points defined at Σ1, with ẋ determined by the value
of C, corresponds to initial conditions (ICs) to be assessed
in order to find trajectories that are ballistically captured by
the Moon in a short time. Depending on the value of C,
a given pair (y, ẏ) with constant x = 0.75 could render
ẋ2 = 2Ω(x,y) − C − ẏ2 < 0 so that this point does not cor-
respond to a feasible initial condition.

Finally, each feasible initial condition is evolved forward
and classified into one of the following sets before a maxi-
mum integration time, tmax, is reached.

Set G (good): ICs of trajectories that cut Σ2 twice, with
both cuts inside the lunar SOI, and with perilune between
the first and second cuts with altitude between 100 km and
400 km.

Set L (low): ICs of trajectories that cut Σ2 twice, with both
cuts inside the lunar SOI, and with perilune between the
first and second cuts with altitude above 0 km and below
100 km.

Set H (high): ICs of trajectories that cut Σ2 twice, with
both cuts inside the lunar SOI, and with perilune between
the first and second cuts with altitude above 400 km.

Set C (collisional): ICs of trajectories that collide with the
surface of the Moon (considering the lunar mean radius of
1738 km) before cutting Σ2 twice, or before escaping the
lunar SOI.

Set O (outside the lunar SOI): ICs of trajectories that cut
Σ2 outside the lunar SOI or that leave the lunar SOI be-
fore cutting Σ2 twice.

In this numerical experiment, tmax was set to 180 days to
allow that all the trajectories are classified into one of these
five sets, but the numerical integration is terminated once the
trajectory is classified. A variable step size Runge–Kutta–
Fehlberg 7th–8th order solver (Stoer and Bulirsch 2002)
with relative error under 10−14 and absolute error under
10−15 is used to integrate the trajectories in all numerical
experiments.

Figure 3 shows the result of the first numerical experi-
ment for C = 3.19065379. The ICs on the grid are coloured
according to the classification of the trajectories and the cut
of Ws

o of Γ (LEM
1 ) is also shown. Trajectories in set G are the

ones most likely to meet mission requirements for final or-
bits around the Moon. Plots such as this for different values
of C provide a way of locating possible capture trajectories
inside the tubes, thus reducing the amount of ICs that have
to be further investigated to search for full transfers.

The experiment can be performed for a large number of
values of C because the classification criteria soon excludes
the trajectories that escape the lunar region or that fail to
cut Σ2 inside the lunar SOI. Fig. 4 shows the ratio of the
number of ICs in each of the five sets to the total number of
possible ICs in the grid for C ranging from C = 3.19583690
to Cf , with colours corresponding to the five possible sets:
G (blue), L (cyan), C (red), H (green), O (grey).
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Fig. 3 Sets G (blue), L (cyan), C (red), H (green), O (grey) in Σ1 for
C = 3.19065379. The cut of Ws

o of Γ (LEM
1 ) in Σ1 is shown in black

For C > 3.19583690, the inner branch of the unstable
manifold of the Lyapunov orbit around LEM

1 in the energy
level does not come close enough to the Moon, so sets G, L,
and C are empty. Set G is populated when C ≤ 3.19583690
and the maximum relative amount of ICs in the G set occurs
to C = 3.19181175. Starting with the highest value of C,
that is, the far right side of the plots in Fig. 4, set H starts
with the largest relative amount and set O becomes domi-
nant for C ≤ 3.18264673. As C → Cf , the population of
set H decreases. Also, for Cf nearly 80% of the ICs belong
to set O, giving trajectories that do not come near the Moon
or that fail to circle it before escaping its sphere of influ-
ence. On the other hand, for Cf about 17.5% of the initial
conditions give trajectories that collide with the surface of
the Moon before piercing Σ2 twice.

This numerical experiment allows to reveal the qualita-
tive behaviour of relevant quantities along the set. For ex-
ample, Fig. 5(a) shows the ICs in sets H, G, and L coloured
with the altitude at first periapsis that occurs between the
two first cuts at Σ2 C = 3.19065379. As a rule, as the en-
ergy increases, i.e., C → Cf , the accessible region around
the Moon also increases, as does the altitude of the first pe-
riapsis of temporarily captured trajectories.

