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Abstract
We analyse the constraint structure of the background field model for three-
dimensional gravity including a cosmological term via the Hamilton–Jacobi
formalism. We find the complete set of involutive Hamiltonians that assures
the integrability of the system and calculate the characteristic equations of the
system. We established the equivalence between these equations and the field
equations and also obtain the generators of canonical and gauge
transformations.

Keywords: constrained systems, Hamilton–Jacobi formalism, back-
ground field

1. Introduction

Topological quantum field theories were introduced by Witten [1] in the late 80s and until
now they have found a wide range of applications in physics. One characteristic of these
theories is that their correlation functions do not depend on the spacetime metric. According
to Birmingham [2] the topological quantum field theories can be divided into two groups: the
Witten (or cohomological) type and the Schwarz type. The Chern-Simons gauge theory is a
Schwarz type topological quantum field theory defined in odd dimensions which is used, for
example, in addition to three-dimensional kinetic actions to build the so-called topologically
massive theories [3].

The background field (BF) model is another Schwarz type topological quantum field
theory and had been widely used due to its relation with gravity. For example, it has been
shown that the two-dimensional BF model can be equivalent to the two-dimensional Jackiw-
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Teitelboim gravity [4] for a given gauge group [5]. The three-dimensional BF model is
equivalent to the first order formulation of pure general relativity under the Lorentz gauge
group SO 2, 1( ) [6] and the four-dimensional gravity is equivalent to the Plebanski action [7]
which consists of a BF action plus a Lagrangian multiplier. An extensive review between
these equivalences can be found in [8].

The BF lower dimensional models of gravity are good laboratories for the study of spin
foam quantization [9] and loop quantum gravity. In both schemes of quantization, the sim-
plectic structure of the BF model is of utmost importance. In order to identify the correct
phase space, the Dirac canonical analysis [10] is one of the most used tools. This analysis has
been done in two- [11] and three- [12] dimensional BF models of gravity. Nonetheless, there
are other schemes of constraint analysis, such as the Faddeev–Jackiw [13] formalism and the
Hamilton–Jacobi formalism.

A first attempt to use the Hamilton–Jacobi formalism as an approach to constrained
systems was given by Dominici et al [14]. Here we will deal with the approach developed by
Güler [15] as an extension to Carathéodory’s equivalent Lagrangians method for the calculus
of variations [16]. The conditions for stationary action are reduced to a set of Hamilton–
Jacobi partial differential equations, also called Hamiltonians, that must obey the Frobenius
integrability condition. In [17] has been shown that in order to satisfy the integrability
condition the non-involutive Hamiltonians must be eliminated, and this way they redefine the
dynamic of the system by building a generalised bracket. Therefore, we end up with a set of
complete involutive Hamiltonians, which plays the role of generators of the canonical
transformations [18]. The Hamilton–Jacobi formalism has been generalised to higher order
Lagrangians and Berezin systems, among others [19], as well as applied to different kind of
physical systems, more recently to topologically massive theories [20] and gravity models
[21], including the two-dimensional BF gravity [22]. In this article we will apply the
Hamilton–Jacobi formalism to the three-dimensional BF model for gravity.

In the following section we will show the Hamilton–Jacobi formalism (for a more
detailed explanation see [17, 18]). In section 3 the three-dimensional BF gravity will be
presented. In section 4 we will perform its Hamilton–Jacobi constraint analysis and build the
generalised brackets. In section 5 we will compute the characteristic equations and analyse the
dynamical evolution along the independent parameters of the theory. From this analysis we
obtain the equivalence between the Lagrangian equations of motion and the temporal evo-
lution of the CE. From the evolution along the parameters related to the involutive Hamil-
tonians, we obtain the generators of canonical and gauge transformations. In section 6 we will
discuss the results.

