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Abstract This paper presents a methodology and all

procedures used to validate it, which were executed in a

physics laboratory under controlled and known conditions.

The validation was based on the analyses of registered data

in an image sequence and the measurements acquired by

high precision sensors. This methodology intended to

measure the velocity of a rigid object in linear motion with

the use of an image sequence acquired by commercial

digital video camera. The proposed methodology does not

need a stereo pair of images to calculate the object position

in the 3D space: it needs only images sequence acquired for

one, only one, angle view (monocular vision). To do so,

these objects need to be detected while in movement,

which is conducted by the application of a segmentation

technique based on the temporal average values of each

pixel registered in N consecutive image frames. After

detecting and framing these objects, specific points

belonging to the object (pixels), on the plane image (2D

coordinates or space image), are automatically chosen,

which are then transformed into corresponding points in

the space object (3D coordinates) by the application of

collinearity equations or rational functions (proposed in

this work). After obtaining the coordinates of these points

in the space object that are registered in the sequence of

images, the distance, in meters, covered by the object in a

particular time interval may be measured and, conse-

quently, its velocity can be calculated. The system is low

cost, use only a computer (architecture Intel I3), and a

webcam used to acquire the images (640 9 480, 30 fps).

The complexity of the algorithm is linear, fact that allows

the system to operate in real time. The results of the

analyses are discussed and the advantages and disadvan-

tages of the method are presented.

Keywords Moving objects � Image segmentation �
Geometric transformation � Velocity measurement �
Rational polynomials � Collinearity equations � Monocular

image sequence

1 Introduction

Object movement in any environment is a common

research field in Digital Image Processing (DIP). Among

the several types of systems capable of monitoring move-

ment in any specific environment, there are those that

detect and count moving vehicles [2, 12, 21]; and those that

measure the velocity of vehicles [27, 28].

In [2], the monitoring system of traffic flow and road

traffic analysis is developed. This system uses methods of

image processing and pattern recognition to measure the

velocity and recognize the license plate number of the

vehicles.
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In [12], the system of detection and classification of

vehicles is proposed, which uses the size of vehicles

identified in segmentation process to calculate the height

and the actual length of the same, allowing to classify them

as vehicles and not vehicles (Vans, Pick Ups, Trucks).

In [21], a vehicle counting system is proposed, which

calculates the total number of vehicles that are traveling on

the highway through a tracking zone, in which is performed

the extraction of the highway structure, the detection of the

moving vehicles and finally the count of vehicles identified

in the detection process.

Already the system developed by [27] uses the camera

calibration method of Tsai in two phases [23] to define the

intrinsic and extrinsic parameters of the camera and a

mathematical model to define the geometric relationship

between plane image and space object, aiming to convert

the coordinates of the plane image (2D), in which the

vehicle is, into the coordinates in the world (3D). Finally

velocity in linear motion is measured on basis of the dif-

ference of time between two sequential frames.

In [28], the system developed is aimed to calculate the

vehicle velocity. The main idea of this system is the cre-

ation of several control lines in the image. The control lines

introduced on the image are used to define the traffic ranges

and create points of correspondence with the real world.

Based on these points is calculated actual position of each

pixel to control the vehicle in the world. With the coordi-

nates in hand, the vehicle velocity is calculated through the

covered distance between two points in a given time

interval.

To develop a monitoring system based exclusively on

the use of DIP techniques, several problems need to be

overcome. First of all, such a system must be able to detect

and segment the element being monitored in the scene. The

segmentation method must be robust, as it must be able to

circumvent several adverse conditions such as those

inherent to the element of interest itself (color, size, geo-

metric shape, differences in texture patterns, and its own

movement in the scene), as well as those problems relative

to the environment (variations in the intensity of solar

illumination, rain, shadows, interferences caused by other

objects present in the scene, etc.). In other words, a mon-

itoring system based only on images has to overcome not

only the problems caused by the environment, but also

those caused by the object of interest itself.

These problems are difficult to be treated. Robust

methods that detect movement of an object in an image

sequence are constantly improved or proposed, as: based

on optical flow [4, 6–8, 18]; motion history image [9, 10];

background segmentation by codebook model [15].

An additional problem exists when elements belonging

to the imaged scene need to be reconstructed tridimen-

sionally using, only, the data from the image. One possible

way to perform this reconstruction is through the com-

puting of stereo pairs images and reconstruct the space

object by the application of photogrammetric methods

[1, 17].

To proceed this reconstruction, it is necessary, at first, to

carry out internal and external orientation of the camera and

after performing the rectification and registration of such

images acquired in stereo vision, then you should search for

homologous pixels between images of the stereo pair for

reconstructing these points in the space object [1, 6, 24].

As can be seen, only performing a study on the 3D

reconstruction based on images analyses is a problem of

significant value. The insertion of other problems can

introduce severe errors in this study. How to consider, for

example, the motion of a body in an uncontrolled envi-

ronment introduces difficulties and uncertainties in the 3D

reconstruction process.

Thus, this work has only the aim to propose a method

for 3D reconstruction of interest points observed in a

sequence of images acquired under known conditions, and

use those points to measure the velocity of moving objects.

The innovation introduced by thiswork is to consider only

images acquired by amonocular vision system, and this way,

to eliminate the photogrammetric procedures (internal and

external camera orientation, images rectification and regis-

tration and the search for homologous pixels).

So, a new method to solve this problem is proposed and

to validate this method an experiment was executed in a

physics laboratory under controlled and known conditions.