The time of flight from Σ1 to the perilune is also a rel-
evant parameter as it quantifies the time to go from a po-
tential patching point (roughly an approximate patching re-
gion near Σ1) to a ballistic-capture state around the Moon.
It is convenient that this time is as short as possible. Fig-
ure 5(b) presents the time of flight for different values of
C = 3.19065379. For all values of C considered in this ex-
periment, it is possible to find trajectories that reach an os-
culating perilune in less than 10 days.

The results so far allow to reduce the number of candidate
ICs to ballistic capture solutions by ensuring the selection of

Fig. 4 Ratio of the number of ICs in each set to the total number of
possible ICs in the grid for 180 different values of C, from Cf to
C = 3.19583690. (a) Sets C (red), H (green), and O (grey). (b) Sets G
(blue) and L (cyan)

trajectories that perform at least one full revolution around
the Moon without colliding.

Next, a second numerical experiment is performed. We
consider the substantially reduced subset of ICs in Σ1 that
belong to G and L and that produce trajectories with per-
ilune altitude between 90 and 400 km. These ICs are in-
tegrated until one of the following conditions is satisfied:
(i) the spacecraft escapes the lunar region; (ii) the spacecraft
collides with the Moon; (iii) final integration time, tmax, is
reached. Again, tmax was set to 180 days. We remark that
we considered this altitude range because it corresponds to
typical values in practical missions, but any other adequate
choice could be taken.

As an example, consider the result of the second numer-
ical experiment for C = 3.19065379, shown in Fig. 6. The
colour bar corresponds to the interval of time that the space-
craft remains in lunar temporary capture, counting from the
perilune that occurs between the first and second cuts of Σ2

until escape is detected. In the plot, the green up triangles
show the points which correspond to trajectories that remain
around the Moon for more than 90 days and the magenta
down triangles show the location of the trajectories that only
escape after more than 120 days.

For C = 3.19065379, the global scanning of the long-
time analysis reveals that 25% of the ICs originate trajec-
tories that collide with the Moon. From the remaining ICs,
85.6% of the trajectories remain bounded to the Moon for
over 30 days, of which 5.3% remain in orbit around the
Moon for over 90 days. From those, over 16% escape after
more than 120 days. For this value of C, the ratio of escap-



210 Page 6 of 11 P. Sousa-Silva et al.

Fig. 5 (a) Sets H, G, and L coloured with the altitude at the first peri-
apsis for C = 3.19065379. (b) Time of flight from Σ1 to first perilune
for sets G and L

ing trajectories to collisional trajectories is approximately 2,
and only five solutions satisfy condition (iii).

All the trajectories generated by the numerical analyses
presented fulfill ballistic capture with predefined distance
and permanence requirements around the Moon. Thus, the
procedure described here represents a good substitute to the
standard procedure described in literature which consists in
successively finding a connecting point in a Poincaré plane
and only then integrating each single solution to check for
its properties around the Moon.

Indeed, the analyses allow to identify an interval of C val-
ues, namely, 3.19343981 ≤ C ≤ 3.18686228 with the best
candidates, i.e., orbits with the longest capture time and the
best profiles in the configuration space. After delimiting this
range of C, we performed a final refinement on the perilune
altitude, considering only values from 90 to 200 km, and ob-
tained 990 capture trajectories that remain around the Moon
for longer than 60 days, five of which, remain bounded for
more than 180 days. Moreover, 2,853 solutions with escape
time between 40 and 60 days were found for the grid consid-
ered. All this selected candidates were transported to the SE
system to look for patching possibilities with quasi-periodic
orbits around the Earth to provide low-cost short-time Earth-
to-Moon transfers.

Fig. 6 Subset of ICs in G ∪ L with perilune altitude between 90 and
400 km coloured with the time interval (in days) between the perilune
and escape detection, for C = 3.19065379. The green up triangles cor-
respond to trajectories that remain around the Moon for more than 90
days, while the magenta down triangles correspond to trajectories with
escape time exceeding 120 days

4 Sun–Earth portion of the transfer

In this section we discuss how to find the SE portion of a
complete transfer for the set of suitable EM capture orbits
identified in Sect. 3 by solving a multiobjective optimisation
problem with a genetic algorithm.

