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Abstract During the last 30 years the Atomic Force
Microscopy became the most powerful tool for surface prob-
ing in atomic scale. The Tapping-Mode Atomic Force Micro-
scope is used to generate high quality accurate images of
the samples surface. However, in this mode of operation the
microcantilever frequently presents chaotic motion due to
the nonlinear characteristics of the tip-sample forces inter-
actions, degrading the image quality. This kind of irregu-
lar motion must be avoided by the control system. In this
work, the tip-sample interaction is modelled considering the
Lennard-Jones potentials and the two-term Galerkin aprox-
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imation. Additionally, the State Dependent Ricatti Equation
and Time-Delayed Feedback Control techniques are used in
order to force the Tapping-Mode Atomic Force Microscope
system motion to a periodic orbit, preventing the microcan-
tilever chaotic motion.
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1 Introduction

The Atomic Force Microscope (AFM) is a powerful tool for
atomic scale surface investigation. Its applications include
manipulation of carbon nanotubes, DNA studies, imaging of
atomic scale surfaces, nanoelectronics, and others (Rützel
et al. 1948). The AFM system consists of a microcantilever
with a sharp tip at its free end. The tip-sample interaction
forces are modulated in the microcantilever motion, that is
detected by the deflection of a laser beam that incides on a
photodetector (Fig. 1) (Balthazar et al. 2013; Nozaki et al.
2013).

The AFM operates in simple contact, noncontact and inter-
mittent (tapping) contact modes. In the tapping mode, the
microcantilever is deliberately vibrated very close to the sam-
ple surface, and near its resonant frequency, softly tapping the
sample. In this case, the influence of intermolecular forces
frequently lead the microcantilever to a characteristic nonlin-
ear motion (Jalili and Laxminarayana 2004; Bhushan 2004;
Morita et al. 2009; Zhong et al. 1993).

In the TM-AFM, the chaotic motion may occur during the
transtion from noncontact mode to the tapping mode (Hu and
Raman 2006). Besides, a complicating factor related to the
TM-AFM motion is due to the impact (contact) between tip
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Fig. 1 AFM simplified schematic diagram

and sample, and, in most cases, the tip-surface interaction
is represented by a generic tip-surface-interaction potential
avoiding more detailed and computationally expensive mod-
els (Rützel et al. 1948).

In Zhao and Dankowicz (2006) the AFM tip-sample inter-
action is modeled a mass-spring-damper system, and the
attractive and repulsive forces are represented as negative
and positive linear spring coefficients.

In Stark et al. (2004), the Derjaguin–Muller–Toporov the-
ory is used to represent the contact between the tip and the
sample surface, and in Jalili and Laxminarayana (2004), dif-
ferent modelling approaches are presented.

Additionally, in Babahosseini et al. (2009) and Misra et
al. (2008) different control strategies are used, improving
the AFM performance. According to Haeri and Khademian
(2006), many methods have been applied for the synchroniza-
tion of chaotic systems. Some refereces of synchronization of
chaotic systems can be found where periodic parametric per-
turbation methods are used in drive-response synchroniza-
tion, adaptive control method, sliding mode, backstepping
control, and H∞ (Suykens et al. 1997; Astakhov et al. 1997;
Blazejczyk-Okolewska et al. 2001; Yang et al. 1999; Wang
et al. 2004; CHUA et al. 1996; Liao 1998; Lian et al. 2002;
Wu et al. 1996; Fang et al. 1999; Yin et al. 2002; YU and
SONG 2001; Wang and Ge 2001; Lü and Zhang 2001).

In Nozaki et al. (2013) the noncontact mode of operation
is considered, and te microcantilever is modelled as a non-
linear spring-mass system. In the noncontact mode the AFM
operates in a long-range distance from the sample, and the
Van-der-Waals forces are predominant. In this case, the Opti-
mal Linear Feedback Control (OLFC) and the State Depen-
dent Riccati Equation (SDRE) control techniques are used
in order to prevent chaotic motion, leading the AFM to a
periodic motion.

In Rützel et al. (1948) the TM-AFM tip-sample interac-
tion model considers the Lennard-Jones potentials, leading
to a nonlinear partial differential equation. Additionally, sim-
plified equations of motion based on Galerkin discretization
are obtained. In Hu and Chen (2008) bifurcations and chaos

are numerically investigated for the one-term and two-term
Galerkin truncation.