This study involves the reconstruction of points belonging

to the plane image (2D) into the corresponding points in the

space object (3D) using monocular image sequences

acquired by a commercially available, low-cost, digital

video camera [3, 13].

To measure the velocity of a rigid object in linear

motion, the covered distances have to be computed. When

it is performed using images or points of interest on the

image, the image must be geometrically corrected. This

geometric correction is required due to the sphericity of the

camera lens; all acquired images must be managed by the

central perspective projection (as can be seen in Fig. 1),

resulting in all points in the object image (3D) within an

image being registered on the plane image (2D) leading to

losses of data and geometric distortions.

The goal of this study was to present a method enable to

determine the velocity of a rigid object in linear motion in

real time with the use of monocular image sequence

analysis.

This study presents the application of a technique to

image sequence segmentation that considers the history of

the variation of values associated with the homologue

pixels registered in successive image frames [15], and the

analysis of geometric relations between points in real space
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(space object) and the corresponding points on the plane

image, obtained by collinearity equations [5, 26] and

rational functions [19, 20, 22].

This paper has been organized as follows: Sect. 2

presents the method applied during the segmentation

phase. Section 3 describes how the conversion of plane

image coordinates into space object coordinates was

conducted. Section 4 describes the proposed system, as

well as the experimental results. Finally, in Sect. 5, con-

clusions are presented and the final considerations are

made.

2 Image segmentation based on the history of the values

associated with pixels

Kim et al. [15] developed a technique for image segmenta-

tion that permits capturing background variations and deal-

ing with scenes that contain moving objects or differences in

lighting. This technique quantizes samples of each pixel of

an image in codebooks, which represents, in a compact

manner, the background model of image sequences in a

particular period of time.

To apply this technique, it is necessary to acquire, a

priori, a training value sequence X for each pixel from each

image frame. For N image frames, N vectors x, belonging

to the color space RGB, X ¼ fx1; x2; . . .; xNg, are neces-

sary to enable the historical register of the color value

variation (or any other attribute) occurred in a determined

period of time associated with each pixel. Each pixel has a

codebook C ¼ fc1; c2; . . .; cLg composed by L codewords.

Each codeword ci, i = 1.. L, is composed by an RGB

vector Vi ¼ ð�Ri; �Gi; �BiÞ and a tuple auxi ¼ I
^

mini; Îmaxi;

fi; ki; pi; qi that contains brightness intensity and the tem-

poral variables described as follow:

• I
^

mini; Îmaxi: represent, respectively, the smallest and

the largest brightness value observed among all

brightness values associated with the variation occurred

in the historical register of the pixel i;

• fi: represents the frequency a codeword occurs;

• ki: represents the longest time interval (during the

training period) that one codeword was not recovered;

• pi, qi: represent, respectively, the first and the last

access time that occurred in the codeword.

2.1 Reference model training

To cope with changing global and local lighting, Kim et al.

[15] developed a model for dealing with color distortion

and brightness distortion.

Consider the input pixel Xt ¼ ðR;G;BÞ and a codeword

ci, where Vi ¼ ð�Ri; �Gi; �BiÞ, and

Xtk k2¼ R2 þ G2 þ B2 ð1Þ

Vik k2¼ ð�Ri; �Gi; �BiÞ ð2Þ

Xt;Vih i2¼ Vi ¼ �RiRi þ �GiGi þ �BiBið Þ ð3Þ

The color distortion can be calculated by:

p2 ¼ Xtk k2cos2h ¼
Xt;V

2
i

� �

Vik k2
ð4Þ

This calculation is represented by the function colordist,

i.e.,

colordist Xt;Við Þ ¼ d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xtk k2�p2
� �r

ð5Þ

The color distortion can be interpreted as a brightness-

weighted version in the normalized color space. This is

equivalent to normalizing a codeword vector to the

brightness of an input pixel. This way, the brightness is

taken into consideration for measuring the color distortion,

and to avoid the instability of normalized colors.

Consider also the brightness function, given by:

brightness I; I
^

minm; Îmaxm

� �

¼
true; if Ilow �Xt � Ihi

false; otherwise

� ð6Þ

Fig. 1 Distortion patterns

modeled by specific polynomial

terms [20]
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In the training period, each value Xt sampled at the time

t is compared to values on the codebook to determine if a

codeword cm that corresponds to the sampled value exists.

To determine if a codeword exists, an average value for the

distortion on the limits of the color and brightness in the

codeword of index m is applied.

In the algorithm presented in Table 1, both conditions

(a) and (b) present in step III—(ii) are satisfied when the

color of Xt and cm are similar, and the brightness of Xt is

among the acceptable limits of the brightness of cm.

Condition (a) verifies the distortion (d) of the values

associated with an entry pixel Xt ¼ ðR;G;BÞ relative to a

codeword ci in which Vi ¼ ð�Ri; �Gi; �BiÞ. This condition

compares the result of the colordist function with a

threshold value e1.
Condition (b) verifies in the tuple codeword cm, if the

brightness value I of Xt belongs to the interval defined by

the largest (Ihi) and by the smallest (Ilow) brightness values

of each codeword cm. In other words, I 2 [Ilow, Ihi], as:

Ilow ¼ min bÎmax;
I

^

min

a

8
<

:

9
=

;
ð7Þ

Ihi ¼ aÎmax ð8Þ

for a\ 1 and b[ 1: These values are working to reduce

the range of the interval [Ilow, Ihi].

According to Kim et al. [15], a is between 0.4 and 0.7

and b is between 1.1 and 1.5. This range Ilow; Ihi½ � becomes

a stable range during codebook updating.