4.1 Patching procedure

First of all we define a patching region outside but near the
lunar SOI. For each capture orbit the points along the tra-
jectory with distance to Moon ranging from ≈91,429 km to
70,000 km are considered as candidate patching states.

Each candidate patching state is transformed from the
EM system to the SE system. For a given value of γ0, ϕEM

0
is computed to yield null z coordinate in the SE reference
frame to have the patching point at the line of nodes.

Fixing the origin of time at the patching point, a backward-
time integration in the SE system defines the trajectory, from
the patching point to Earth approach. The total cost of the
transfer is �vt = �v1 + �v2, where

�v1 =
√

v2
0 + v2

i − 2v0vi cos(θ)

is the magnitude of the change in velocity needed to depart
from a circular orbit around the Earth with velocity v0 into
the SE arc of the transfer which is a solution of the planar
CRTBP with velocity vi at the intersection between the solu-
tions, and θ is the angle between v0 and vi . Moreover, �v2 is
the magnitude of the velocity change given at the matching
point between the SE and the EM legs. The z-component of
�v2, δż, is computed so that the resulting SE state has null
velocity in the z-direction, rendering the SE dynamics to be
purely planar. The other two components of �v2, δẋ and δẏ,
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Fig. 7 Pareto fronts obtained with the NSGA-II (10 best solutions) pre-
senting �vt (km/s) versus he (km)

are free parameters of the patching procedure to be defined
according to the optimal problem to be solved.

4.2 Setting up the optimisation procedure

We employed the Nondominated Sorting Genetic Algorithm
II (NSGA-II) (Deb et al. 2002) to obtain optimal SE-leg
solutions. Starting from a randomly generated initial pop-
ulation, this fast and elitist multiobjective genetic algorithm
capable of dealing with constrained problems, creates the
following generations by using genetic operators, crossover
and mutation, with the introduction of a fast nondominated
sorting approach based in a ranking strategy and a distance
metric used to preserve the diversity of the population.

Given one EM trajectory, the following optimisation
problem is defined: minimise (�vt , he) subject to the con-
straint 100 km ≤ he ≤ 1,000 km, with δẋ ∈ [−0.06,0.06],
δẏ ∈ [−0.06,0.06], τ ∈ [0,1] and free time of flight. The
parameter τ is related to the time of flight of the patching
point along a given capture trajectory.

4.3 Results

Each run of NSGA-II requires one specific EM trajectory,
that defines the patching point in position and velocity. The
GA was run for all ballistic capture trajectories that remain
in lunar orbit for more than 60 days with 3.19343981 ≤ C ≤
3.18686228 (990 solutions detected by the dynamical anal-
ysis of Sect. 3). Each EM trajectory provides one Pareto
curve. We have considered a fixed value of γ0 = 1.9497 rad,
and arbitrarily chosen to work with the descending node,
given that both nodes result in the same cost and in the same
time of flight.

Figure 7 shows the ten best Pareto curves obtained from
these solutions. In this scale, they are not visually distin-
guishable, so some details are shown in the magnification

Table 1 Sample optimised full Earth–Moon transfers for he ≈ 167 km
and escape time after perilune greater than 60 days

# �vt

(km/s)
�v2
(km/s)

tof
(days)

tSE
(days)

tEM
(days)

hm

(km/s)
tesc
(days)

1 3.7250 0.5862 10.56 3.32 7.24 99.97 63.01

2 3.7253 0.5867 10.59 3.34 7.25 153.45 87.85

3 3.7254 0.5866 10.57 3.32 7.25 143.91 74.25

4 3.7257 0.5870 10.18 3.32 6.86 118.58 160.99

Table 2 Sample optimised full Earth–Moon transfers for he ≈ 600 km
and escape time after perilune greater than 60 days

# �vt

(km/s)
�v2
(km/s)

tof
(days)

tSE
(days)

tEM
(days)

hm

(km/s)
tesc
(days)

1 3.6117 0.5789 10.56 3.33 7.23 99.96 63.01

2 3.6119 0.5792 10.57 3.33 7.24 153.45 87.85

3 3.6118 0.5793 10.58 3.33 7.25 143.91 74.26

4 3.6123 0.5798 10.19 3.33 6.86 118.58 160.99

Table 3 Sample optimised full Earth–Moon transfers for he ≈
1,000 km and escape time after perilune greater than 60 days