In Balthazar et al. (2013) the TM-AFM mode of opera-
tion is studied. The microcantilever is modelled as a nonlin-
ear lumped parameter mass-spring-damper system, the tip-
sample interaction forces are obtained from the Lennard-
Jones potential, and the attraction basins are numerically
investigated. Additional numerical simulations show the
existence of chaotic behavior for some regions in the parame-
ter space. In order to prevent chaotic motion the OLFC and
the Time-Delayed Feedback Control (TDFC) control tech-
niques are compared.

In this work the microcantilever beam is aproximated by
an Euler–Bernoulli beam, as in Rützel et al. (1948), the
tip-sample interation forces are described by the Lennard-
Jones potentials, and only the first mode of vibration is con-
sidered. Numerical simulations are performed showing the
onset of chaotic motion in the microcantilever displacement.
The chaotic vibration is analysed by means of phase por-
traits, Fast-Fourier Transform, Poincaré section and Lya-
punov exponents plots. In order to prevent the microcan-
tilever chaotic motion two control techniques are applied,
namely, the SDRE and the TDFC technique. Both con-
trol techniques synchronize the system to a periodic orbit
obtained with the Harmonic Balance Method (HBM).

The paper is organized as follows, in Sect. 2 the math-
ematical model of the AFM is determined. In Sect. 3 the
numerical simulations results are shown. In Sect. 4 the peri-
odic solution is obtained. In Sect. 5 the control methods are
implemented and simulations results are shown, and in Sect.
6 the concluding remarks are presented.

2 AFM Mathematical Model

Microcantilevers often use lumped parameters models and
Lennard-Jones potential. On the other hand, in Rützel et
al. (1948) an elastic-Bernoulli–Euller model for straight,
rectangular cross-section microcantilevers were used, lead-
ing to nonlinear and non-autonomous partial differential
equations of motion. In Hu and Chen (2008), the one-term
Galerkin truncation is considered, leading to the nondimen-
sional mathematical model of the TM-AFM, given by:

ÿ = −d1 ẏ − y + B1 + C11

(1 − y − η sin(Ωt))8

+ C12

(1 − y − η sin(Ωt))2 + ηΩ2 E1 sin(ωt) (1)

where y represents the nondimensional positive displace-
ment of the tip, and η represents the ratio between the piezo-
electric actuator excitation and the tip-sample equilibrium
gap.
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Defining the state variables as x = [
x1 x2

]T = [
y ẏ

]T
,

the system of Eq. 1 is transformed into state space form as
follows:

ẋ1 = x2

ẋ2 = d1x2 + x1 − B1

−C11 + C12(1 − x1 − η sin(Ωt))6

(1 − x1 − η sin(Ωt))8

+ ηΩ2 E1 sin(ωt). (2)

Additionally, it is assumed that the excitation frequency is
close to the natural frequency of the microcantilever, Ω = 1,
and the other coefficients of Eq. 2 are given by: d1 = 0, 01,
B1 = −0.148967, and E1 = 1.57367.

3 Numerical Simulations Results

The numerical simulations performed with the system of
Eq. 2 are shown. The Fig. 2 shows the bifurcation dia-
gram of the microcantilever tip displacement as a function
of the nondimentional amplitude η. It can be noticed that
for η ≈ 0.21 a discontinuity occurs in the tip displace-
ment amplitude, it can be explained by the characteristics
of Lennard-Jones potentials. When the excitation amplitude
increases, for η ≈ 0.613, the period-1 motion becomes a
period-2 motion. After this period doubling, for η > 10.99
the system becomes chaotic, with indications of some period
windows in the chaotic region. The analysis of Fig. 3 shows
that for η > 0.99 the TM-AFM motion becomes chaotic.

The Lyapunov exponents are determined by the Jacobian
algorithms (Wolf et al. 1985), and are shown in Fig. 3, for
η = 0.99. The existence of positive Lyapunov exponent
(λ1 = 0.062205) indicates the onset of chaotic behavior.
Additionally, Fig. 4a shows the phase portrait with chaotic
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Fig. 2 Bifurcation diagram of the tip displacement vesus η
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Fig. 3 Lyapunov exponents (λ1 = 0.062205), for η = 0.99

behavior and the Fig. 4b shows the Poincaré section with
the presence of a strange attractor. Figure 4c, d shows the
frequency spectrum and time response of the system, respec-
tively. In Fig. 4c, the numerous resonance peaks indicate
the existence of chaotic behavior on the microcantilever dis-
placement.

4 Periodic Solutions

The aim of this section is to find periodic solutions for the
system of Eq. 2. According to Guran and Rand (1997), an
unperturbed system that presents chaotic behavior can be
considered strongly nonlinear, and traditional methods such
as the multiple scales and average methods become unsuit-
able. In this section, two different approaches for search-
ing periodic solutions are presented, the HBM (Nayfeh and
Mook 1995), and a parameter modification technique.