2. The Hamilton–Jacobi formalism

Let us consider a physical system with a Lagrangian function L L x x t, ,i i( ˙ )= , where the
Latin indices i j, go from 1 to n, with n being the dimension of the configuration space. This
Lagrangian is called singular or constrained if it does not satisfy the Hessian condition, which
states that the matrix elements Wij

L

x xi j

2

˙ ˙
= ¶

¶ ¶
have a determinant equal to zero. Whenever the

Hessian condition ( Wdet 0ij ¹ ) is not satisfied, it is implied that some of the conjugated

momenta pi
L

xi˙
= ¶

¶
are not invertible on the velocities. By considering k non-invertible

momenta and m n k= - invertible momenta, we have
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p
L

x
0, 1z z˙

( )-
¶
¶

=

where z k1, ,= ¼ . Defining Hz
L

xz˙
º - ¶

¶
, the above equation is rewritten as

H p H 0. 2z z z ( )¢ º + =

We call the constraints represented in this way Hamiltonians. Defining p S

t0 º ¶
¶
, the

Hamilton–Jacobi equation is the Hamiltonian

H p H 0. 30 0 0 ( )¢ º + =

The canonical Hamiltonian function H p x p x La
a

z
z

0 ˙ ˙= + - , with a m1, ,= ¼ , does
not depend on the non-invertible velocities xz˙ if the constraints are carried out. Putting
together (2) and (3), we form the initial set of Hamilton–Jacobi partial differential equations:

H p H 0, 4( )¢ º + =a a a

where k0, 1, ,a = ¼ . Through Cauchy’s method [16], the characteristic equations related to
the first order equations system (4) are given by

x
H

p
t p

H

x
t S p x H td d , d d , d d d . 5a

a
a a a

a( ) ( )=
¶ ¢

¶
= -

¶ ¢

¶
= -a a a a

a
a

From these differential equations, the Poisson brackets defined on the extended phase
space (x t p p, , ,a

a
a

a) can be used to express in a concise form the evolution of any function
f f x t p p, , ,a

a( )= a
a :

f f H td , d . 6{ } ( )= ¢a a

This is the fundamental differential whereby the Hamiltonians can be seen as the generators
of the dynamical evolution of the phase space functions.

A geometrical interpretation can be given at this point. The solutions of the first two
equations of (5) give rise to a congruence of curves on the reduced phase space (x p,a

a). The
characteristic curves x t x,a z( ) describe the dynamical trajectories and depend on the k 1+
parameters ta which in turn must be regarded as the independent variables of the system. A
complete solution of (4) is given by a family of surfaces orthogonal to the characteristic
curves, and its existence is ensured by satisfying the Frobenius integrability condition [18]
which is written as

H H C H, . 7{ } ( )¢ ¢ = ¢a b ab
g

g

This means that the Hamiltonians must close a Lie algebra. Equivalently,

Hd 0. 8( )¢ =a

Hamiltonians that satisfy the Frobenius integrability condition are called involutives
while the non-involutives are those that do not satisfy it. We can add new constraints to the
system by imposing condition (8) and then completing the set of Hamilton–Jacobi partial
differential equations. However, sometimes this procedure is not sufficient to make the set of
Hamilton–Jacobi partial differential equations integrable. When condition (8) is imposed,
some Hamiltonians may provide relations that exhibit dependence between some parameters.
These Hamiltonians can be used to construct a new algebra which we call the generalised
brackets:

A B A B A H M H B, , , , .a ab b
1{ } { }( ){ } { }* = - ¢ ¢-
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The indices a and b are related to the non-involutive Hamiltonians whose parameters are
somehow related. The matrix M is built from the Poisson brackets of these Hamiltonians, i.e.,
its elements are M H H,ab a b{ }= ¢ ¢ . In this way, these non-involutive Hamiltonians are
absorbed in the new algebra. The integrability of the remaining Hamiltonians must be ana-
lysed through the generalised bracket algebra instead of the Poisson bracket algebra. New
Hamiltonians may be added to complete the Hamilton–Jacobi partial differential equations set
in this process until we get as a result an integrable set of Hamilton–Jacobi partial differential
equations.

Let us define the variables on the extended phase space as z x t p p, , ,I a
a( )= a

a and define
the vector field Xa with components

X z H, , 9I I{ } ( )*º ¢a a

such that any function on the extended phase space can be written as

F F H t X F td , d d . 10{ } [ ] ( )*= ¢ =a
a

a
a

The vectors Xa are related to the dynamical evolution of the system, since the characteristic
equations are included in (10). From the definition of vectors Xa and using the Jacobi Identity
we obtain

X X F F H H F H H H H F, , , , , , , . 11{ } { }{ }{ } { }{ } ( )* * * * * *= ¢ ¢ - ¢ ¢ = ¢ ¢a b b a a b a b⎡⎣ ⎤⎦
Whenever the system is integrable, i.e., when (7) or (8) is valid, we can write