# �vt

(km/s)
�v2
(km/s)

tof
(days)

tSE
(days)

tEM
(days)

hm

(km/s)
tesc
(days)

1 3.5155 0.5726 10.59 3.35 7.24 99.96 63.01

2 3.5158 0.5728 10.57 3.33 7.24 153.45 87.85

3 3.5159 0.5730 10.60 3.35 7.25 143.91 74.25

4 3.5163 0.5734 10.19 3.32 6.87 118.58 160.99

plotted in the inset. Each point in the Pareto front corre-
sponds to a feasible complete transfer solution with ballistic
capture in the tilted patched three-body model. In Tables 1,
2, and 3, we present sample complete transfers with their
properties.

In Table 1, the transfer solutions have perigee altitude
he = 167 km. In Tables 2 and 3, he is, respectively, 600 km
and 1,000 km. In all tables, hm stands for the altitude of the
first perilune following ballistic capture and tesc is the time
of permanence around the Moon after the first perilune.

The trajectories labelled #1, #2, and #3 in Table 1 were
extracted from the Pareto curves of Fig. 7 by choosing non-
dominated solutions in the curves with he ≈ 167 km and
integrating the SE arc from the patching point p

p
τ along the

EM solution translated into the SE synodic frame, after ap-
plying �v2 and computing the angle ϕEM

0 to have planar
motion in the SE system. The same applies to trajectories
#1, #2, and #3 of Tables 2 and 3. Additionally, three tra-
jectories labeled #4 are included among the samples. Even
though they are not in the ten best Pareto curves, they have
similar cost to solutions #1, #2, and #3, but remain around
the Moon for over 160 days.
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Fig. 8 Pareto front obtained for the optimal problem with three objec-
tive functions, presenting tof (days) as a function of �vt (km/s) and he

(km). The colour is proportional to the time of flight

Solutions #1, #2, and #3 have C = 3.19123978, while
solution #4 has C = 3.19065379. As expected, �vt in-
creases with lower perigee altitudes, varying from 3.5155 to
3.7257 km/s, and tof ranging between 10 and 11 days for all
selected trajectories. For solutions #1, #2, and #3, the time
of permanence around the Moon after the first perilune may
go from 60 to over 89 days.

4.4 Alternative optimisation procedure

Additionally, consider the following optimisation problem:
minimise (�vt , he, tof ) subject to the constraint 100 km ≤
he ≤ 1,000 km.

Figure 8 presents the Pareto front of the optimisation, il-
lustrating the trade-off between �vt , tof and he , for the EM
capture orbit that originates solutions #1 in Tables 1 to 3.
As expected, the plot shows that a reduction of few days
in the time of flight can increase significantly the total cost
of the complete EM transfer. Because the trajectories ob-
tained from this procedure are to be used as initial guesses to
search optimal transfers in more realistic models and consid-
ering different propulsion technologies, the increase in �vt ,
particularly, in �v2, also increases the difficulty to solve a
subsequent optimisation problem due to the high value of
maximum acceleration required. Thus, it is reasonable to let
the tof free and minimise only �vt and he to generate a large
ensemble of feasible initial guesses.

5 Overview of complete transfers

The dynamical analyses of Sect. 3 together with the optimi-
sation procedure of Sect. 4 allow to select full Earth–Moon

Fig. 9 Full short-time low-cost Earth–Moon transfers (a) in the EM
synodical reference frame and (b) in the SE synodical reference sys-
tem. The black, red and green lines depict the SE leg of the transfer,
respectively, for the three correspondent values of increasing perigee
altitudes. The magenta lines represent the portion of the EM leg from
the patching point to the first perilune, while the blue lines represent
the final portion of the EM leg after the first perilune

transfers with specific desirable profiles. Figure 9 presents
some complete EM transfers, both in the three-dimensional
EM synodic reference frame and in the two-dimensional SE
synodic reference frame. The trajectories shown correspond
to the optimized solutions labeled #1 in Tables 1, 2, and 3.
The EM legs (blue and magenta portions of the transfers)
are in the x–y plane of the EM synodic reference frame. On
the other hand, the SE legs of the transfers (black, red, and
green curves) are in the x–y plane of the SE synodic ref-
erence frame. Because both planes are tilted with respect to
each other, when a leg in the plane of the primaries of a given
system is transformed and plotted in the reference frame of
the other pair of primaries, it has an out of plane component.
In the plots, the Earth is illustrated as grey dots. In the top
frame, the Moon is a small grey dot, while the orbit of the
Moon is shown as a grey dashed circle in the bottom frame.