The a value is obtained through experiments. The value

0.4 allows large brightness bounds, but 0.7 gives tight

bounds. The b is additionally used for limiting Ihi since

shadows (rather than highlights) are observed in most

cases. In the case of the experiment, the values a = 0.5 and

b ¼ 1:2 were set empirically.

The training for background modeling generates a

codebook for each pixel, formed by codewords that rep-

resent the history of values associated with each image

pixel in a determined training period. However, many of

these values belonging to a codebook of each pixel repre-

sent invalid entries, such as noises or moving objects. Such

entries are eliminated through the creation of a reference

model.

2.2 Reference model

The reference model of an imaged scene (Eq. 9) is gen-

erated based on the data filtered from the codebook for all

the pixels. This filtering process removes from the code-

book all the codewords that represent noises or moving

objects, keeping only the entries that represent the image

background.

m ¼ fcmjcm 2 C and km � Tmg ð9Þ

The term Tm in Eq. 9 represents a threshold value used

to remove codewords that are supposedly associated with

noises and moving objects. According to [15], it is advis-

able that the most adequate value for this threshold is the

amount of frames used in the reference model training

Table 1 Codebook construction algorithm [15]
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process divided by 2. In outdoor environments it is advis-

able [27], to use a reference model training period of over

5 min.

2.3 Background detection

Once the reference model is obtained, it is possible to

subtract from a current image the pixels referring to static

objects (image background). The algorithm presented in

Table 2 verifies if any pixel in the image belongs to the

background or to the moving objects.

3 Coordinate conversion

This section describes the techniques used to conduct

coordinate conversions from plane image (2D) to space

object (3D).

Two models will be presented for this conversion, the

polynomial one, suitable for images when you do not know

the parameters of interior orientation of the acquisition

sensor and collinearity equations, based on geometrical

relationship of the perspective projection and knowledge of

the parameters of interior orientation camera.

3.1 Polynomial models

It is possible to relate the plane image and the space object

through Polynomial models [22]. The short form of a

simple polynomial (non-rational) may be given by the

Eqs. 10 and 11:

l ¼
Xm

i¼0

Xn

j¼0

Xp

k¼0

aijkx
iy jzk ð10Þ

c ¼
Xm

i¼0

Xn

j¼0

Xp

k¼0

bijkx
iy jzk ð11Þ

where (l, c) represent the coordinate of a determined pixel

in the matrix image (row and column, respectively); x, y

and z are the tridimensional Cartesian coordinates of the

point on the ground; aijk, and bijk are the polynomial

coefficients; and m, n, p are integer values, that belong to

the interval [0, 3], with m ? n(?p) being the order of the

polynomial functions, generally three. Equations 12 and 13

show in more detail an example of an expansion of the

notations referring to Eqs. 10 and 11; in this case, a

polynomial is of the third order in the 3D space.

l ¼ a1 þ a2yþ a3xþ a4zþ a5yxþ a6yzþ a7xzþ a8y
2

þ a9x
2 þ a10z

2 þ a11xyzþ a12y
3 þ a13yx

2 þ a14yz
2

þ a15y
2xþ a16x

3 þ a17xz
2 þ a18y

2zþ a19x
2zþ a20z

3

ð12Þ

c ¼ b1 þ b2yþ b3xþ b4zþ b5yxþ b6yzþ b7xzþ b8y
2

þ b9x
2 þ b10z

2 þ b11xyzþ b12y
3 þ b13yx

2 þ b14yz
2

þ b15y
2xþ b16x

3 þ b17xz
2 þ b18y

2zþ b19x
2zþ b20z

3

ð13Þ

According to [20], there are distortions or movement

patterns that may be modeled or corrected by specific

polynomial terms (Fig. 1). However, the main advantage of

using the polynomial model is the correction of all sources

of distortions simultaneously [19].

The parameters of the Eqs. 12 and 13 are determined

knowing of at least 21 points (control points) in three-

dimensional cartesian coordinates (space object) and his

record in the image.

The same Eqs. (12 and 13), can be used to determine the

three-dimensional coordinates of points, setting the Z

coordinate and calculating the X and Y coordinates.

3.2 Collinearity equations

Collinearity equations permit to relate plane image to space

object transforming the space object coordinates into plane

Table 2 Algorithm for background subtraction (BGS) [15]
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image coordinates (and vice versa). In photogrammetric

process, collinearity equations [16] reproduce mathemati-

cally the process of image formation, linking the coordi-

nates in the space object (3D) to their corresponding

coordinates in the plane image (2D).

The basic principle to establish collinearity is based on

the condition that points C (perspective center), p’ (image

point) and P (object point) belong to the same line [5, 26].

The geometry shown in Fig. 2 presents the following

similar triangles DCDB * DCdb and DCBA * DCba
and, therefore, permits to establish the following geometric

relationships between the measurements:

xp

X
¼ zp

Z
and

yp

Y
¼ zp

Z
ð14Þ

which permits to determine the projective equation

systems:

xp ¼ zp
X

Z
and yp ¼ zp

Y

Z
ð15Þ

where xp; yp; zp
� 	

is the coordinates of point p’ in the plane

image, corrected for systematic errors (carried out interior

orientation);

(X, Y, Z) is the coordinates of point P in the space

object.

In case of the coordinates in the space object are

translated, rotated or with a different scale from the plane

image (Fig. 3), similarity transformation must be applied

on the referential system coordinates of the space object

(point P) to the referential system of the plane image (point

p’). This transformation may be conducted in three steps:

(a) applying three translations in order to compensate the

spatial difference between the origins; (b) applying rotation

to compensate angular differences; and (c) execute the

correction of the difference in scale between the referential

systems.