X X F f H F f X F f F H, , , , 12{ } { }[ ] ( )* *= - ¢ = - ¢a b ab
g

g ab
g

g ab
g

g⎡⎣ ⎤⎦
where f C= -ab

g g
ab. If the structure constants are independent of the variables of the

extended phase space the integrability condition becomes a condition over the commutator

X X f X, , 13( )=a b
g
ab g⎡⎣ ⎤⎦

which is, indeed, the necessary condition for Xa to be a complete basis.
In general, a transformation of a function F can be written as

F t X F, 14( )d d= a
a

where t t t¯d = -a a a are arbitrary functions of z I. However, note that if we choose t tdd =a a,
equation (14) becomes the fundamental differential. For any variable of the extended phase
space z I we have

z z t z t t X z . 15I I I I( )¯ ¯ ( ) ( )d d= - =a a a
a⎡⎣ ⎤⎦

Now, let us consider a transformation g such that

z t gz t . 16I I( )¯ ¯ ( ) ( )=a a

In this case

g t X1 . 17( )d= + a
a

We say that transformation g carries the infinitesimal flows generated by the vectors Xa.
These are what we call characteristic flows. It can be shown that whenever the integrability
condition is satisfied, the transformation g has an inverse

g t X1 181 ( )d= - a
a

-
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and also preserves the symplectic structure x p t p H td d d d d da
aw º  +  + a

a a
a

g g . 191 ( )w w=-

This shows that g are canonical transformations and that the complete set of involutive
Hamiltonians H ¢a are the generators of these transformations.

In order to relate the canonical transformations with the gauge ones, we need to restrict
the study to fixed times t t 00d d= = , which is the classical equivalent to a fixed point
transformation in field theory. The transformation on any variable z I now reads

z z H t, , 20I I
z

z{ } ( )*d d= ¢

If we can keep this transformation canonical, the integrability condition must be satisfied, that
is,

H H C H, . 21x y xy
z

z{ } ( )*¢ ¢ = ¢

Nonetheless, this condition does not guarantee the integrability on the algebra of the
Hamiltonians, which is

H H C H C H, . 22x y xy xy
z

z
0

0{ } ( )*¢ ¢ = ¢ + ¢

To conciliate both equations we must consider whether C 0xy
0 = or H 00¢ = . However,

condition C 0xy
0 = is too strong since it implies that H H, 0z0{ }¢ ¢ = , which is almost never

satisfied. On the other hand, the condition H 00¢ = constrains the phase space. Under this
assumption, we define

G H t , 23z
zcan ( )dº ¢

which is the generator of the canonical transformations, once

z z G, . 24I I can{ } ( )*d =

3. Three-dimensional BF model

Let us consider a d-dimensional manifold, a Lie group G, a connection A and a d 2( )-
form B called the background field. With those elements let us build the following action

W tr B F , 25BF [ ] ( )
ò= 

where F is the curvature of the connection A, i.e., F = DA. Due to the properties of the trace
and the exterior product ∧ it is straightforward to see that this action is gauge invariant.

In three dimensions we can add another invariant, tr B B B[ ]  . Therefore, the three-
dimensional BF action can be written as

W tr B F A B B B , 26BF ( ( ) ) ( )
ò k=  +  

where κ is a constant. Due to its construction, (26) is invariant under gauge transformation:

A D B B, , , 27[ ] ( )d c d c= =

but also quasi-invariant under shift transformation:

B D A B, 3 , , 28[ ] ( )d h d k h= =

with ξ and η being arbitrary functions.
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It has been shown that in three dimensions and considering G as the Lorentz group
SO 1, 2( ), the BF action (26) is equivalent to Einstein–Hilbert-Palatini gravity in terms of
vielbeins. Therefore, considering G as the Lorentz group and 3k = -L , the action (26)
represents Riemann gravity plus the cosmological constant.

Before we proceed with any kind of quantization scheme, the reduced phase space of the
system must be well defined. The true degrees of freedom are determined after the analysis of
the constraints of the theory.