The patching points are slightly different for each trajec-
tory but in all three cases tof , that is, the transfer time is less
than 11 days. The shorter transfer time compared to long-
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time transfers of usual patched-three body solutions is be-
cause the solution arcs of the SE system are quasi-periodic
orbits instead of trajectories guided by the hyperbolic mani-
folds of the SE system.

In particular, the solution #1 of Table 1 has �vt ≈
3.725 km/s. This transfer solution departs from a circular
geocentric orbit with altitude of 167 km and arrives at the
Moon in a ballistically captured orbit that remains in low or-
bit around the Moon for over 60 days. For the sake of com-
parison, Hohmann and Biparabolic transfers departing from
the same altitude around the Earth and arriving to a 100 km
circular lunar orbit have total �v of about 3.959 km/s and
3.946 km/s, respectively; while ballistic lunar transfers with
the same endpoint orbits requires approximately 80 m/s less
�v than the Hohmann transfer but a considerably larger
transfer time (Parker 2006). For a more general comparison
scenario, Table 1 and Fig. 1 of Topputo (2013) summarize
transfer solutions with �vt above 3.95 km/s for time of less
than 15 days. So the results presented here are compatible
with what is found in the literature. However, we must em-
phasize that here we are comparing two different types of
final trajectories. The final trajectories in Fig. 9 are ballistic
capture solutions which remain around the Moon under the
dynamics of the planar RTBP for over 60 days in osculating
elliptic orbits. On the other hand, Topputo (2013) presents
solutions with final circular orbits. So, the comparison done
here is only qualitative as to give an idea of the order of mag-
nitude of the quantities involved. The circularisation of the
captured trajectories would require an additional manoeuvre
of approximately 600 m/s. However, the purely ballistic cap-
ture at arrival could be interesting alternative solutions for
applications with diverse design requirements, such as inter-
mediate lunar passage before escaping to a Halo orbit, for
example. Another advantage of the ballistic solution is its
reduced lunar insertion velocity change (�v2), which also
implies in a reduced impact velocity if the mission were to
land on the Moon (Parker 2006). In any case, the solutions
in Tables 1, 2, and 3 are meant to be considered as initial
guesses to compute fully optimized EM transfers with low,
high, or hybrid thrust, in more realistic models (Sullo et al.
2016), so that subsequent model refinements and optimisa-
tion would distribute the plane change �v along the trajec-
tory.

6 Conclusions

In this contribution we investigate fast Earth–Moon transfers
with ballistic capture using the patched-three body approach
with a modification to take into account the inclination be-
tween the lunar orbit plane and the ecliptic plane while still
using the planar CRTBP. We present a strategy to compute

lunar ballistic capture orbits with predefined perilune alti-
tude that remain for a long time around the Moon under nat-
ural dynamics of the RTBP. Finally, we define and solve an
a multiobjective optimisation problem using a genetic algo-
rithm to explore connecting quasi-periodic solutions of the
Sun–Earth system.

Subsequent work will consider these fast ballistic cap-
ture preliminary solutions as initial guesses for optimisa-
tion problems in more realistic models and exploiting al-
ternative thrust solutions, such as low-thrust or hybrid thrust
solutions. These refinements will possibly reduce the high
patching velocity change that occurs due to the plane change
given that a subsequent optimisation would distribute the
plane change along the trajectory.
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Appendix

We now introduce the sequence of transformations needed
to convert states from the EM to the SE system.