The rotation movements occur counterclockwise, con-

sidering that the referential system of the image gyrates

while the object remains fixed, whose rotation matrices

Mj;Mr; and Mx are given by:

Mj ¼
cos j sinj 0

� sin j cos j 0

0 0 1

2

4

3

5;Mr

¼
cosu 0 � sinu
0 1 0

sinu 0 cosu

2

4

3

5;Mx

¼
1 0 0

0 cosx sinx
0 � sinx cosx

2

4

3

5 ð16Þ

The matrices Mj;Mre Mx are rotation matrices around

the axes x, y and z, respectively.

Fig. 2 Coordinate system, parallel image and object, originating in

the perspective center

Fig. 3 Coordinate systems of the image (xp, yp, zp) and the translated

and rotated object (XT, YT, ZT) [16]
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The rotation matrix M (M ¼ ðMj:Mr:Mx)) is given by:

and the transformation will happen through:

X

Y

Z

2

4

3

5 ¼ kM
XP � Xc

YP � Yc
ZP � Zc

2

4

3

5 ð18Þ

in which

• k is a scale factor;

• Xc, Yc and Zc are the coordinates of the perspective

center in the object reference system;

• X, Y and Z are the point coordinates in the system XYZ.

The equation system described in Eq. 18 may be written

as:

X ¼ k½m11 XP � Xcð Þ þ m12 YP � Ycð Þ þ m13 ZP � Zcð Þ�
Y ¼ k½m21ðXP � XcÞ þ m22 YP � Ycð Þ þ m23 ZP � Zcð Þ�
Z ¼ k½m31ðXP � XcÞ þ m32 YP � Ycð Þ þ m33 ZP � Zcð Þ�

ð19Þ

By replacing Eq. 19 in the projective Eq. 15, k is

eliminated from the equation system, resulting

in the collinearity equations, Eq. 20:

xp ¼ zp:
m11 X � Xcð Þ þ m12 Y � Ycð Þ þ m13ðZ � ZcÞ
m31 X � Xcð Þ þ m32 Y � Ycð Þ þ m33ðZ � ZcÞ

yp ¼ zp:
m21 X � Xcð Þ þ m22 Y � Ycð Þ þ m23ðZ � ZcÞ
m31 X � Xcð Þ þ m32 Y � Ycð Þ þ m33ðZ � ZcÞ

ð20Þ

The equation system, Eq. 20, is used in the negative film

image conception [19]; when applied on the reversal film,

due to the fact that zp = -f (focal distance), it becomes:

xp ¼ �f :
m11 XP � Xcð Þ þ m12 YP � Ycð Þ þ m13ðZP � ZcÞ
m31 XP � Xcð Þ þ m32 YP � Ycð Þ þ m33ðZP � ZcÞ

yp ¼ �f :
m21 XP � Xcð Þ þ m22 YP � Ycð Þ þ m23ðZP � ZcÞ
m31 XP � Xcð Þ þ m32 YP � Ycð Þ þ m33ðZP � ZcÞ

ð21Þ

The Eq. 21 can be used to determine the exterior ori-

entation parameters of the camera. Thus, it is necessary

that at least four points with known coordinates in the

three-dimensional Cartesian coordinate system to be

imaged.

The inverse form of the collinearity equations may be

obtained by applying the inverse transformed in the equa-

tion system, Eq. 18, which results in:

XP � Xc

YP � Yc

ZP � Zc

2

4

3

5 ¼ k�1MT
X

Y

Z

2

4

3

5 ð22Þ

and

X

Y

Z

2

4

3

5 ¼ kp
xp
yp
zp

2

4

3

5 ð23Þ

By replacing Eq. 23 in the Eq. 22, resulting in:

XP � Xc

YP � Yc

ZP � Zc

2

4

3

5 ¼ k�1MTkp
xp
yp
zp

2

4

3

5 ð24Þ

The Eq. 24 may be written as:

XP � Xc ¼ k�1kpðm11xp þ m21yp þ m31zpÞ
YP � Yc ¼ k�1kpðm12xp þ m22yp þ m32zpÞ
ZP � Zc ¼ k�1kpðm13xp þ m23yp þ m33zpÞ

ð25Þ

By isolating the terms XP and YP from Eq. 25, the

inverse form of the collinearity equations is obtained

(Eq. 26).

XP ¼ Xcþ ðZP � ZcÞm11xp þ m21yp þ m31zp

m13xp þ m23yp þ m33zp

YP ¼ Ycþ ðZP � ZcÞm12xp þ m22yp þ m32zp

m13xp þ m23yp þ m33zp

ð26Þ

4 The system

A computational system capable of measuring the velocity

of a rigid object in linear motion was developed. This

system is composed by five modules:

1. interface module, responsible for performing the

interface between the computational system and the

video camera, capturing the images acquired by the

camera and making them available for processing;

2. the module responsible for conducting the detection of

moving objects in a sequence of acquired images,

using the segmentation module based on the Bradski’s

Mean Shift algorithm;

3. the coordinate conversion module, responsible for

performing the coordinate conversion from plane

image to space object by using the collinearity

equations or the polynomial model. This module has

as the entry parameter the knowledge a priori of 21

M ¼
cosu cos j cosx sin j� sinx sinu cos j sinx sin j� cosx sin/ cos j
� cosu sinj cosx cos j� sinx sinu sin j sinx cos j� cosx sinu sinj
sinu � sinx cosu cosx cosu

2

4

3

5 ð17Þ
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Fig. 4 Flowchart of the system
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points of the space object with their respective points

on the plane image. In case the conversion method

chosen is the collinearity equations, the information

about camera calibration is also inserted;

4. the module responsible for measuring the velocity of

an object and conducting the analyses relative to this

value;

5. the module responsible for exhibiting the sequences of

images with the superposition of the computed details.