4.1 The Harmonic Balance Method

The main idea of the HBM is to consider a periodic solution
of 2 in the following form (Nayfeh and Mook 1995):

y = α0 + α1 cos(ωt) + β1 sin(ωt) + α2 cos(2ωt)

+β2 sin(2ωt) + · · · (3)

Considering only the first harmonic therms of Eq. 3, results:

y = α0 + α1 cos(ωt) + β1 sin(ωt) (4)

and applying the initial conditions, t0 = 0, y(0) = y0 and
ẏ(0) = ẏ0, the coefficients can be determined by:

α0 + α1 = y0 (5)

β1 = ẏ0 (6)

123



J Control Autom Electr Syst (2014) 25:732–740 735

−3 −2 −1 0 1
−5

0

5

Tip displacement

T
ip

 v
el

oc
ity

−4 −3 −2 −1 0 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Tip displacement

T
ip

 v
el

oc
ity

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Frequnecy (HZ)

T
ip

 d
is

pl
ac

em
en

t

0 50 100 150 200

−3

−2

−1

0

1

Time

T
ip

 d
is

pl
ac

em
en

t

(a) (b)

(c) (d)

Fig. 4 Microcantilever behavior

Considering the Eqs. 5 and 6 and replacing Eq. 4 into Eq. 2,
for t = 0 results that cos(ωt) = 1 and sin(ωt) = 0 and the
following constant terms are determined:

− α0 + B1 = 0 (7)

and for y(0) = 0.2 and ẏ = 0 a periodic solution is found
and is given by:

y = −0.148967 + 0.348967 cos(t) (8)

The phase portrait and the time history of the harmonic
balance solution are shown in Fig. 5.

The periodic solution found in this section is going to be
used as the target curve the control system must track.

4.2 System with Periodic Motion and Different Parameters

This section presents the system of Eq. 2, considering another
set of parameters d1 = 0.01, η = 0.01, B1 = 0.148967,
C11 = −4.59118 × 10−5, C12 = 0.149013 and E1 = 50.
In Fig. 6 the simlations results for this system are shown.

As it can be noticed the system presents periodic motion for
900 � t � 1000.

5 Control System Design

In this section presents the SDRE (Fenili and Balthazar 2011)
and the TDFC (Pyragas 2002) methods are applied to control
the TM-AFM.

5.1 SDRE Design

The SDRE technique is used to force the chaotic amplitude
displacement of the TM-AFM to the periodic orbit (Eq. 8)
obtained with the HBM. Besides the SDRE controller, a feed-
foward compensator is used to track the periodic orbit.

The nonlinear system of Eq. 2 can be rewritten in the
following form:
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Fig. 5 Harmonic balance solution
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Fig. 6 Periodic behavior of the system with new parameters

ẋ = A(x)x + F (9)

where x ∈ Rn is the state vector, A ∈ Rn×n is the state-
dependent matrix, F is the nonlinear vector of the non-state-
dependent variables.

If A(x) = A, i.e., non-state-dependent, the SDRE method
is the optimal solution of the linear quadratic regulator prob-
lem performance (LQR control) (Mracek and Cloutier 1998).
Considering the control U the sistem can be written in the
following form:

ẋ = A(x)x + F + BU (10)

with

U = u f + u (11)

where B ∈ Rn×n , and u is the linear state feedback control.

According to Tusset et al. (2013), the feedfoward control
is given by:

u f = −F (12)

Considering the state feedback strategy, the control signal
u is defined by:

u = −R−1(x)BT (x)P(x) = −K(x)e (13)

where e = (x − x∗) is the error from the periodic desired
orbit x∗, and P(x) is the SDRE solution.

The performance measure to be minimized through the
SDRE control is given by:

J =
∫ ∞

0
(eT Q(e)e + uT

r R(u)ur )dt (14)

where Q(x) and R(x) are positive definite matrices, assumed
to have constant coefficients.
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Transforming the system into state space form results:

ẋ1 = x2

ẋ2 = −x1 − dx2 + F (15)

where

F = B1 + C11 + C12(1 − x1 − η sin(Ωt))6

(1 − y − η sin(Ωt))8

+ ηΩ2 E1 sin(ωt) (16)

Introducing the feedfoward control of Eq. 12 into Eq. 15
results (Shawky et al. 2007):
[

ẋ1

ẋ2

]

=
[

0 1

−1 −d1

] [
x1

x2

]

+
[

0

1

]

u (17)

The origin of the system of Eq. 17 is the equilibrium
point, allowing the application of the SDRE control method

(Shawky et al. 2007). Where A =
[

0 1

−1 −d1

]
, B =

[
0

1

]
,

and defining the positive definite matrices Q =
[

103 0

0 103

]
,

and R = [
10−5

]
the optimal solution of the feedback regu-

lator problem is assured, and the system of Eq. 14 is asymp-
totically stable (Mracek and Cloutier 1998).