Let tEM and tSE , respectively, be the time of flight in
the EM reference frame and the time of flight in the SE
reference frame. First, we perform a clockwise rotation of
t1 = tEM +ϕEM

0 around the EM z-axis and a translation of the
origin from the EM barycentre to the Earth position, given
by

⎛

⎝
x1

y1

z1

⎞

⎠ = M ×
⎛

⎝
xEM

yEM

zEM

⎞

⎠ + (μEM)

⎛

⎝
cos(t1)
sin(t1)

0

⎞

⎠

⎛

⎝
ẋ1

ẏ1

ż1

⎞

⎠ = Ṁ ×
⎛

⎝
xEM

yEM

zEM

⎞

⎠ + M ×
⎛

⎝
ẋEM

ẏEM

żEM

⎞

⎠

+ (μEM)

⎛

⎝
− sin(t1)

cos(t1)
0

⎞

⎠ ,

(4)

where

M =
⎛

⎝
cos(t1) − sin(t1) 0
sin(t1) cos(t1) 0

0 0 1

⎞

⎠

and

Ṁ =
⎛

⎝
− sin(t1) − cos(t1) 0
cos(t1) − sin(t1) 0

0 0 0

⎞

⎠ ,

(5)
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with the subscript EM referring to the EM normalized syn-
odical frame, and the subscript 1 referring to the normalized
Earth-centred inertial frame. The dimensionless time t1 of
the EM system is such that it coincides with the anomaly an-
gle and a complete revolution of the primaries corresponds
to 2π .

Then, a rotation around the line of nodes N̂ of the angle
i = 5.145◦ is performed by

⎛

⎝
x2

y2

z2

⎞

⎠ = R ×
⎛

⎝
x1

y1

z1

⎞

⎠ and

⎛

⎝
ẋ2

ẏ2

ż2

⎞

⎠ = R ×
⎛

⎝
ẋ1

ẏ1

ż1

⎞

⎠ , (6)

with the direction of the line of nodes given by N̂ =
(cos(γ0), sin(γ0),0) in the SE synodical frame, and

R =
⎛

⎝
r11 r12 r13

r21 r22 r23

r31 r32 r33

⎞

⎠ (7)

with

r11 = cos(i) + [
1 − cos(i)

]
cos2(γ0)

r12 = r21 = [
1 − cos(i)

]
cos(γ0) sin(γ0)

r13 = −r31 = sin(i) sin(γ0)

r22 = cos(i) + [
1 − cos(i)

]
sin2(γ0)

r23 = −r32 = − sin(i) cos(γ0)

r33 = cos(i).

In Eq. (6), the subscript 2 refer to an Earth-centred reference
frame that is inclined with respect to the x1–y1 plane.

A scaling transformation is applied to go from the units
of the EM system to the units of the SE system, along with a
translation of the origin from the Earth to the barycentre of
the SE system:

⎛

⎝
x3

y3

z3

⎞

⎠ = dEM

dSE

⎛

⎝
x2

y2

z2

⎞

⎠ + (1 − μSE)

⎛

⎝
cos(tSE)

sin(tSE)

0

⎞

⎠

and
⎛

⎝
ẋ3

ẏ3

ż3

⎞

⎠ = dEMωM

dSEωE

⎛

⎝
ẋ2

ẏ2

ż2

⎞

⎠ + (1 − μSE)

⎛

⎝
− sin(tSE)

cos(tSE)

0

⎞

⎠

(8)

The subscript 3 refer to a rescaled reference frame with
axis parallel to the axis x2, y2 and z2, but with origin
at the barycentre of the SE system. The Moon’s average
distance to Earth and the Earth’s average distance to the
Sun are denoted by dEM and dSE , respectively, and are
given in kilometers. The scaling of time is given by tSE =
(tEM/ωM)ωE , with ωM = 2.6617 × 10−6 rad/s and ωE =
1.99095 × 10−7 rad/s.

Finally, the coordinates and velocities in the SE synodic
reference frame are obtained by a rotation of tSE around the
SE z-axis:

⎛

⎝
xSE

ySE

zSE

⎞

⎠ = T ×
⎛

⎝
x3

y3

z3

⎞

⎠

and
⎛

⎝
ẋSE

ẏSE

żSE

⎞

⎠ = Ṫ ×
⎛

⎝
x3

y3

z3

⎞

⎠ + T ×
⎛

⎝
ẋ3

ẏ3

ż3

⎞

⎠ ,

(9)

where

T =
⎛

⎝
cos(tSE) sin(tSE) 0

− sin(tSE) cos(tSE) 0
0 0 1

⎞

⎠

and

Ṫ =
⎛

⎝
− sin(tSE) cos(tSE) 0
− cos(tSE) − sin(tSE) 0

0 0 0

⎞

⎠ .

(10)
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