The implementation of the system (i.e., system modules)

is represented in the flowchart in Fig. 4, which is explained

in the sequence.

All modules were implemented in C??. The OpenCV

library was used to handle and to process the captured

images.

The implementation starts with the initialization of the

interface module, where the source of images is set

(webcam of video file). In the following, it is possible to

pick an image frame from the video source and to store it in

the RAM. This image is represented by the structure Ipl-

Image, provided by the OpenCV library.

The image orientation process is done in a unique

image, because the camera stands in a still position during

the acquisition of the images. After the observation of the

controlling points from the image (in the reference plate,

to see Fig. 6), the coordinate conversion module is acti-

vated, receiving as a parameter, the mathematical model

(Eqs. 12 and 13 to the polynomial method or Eq. 26 to

the collinearity equations). The module also receives, as

parameters, the intrinsic and extrinsic camera data, with

the control points from the image space and their

respective coordinates in the object space (21 control

points). In this module, it is applied a method to deter-

mine the orientation parameters that will be used to

convert the points from the space image to the space

object.

Following the initialization of the coordinate conversion

module, the object detection module is started, and the

background image is computed from captured environment

images for, at least, 40 s. The background image will be

used to segment the moving bodies.

In the following, the monitoring task is started, by

activation of the velocity measurement module. Another

module is responsible to exhibit the results on screen.

The detection module captures a frame from the image

sequence and segments it to verify if there exists an object

inside a region of interest given by a bounding box (Fig. 5).

If the object is found in the bounding box, the object

control point is determined (lower left coordinate) and sent

to the measurement module. The segmentation module

recalculates the background image taking into account the

last captured frame. After this recalculation, the process

iterates and another frame is captured from the image

sequence.

If the detected object in the segmentation step is located

after the region of interest, the measurement module con-

verts the control points by the application of the coordi-

nates conversion module and the velocity is measured as

well. The exhibition module takes the computed data and

displays it on screen.

Fig. 5 Bounding box

implemented in the detection

module for the storing of control

points
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4.1 The experiment

To validate the system and the methodology developed, an

experiment was performed in an Applied Physics Labora-

tory, with the use of a device named ‘‘Air Track’’ (Fig. 6)

to measure the velocity of a rigid object in linear motion on

a surface. The Air Track possesses small orifices along its

sides. When compressed air is injected inside the track, air

leaves these small orifices and forms an air mattress on the

surface of the track. This system permits that an object

slides over the track with no (or insignificant) friction

between the surfaces.

Five photoelectric sensors are placed along the track, each

sensor is connected to a chronometer (precision of

5 9 10-4 s). The distances (Ds) that separate the sensors one
from the other are known. When an object slides over the

track, passing by the first sensor, all chronometers are acti-

vated from zero second display.When the object passes by the

following sensors, the chronometer connected to that sensor is

stopped. Thus, the distance traveled by the object between

each sensor and the time (Dt) needed to cover each of the

distances are obtained. With these data, the velocity value,

v = Ds/Dt, is calculated at each of the measured points.

The experiment was totally registered in a sequence of

images, with the use of a low-cost digital camera. Each

image frame registered was submitted to the movement

detection method and the segmentation of moving objects

developed by [15].

After segmenting the moving object belonging to i-th

frame registered at time ti, the coordinate ci; lið Þ relative to
the plane image was extracted (Fig. 6), but significant in

relation to the movement performed by the object. After

obtaining all coordinates of two consecutive frames ci; lið Þ
and ciþ1; liþ1ð Þ, acquired at the moments ti and ti?1,

respectively, they are analyzed to detect if the object

altered its position. In case some alteration in the object

position takes place, a rectangle is drawn surrounding the

object and the coordinates of the lower left-hand corner are

used in the calculations (Fig. 6). To calculate the velocity

of the object, two parameters need to be determined: (1) the

time interval in which the movement is observed (Dt); and
(2) the covered distance (Ds), in metric units, by the

moving object during this observation.

The time interval of the observation is obtained by the

amount of frames that the camera is capable of imaging per

second. For each acquired frame i, the time ti in which that

happened is also registered. Thus, for two consecutive

image frames:

Dt ¼ tiþ1 � ti ð27Þ

The determination of the covered distance (Ds) must be

performed in space object (3D—real world). The point mea-

sured in the plane image (2D) needs to be transformed

(Eqs. 12 and 13 – for polynomial models or Eq. 22 – for

collinearity equations), so that velocity may be effectively

calculated.

In order that this transformation may be used in the

determination of the Cartesian 3D coordinates (space

object), the parameters ai and bi (i = 1,…, 20) must be

determined (Eqs. 12 and 13). These 40 parameters are

determined using at least 21 photo-identifiable points

(support 3D coordinates known in the space object), ref-

erencing the image to the space object coordinates. Simi-

larly, in the case of collinearity equations (Eq. 21), the

minimum requirement is four control points. Thus, the

covered distance may be determined calculating the rect-

angle surrounding the object in the two moments.

For the performance of the experiment in the laboratory,

a steel plate containing 88 visible points, distributed in a

matrix arrangement, regularly spaced in 100 mm was used

to establish a 3D Cartesian coordinate system, attributing

coordinates X, Y and Z to the points on the plate (Fig. 7).