5.2 TDF Control Design

This control method has been successfully applied to various
experimental systems including AFM problems (Yamasue
and Hikihara 2006). Originally proposed by Pyragas (2002),
the continuous control input u(t, τ ) stabilyze the chaotic
oscillation through the feedback of the difference between
the current time and previous time outputs (Pyragas 2002;
Yamasue and Hikihara 2006):

u = K [g (x1(t − τ), x2(t − τ)) − g (x1(t), x2(t))] (18)

where τ is the time delay and K is the feedback gain.
The terms g (x1(t − τ), x2(t − τ)) and g (x1(t), x2(t))

represent scalar output signals measured at the current time t
and at the previous time t −τ . Since the control input (Eq. 18)
only depends on the output signal the time delay τ is automat-
ically adjusted to the period of a periodic orbit. Therefore,
the control input converges to zero after the stabilization of
the controlled system.

5.3 Implentation of the SDRE Method

In this work the SDRE is used in two different situations but
the formulation is the same. Firstly, the SDRE is designed
in order to force the chaotic system (Eq. 2) to the periodic
solution obtained by the HBM (Eq. 8). The simulation result
is shown in Fig. 7. Figure 7a presents the error between the

actual orbit and the desired orbit. Figure 7b, c show the con-
trolled and uncontrolled system’s response.

In Fig. 7a it can be seen that the error is max |x − x∗| =
0.000015 for t ≤ 100, and can be reduced by adjusting the
weighting matrices Q and R in the LQR control. The con-
trolled system is globally stable, and the proposed control
method showed to be effective.

5.3.1 Synchronization Between the Systems with Chaotic
and Periodic Motion

The main idea is to consider the periodic system as the master
and the chaotic system as the slave, and design the SDRE
control system in order to synchronize the slave system to the
master system. In Fig. 8 the synchronization of the master
and slave systems is shown.

The application of the control method showed to be effi-
cient, synchronizing the slave system to the master system,
with error max |x − x∗| = 0.0003 for t ≤ 100.

5.4 Application of TDFC Method

This section presents the application of TDFC method in the
system of Eq. 2. Assuming that the oscillation velocity of Eq.
2 can be measured. The control signal is given by:

u = K [x2(t − τ) − x2(t)] (19)

The control signal (Eq. 19) is applied to the system of Eq.
2, resulting that:

ẋ1 = x2

ẋ2 = d1x2 + x1 − B1 − C11 + C12(1 − x1 − η sin(Ωt))6

(1 − y − η sin(Ωt))8

+ ηΩ2 E1 sin(ωt) + K [x2(t − τ) − x2(t)] (20)

The time delay τ and the feedback gain K are important
control parameters that strongly affects the control perfor-
mance. The time delay τ = 2π

Ω
is used to stabilize an orbit

with the same frequency of the microcantilever external exci-
tation. According to Pyragas (2002), the feedback gain may
adjusted to K = 0.2. Next, simulations show the application
of the TDFC in the chaotic system. As it can be seen, the
control method showed to be efficient in the task of keeping
the system controlled Fig. 9.

6 Conclusions

In this work the microcantilever of the TM-AFM control
system is modelled as an Euler–Bernoulli beam, and the tip-
sample interaction forces are described by Lennard-Jones
potentials. The nonlinear partial diferential equations are
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Fig. 7 SDRE implementation simulation results
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Fig. 9 TDF control implementation

truncated and only the first term of the Galerking aproxi-
mation is considered. Simulations have shown the existence
of chaotic behavior by means of Lyapunov exponents, fre-
quency spectrum, phase plots and Poincaré section plots.
Aditionally, the SDRE and the TDFC techniques have been
used in order to prevent the microcantiler chaotic motion.
The SDRE control system has been effective in forcing the
TM-AFM to the periodic orbit obtained with the HBM, and
in keeping the error well damped. Also, the TDFC has been
efficient, forcing the microcantiler to a periodic motion and
keeping the system stable. The main advantage of the SDRE
method, is the possibility of arbitrarily choose the desired
periodic orbit, which is not possible for the TDFC. On the
other hand, the TDFC implementation is very simple, basi-
cally depending on the choice of the time delay τ .
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