When images were acquired, some of the points on the

plate were chosen as control points, to be measured in the

plane image, enabling the determination of the transfor-

mation parameters of Eq. 22 [14].

When the transformation parameters and the calibration

information of the camera are known, any point in the

image may have its coordinate in the space object esti-

mated quite precisely. By applying the equation for the

Euclidian distance in the 3D coordinates in the space object

at two moments, the covered distance (Ds) is determined,

which is used to determine the object velocity.

4.2 Procedures for conducting the experiment

Figure 8 illustrates the environment setup for the execution

of the experiment. Under the air track a steel plate was

Fig. 6 Image sequence, frame i. The movement of a rigid object is

detected (vector d points to the lower left-hand corner of the image).

The object is surrounded by a minimal rectangle (in white). The

ccoordinate ci; lið Þ of the point (in yellow) on the left-hand side of the

lower corner of the rectangle is extracted
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installed (Fig. 7), which permits to determine the points

that are related between the space object and the plane

image. The experiment, with the object moving over the air

track, was filmed and the images acquired submitted to the

proposed system, through which the velocity was calcu-

lated by image analysis and photogrammetric calculations.

The value of the calculated velocity was compared with the

real velocity value computed by the sensors on the air

track.

4.3 Results

This section describes the results concerning the calcula-

tion of the velocity in a straight line of a rigid object with

null acceleration. To do so, a linear regression was

performed, using the least squares method (LSM) [11, 25]

to enable velocity interpolation. This was performed using

a linear model y = b ? ax, in which the linear b and

angular a coefficients values may be estimated with the use

of the following expressions:

a ¼
n
Pn

1 xiyi �
Pn

1 xi
� 	 Pn

1 yi
� 	

n
Pn

1 x
2
i � ð

Pn
1 xiÞ

2
ð28Þ

b ¼
Pn

1 yi � a
Pn

1 xi

n
ð29Þ

The following expressions permit to determine the

deviations occurred in the calculation of the slope of the fit

of the data for the linear model, a, Da, as well as deter-

mining the linear coefficient b, Db.

Fig. 7 Air track system used to

calculate the velocity of a rigid

object in controlled conditions

Fig. 8 Environment setup of

the experiment
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Da ¼
ffiffiffi
n

p
:r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn

1 x
2
i � ð

Pn
1 xiÞ

2
q ð30Þ

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1ðyi � axi � bÞ2

n� 2

s

ð31Þ

Db ¼ Da:

ffiffiffiffiffiffiffiffiffiffiffiffiPn
1 x

2
i

n

r

ð32Þ

The slope (angular coefficient) is written as a ± Da, and
the intercept (linear coefficient) as: b ± Db. The correla-

tion coefficient (r) is a parameter for the study of bi-

dimensional distributions, which indicates the level of

dependency among associated data with the variables X

and Y. The correlation coefficient r is a value obtained by

applying the following expression:

r ¼
Pn

1 xi � �xð Þ yi � �yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

1ðxi � �xÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

1ðyi � �yÞ2
q ð33Þ

with �x ¼
Pn

1
xi

n
and �y ¼

Pn

1
yi

n
.

Knowing that r 2 �1;þ1½ �; and is interpreted in the

following way:

• r = ?1, indicates that the linear correlation between

values X and Y is perfect and direct;

• r = -1, indicates that the linear correlation between

values X and Y is perfect and inverse;

• r = 0, indicates that there is no correlation, i.e., there is

total independence of values X and Y.

4.3.1 Computed results using photoelectric sensors

Table 3 exhibits the velocity of a rigid object computed by

the sensors on the air track.

Time data collected in the four experiments were used to

calculate the respective D�t average values. These average

values minimize the occurrence of systematic errors

occurred during the performance of these experiments.

Only these average values were used in the analysis per-

formed in this study.

The linear equation (Fig. 9) calculated using LSM was

s = 0.4 ? 27.7t. The correlation factor (Fig. 9) of the

calculated line using LSM was 0.9997. This value dem-

onstrated that the experimental data were strongly corre-

lated with the linear model of uniform linear motion

s = s0 ? vt, where: s is the covered distance from an initial

position s0 as a function of time t with constant velocity v.

4.3.2 Computed results based on collinearity equations

and polynomial transformation method using

automatic object segmentation

Table 4 illustrates the data obtained by the software

developed, using the segmentation method developed by

Table 3 Data obtained in the experiments performed in the laboratory and their respective calculated velocities

Experimental data Calculated velocity

(cm/s)
Time intervals obtained at each experiment

Dt0 (s) Dt1 (s) Dt2 (s) Dt3 (s) Dt4 (s)

Experiment 1 0.0000 0.5150 1.0620 1.5540 2.1230 28.4 ± 0.3

Experiment 2 0.0000 0.5200 1.0730 1.5690 2.1470 28.1 ± 0.3

Experiment 3 0.0000 0.5200 1.0780 1.6180 2.2710 26.6 ± 0.6

Experiment 4 0.0000 0.5210 1.0760 1.5780 2.1610 27.9 ± 0.3

D�t (s) 0.0000 0.5190 1.0722 1.5798 2.1755 27.7 ± 0.4

Ds (cm) 0.0000 15.000 30.000 45.000 60.000

D�t—Time interval average values

Dti—Value of each time interval i measured in the experiment

Ds—Value of the covered distance by the rigid object in each time interval

Fig. 9 Linear fit of the distances s using LSM as a function of the

average time intervals Dt
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[15], and the coordinate conversion method from plane

image to space object based on the collinearity equations

and polynomial transformation method.

The values for the distance and time intervals were

extracted from the sequences of image frames, which

resulted in a velocity of 26.691 cm/s with a correlation

factor equivalent to 0.999 (Fig. 10a) for the use of collin-

earity equations, and a velocity of 33.484 cm/s with a

correlation factor equivalent to 0.999 (Fig. 10c) for the use

polynomial transformation method.

Comparing the velocity values obtained by the method

based on the collinearity equations (0.691 cm/s) with the

value obtained by the photoelectric sensors (27.7 cm/s), the

deviation was in the order of 3.64 %, whereas for the

velocity values obtained by the polynomial transformation

method (33.484 cm/s) with the value obtained by the

photoelectric sensors (27.7 cm/s), the deviation was in the

order of 20.88 %.

4.3.3 Computed results based on collinearity equations

and polynomial transformation method using manual

object segmentation

Table 5 illustrates the data obtained by the manual capture

of points in the plane image, using the coordinate con-

version method from plane image to space object based on

the collinearity equations and polynomial transformation

method.

Table 4 Automatic data extraction from images sequence acquired in the laboratory experiments

Automatic point extraction

Frame Time (s) Plane image

coordinates

Space object coordinates and distance computation

Polynomial transformation Collinearity equations

Xi Yi Xo Yo Distance (mm) Xo Yo Distance (mm)

1 0.000000 367 211 311.122 803.369 0.0000 323.655 424.786 0.0000

2 0.068966 367 213 311.428 791.296 12.0729 323.856 415.896 8.8900

3 0.103448 367 216 311.868 773.609 29.7602 324.154 402.727 22.0600

4 0.137931 367 218 312.150 762.081 41.2881 324.351 394.056 30.7300

5 0.172414 366 218 309.811 762.061 41.3081 322.508 394.074 30.7100

7 0.241379 367 223 312.819 734.107 69.2619 324.833 372.750 52.0400

8 0.275862 367 226 313.198 717.857 85.5121 325.116 360.213 64.5700

9 0.310345 367 228 313.442 707.229 96.1401 325.303 351.956 72.8300

10 0.344828 367 231 313.797 691.577 111.7920 325.579 339.718 85.0700

11 0.379310 367 233 314.026 681.327 122.0420 325.761 331.656 93.1300

12 0.413793 366 235 312.035 671.205 132.1640 324.174 323.687 101.1000

13 0.448276 366 237 312.265 661.230 142.1390 324.361 315.776 109.0100

14 0.482759 367 240 314.786 646.518 156.8510 326.385 304.032 120.7500

15 0.517241 368 242 317.165 636.864 166.5050 328.299 296.289 128.5000

16 0.551724 368 245 317.448 622.590 180.7790 328.546 284.830 139.9600

18 0.620690 369 250 320.027 599.356 204.0130 330.657 266.064 158.7200

19 0.655172 369 253 320.271 585.722 217.6470 330.883 255.017 169.7700

20 0.689655 369 255 320.430 576.755 226.6140 331.031 247.734 177.0500

21 0.724138 369 257 320.586 567.883 235.4860 331.179 240.516 184.2700

22 0.758621 370 260 322.891 554.746 248.6230 333.067 229.795 194.9900

23 0.793103 370 263 323.098 541.803 261.5660 333.272 219.229 205.5600

24 0.827586 370 265 323.234 533.280 270.0900 333.408 212.262 212.5200

25 0.862069 378 267 339.721 524.810 278.5590 346.691 205.242 219.5400

26 0.896552 379 270 341.839 512.283 291.0860 348.437 194.981 229.8100

27 0.931034 378 273 339.891 499.941 303.4280 346.916 184.880 239.9000

28 0.965517 379 276 341.979 487.747 315.6220 348.638 174.880 249.9100

29 1.000000 378 279 340.054 475.726 327.6430 347.135 165.033 259.7500

30 1.034480 376 282 336.172 463.863 339.5060 344.060 155.324 269.4600

The space object coordinates transformations and the distance computation by methods: polynomial transformation and collinearity equations
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The values for the distances and time intervals were

extracted from the sequence of image frames, which

resulted in a velocity of 27.905 cm/s with a correlation

factor equivalent to 0.9980 (Fig. 10b) for the use of col-

linearity equations, and a velocity of 34.99 cm/s with a

correlation factor equivalent to 0.9983 (Fig. 10d) for the

use polynomial transformation method.

Comparing the velocity values obtained by the trans-

formation method based on the collinearity

Eqs. (27.905 cm/s) with the value obtained by the photo-

electric sensors (27.7 cm/s), the deviation was in the order

of 0.74 %, whereas for the velocity values obtained by the

polynomial transformation method (34.99 cm/s) with the

value obtained by the photoelectric sensors (27.7 cm/s), the

deviation was in the order of 26.31 %.

4.3.4 Analysis of the results

Table 6 illustrates the results obtained with the tests per-

formed, highlighting the velocity measured by the auto-

matic detection of rigid objects using the segmentation

method described by [15] and by manual detection. It also

shows the error in percentage caused by the automatic

identification of rigid objects in the velocity measurement

process, and the error in percentage of the coordinate

conversion methods from plane image to space object in

comparison with the velocity obtained by the photoelectric

sensors data.

Based on the results obtained, it is possible to state that

the technique used for the automatic identification of

moving rigid objects may lead to errors in the process of

Fig. 10 Linear fit of the time (t) versus distance ðsÞ using LSM.

a Result Computed by collinearity equations using automatic object

segmentation. b Result Computed by collinearity equations using

manual object segmentation. c Result Computed by polynomial

transformation method using automatic object segmentation. d Result

Computed by polynomial transformation method using manual object

segmentation
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measuring the velocity. This was due to the fact that errors

occurred in the identification of the lower left-hand corner

(Fig. 11) of the moving rigid object used as a reference

point to perform the velocity measurement.

5 Final considerations

This study presented, implemented and experimented a

methodology for the velocity measurement of a rigid object

in motion, having as the starting point a monocular images

sequence acquired by a digital video camera.

Table 5 Manual data extraction from images sequence acquired in the laboratory experiments

Manual point extraction

Frame Time (s) Plane image

coordinates

Space object coordinates and distance computation

Polynomial transformation Collinearity equations

Xi Yi Xo Yo Distance (mm) Xo Yo Distance (mm)

1 0.00000 367 211 311.122 803.369 0.0000 323.655 424.786 0.0000

2 0.06897 367 213 311.428 791.296 12.0729 323.856 415.896 8.8900

3 0.10345 367 216 311.868 773.609 29.7602 324.154 402.727 22.0592

4 0.13793 367 218 312.150 762.081 41.2881 324.351 394.056 30.7300

5 0.17241 366 218 309.811 762.061 41.3081 322.508 394.074 30.7121

7 0.24138 367 223 312.819 734.107 69.2619 324.833 372.75 52.0368

8 0.27586 367 226 313.198 717.857 85.5121 325.116 360.213 64.5733

9 0.31035 367 228 313.442 707.229 96.1401 325.303 351.956 72.8304

10 0.34483 367 231 313.797 691.577 111.7920 325.579 339.718 85.0683

11 0.37931 367 233 314.026 681.327 122.0420 325.761 331.656 93.1301

12 0.41379 366 235 312.035 671.205 132.1640 324.174 323.687 101.1000

13 0.44827 366 237 312.265 661.230 142.1390 324.361 315.776 109.0100

14 0.48276 365 240 310.418 646.498 156.8710 322.891 304.063 120.7230

15 0.51724 365 243 310.761 632.052 171.3170 323.176 292.497 132.2890

16 0.55172 366 247 313.344 613.201 190.1680 325.27 277.308 147.4780

18 0.62069 364 251 309.502 594.756 208.6130 322.214 262.438 162.3480

19 0.65517 364 254 309.823 581.200 222.1690 322.497 251.439 173.3470

20 0.68966 365 256 312.126 572.290 231.0790 324.368 244.174 180.6120

21 0.72414 364 260 310.437 554.725 248.6440 323.05 229.879 194.9080

22 0.75862 364 263 310.732 541.787 261.5830 323.322 219.311 205.4750

23 0.79310 364 266 311.018 529.036 274.3340 323.589 208.882 215.9040

24 0.82759 364 268 311.205 520.635 282.7340 323.766 202.004 222.7820

25 0.86207 364 271 311.479 508.180 295.1900 324.027 191.799 232.9880

26 0.89655 364 272 311.569 504.065 299.3040 324.114 188.426 236.3600

27 0.93103 364 276 311.920 487.790 315.5790 324.456 175.078 249.7080

28 0.96552 364 278 312.092 479.757 323.6120 324.625 168.489 256.2970

29 1.00000 364 281 312.344 467.836 335.5330 324.875 158.709 266.0770

30 1.03448 364 285 312.671 452.169 351.2010 325.204 145.858 278.9280

The space object coordinates transformations and the distance computation by methods: polynomial transformation and collinearity equations

Table 6 Results of the tests performed in the velocity measurement

Method used in

velocity measurement

Velocity (cm/s)

obtained with the

identification of

objects

Error (%) relative to

photoelectric

sensors (velocity

measured by object

identification)

Automatic Manual Automatic Manual

Photoelectric sensors 27.700 – – –

Collinearity equations 26.691 27.905 3.64 0.74

Polynomial

transformation

method

33.484 34.990 20.80 26.31
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The application of the modified collinearity model pre-

sented in the experiments conducted to the best results in

comparison to the other models. In the best result, the

estimated velocity was 27.90 cm/s, with an error of 0.74 %

in relation to the velocity obtained by the photoelectric

sensors (27.7 cm/s).

It is necessary to complement this study approaching the

influence of scale variation in image acquisition and know

if the use of points belonging to the object, with different

elevation values on the object of interest have influence on

the accuracy of the results achieved by the application the

proposed methods.

The implemented and tested prototype in controlled

conditions, with the proper considerations, demonstrated

that the methodology is valid. However, further experi-

mental tests should be performed, especially with the use

of different camera viewing angles, using different dis-

tances between the camera and the scene (scale factor) and

using different frame rate image acquisition to better

understand how these factors may influence the results.

The advantages of using the proposed methods in this

paper are:

1. need inexpensive and commercially available

technology;

2. not need to use other types of sensors, only the video

camera is sufficient;

3. has high computational efficiency because the required

algorithms have linear complexity;

4. does not need to make calculations related to recon-

struction of 3D images acquired at different viewing

angles (stereo pairs).

The disadvantages of the use of the proposed methods in

this paper are:

1. these methods are based on the analysis of images,

then you must use a robust segmentation method that is

able to overcome the problems encountered by the

scene environment;

2. it is necessary that specific points of the scene (space

object) with known coordinates are previously estab-

lished and these points must be identified at any time

operating system.
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