4. The Hamilton–Jacobi analysis of the 3D BF gravity

The constraint analysis is not covariant. We refer to one specific time choice to build the
Hamilton–Jacobi equations. It is then appropriate to leave the differential form notation and
write the Lagrangian in terms of the components of the background and gauge field, i.e.,

A A J x B B J xd , d , 29a
a

a
a ( )= =m

m
m

m

where Ja are generators of the G SO 1, 2( )= group. These generators satisfy J J f J,a b ab
c

c[ ] =
and tr J Ja b ab

1

2
( ) h= , where diag , ,ab ( )h = + - - . Therefore

B F f B B B
1

2 3
, 30a

a
abc

a b c ( ) = -
Lmgn

m gn m g n
⎛
⎝⎜

⎞
⎠⎟

where F A A f A Aa a a
bc
a b c= ¶ - ¶ +mn m n n m m n . The equations of motion are

F f B B0 , 31a
bc
a b c( ) ( )= - Lmgn

gn g n

D B0 . 32a ( )= mgn
g n

Here we have made use of the definition of the covariant derivative

D f A . 33a a
bc
a b c ( )q q qº ¶ +m n m n m n

Furthermore, equation (31) represents the dynamical equation of three-dimensional gravity,
and (32) represents the zero torsion condition.

Now, to begin with the Hamilton–Jacobi analysis of the three-dimensional BF gravity,
we compute the momenta ap and aP conjugated to Aa

m and Ba
m , respectively,

A
B , 34a a a

0

0 ( )


p º
¶

¶¶
=m

m

mn
n

B
0. 35a a

0
( )

P º
¶

¶¶
=m

m

The expressions above do not depend on any velocities Aa
0¶ m , Ba

0¶ m . Therefore they are
canonical constraints of the theory. It turns out that the canonical Hamiltonian density is given
by

A D B B F f B B . 36a
a

a
a

bc
a b c

0
0

0 0 ( ) ( ) = - + - Lgn
g n gn g n

⎡⎣ ⎤⎦
Let us define S0p º ¶ . Then, the initial set of Hamilton–Jacobi partial differential

equations is

0, 370 ( ) p¢ º + =
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0, 38a a
0 0 ( ) p¢ º =

B 0, 39a a a
1 1

2 ( ) p¢ º - =

B 0, 40a a a
2 2

1 ( ) p¢ º + =

0. 41a a ( )¢ º P =m m

The first Hamiltonian¢ is associated with the time parameter t x0º . The Hamiltonians a¢m

arose from the non-invertible momenta ap
m and are related to the parameters Aa al ºm m .

Analogously, the Hamiltonians a¢
m are referred to the parameters Ba a ºm m .

The fundamental Poisson brackets of the model are

A x x x x, , 42a
b b

a 2{ }( ) ( ) ( ) ( )p d d d¢ = - ¢m
n

m
n

B x x x x, . 43a
b b

a 2{ }( ) ( ) ( ) ( )d d dP ¢ = - ¢m
n

m
n

The fundamental differential characterizes the evolution of any function of the phase space. It
is expressed as

f x f x x t f x x

f x x x

d , d , d

, d d .
44

a
a

a
a 2

(
)

{ }
{ }

( ) { ( ) ( )} ( ) ( )

( ) ( )
( )



 



ò l= ¢ ¢ + ¢ ¢

+ ¢ ¢ ¢

m
m

m
m

Now we check the integrability of the Hamilton–Jacobi partial differential equations. When
the IC is applied to the Hamiltonians a

1¢ , a
2¢ , a

1¢ and a
2¢ we get relations of dependence

between the parameters related to them. This information tells us that these Hamiltonians are
non-involutive and can be used to construct the generalised brackets.

Let us rename ha a
0 1º ¢ , ha a

1 2º ¢ , ha a
2 1º ¢ and ha a

3 2º ¢ . Let us denote
I J, 0, 1, 2, 3= as the indices of the elements of the matrix M x y h x h y, ,ab

IJ
a
I

b
J( ) { ( ) ( )}º .

We have

M x y x x,

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

.ab 2 ( )( ) d d=

-

-
- ¢

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
This matrix has an inverse

M x y x x,

0 0 0 1
0 0 1 0
0 1 0 0

1 0 0 0

,ab1 2 ( )( ) d d= -

-

- ¢-

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
and with this inverse we define the generalised brackets as

f x g x f x g x f x h y M y y h y g x y y, , , , , d d .c
I

IJ

cd
d
J1{ } { }{ ( ) ( )} { ( ) ( )} ( ) ( ) ( ) ( ) ( )* ò¢ = ¢ - ¢ ¢ ¢ ¢-⎡⎣ ⎤⎦

We can use this expression to find the fundamental generalised brackets of the theory. The
non-vanishing results are given below:

A x x x x, , 45a
b b

a 2{ } ( )( ) ( ) ( )*p d d d¢ = - ¢m
n

m
n
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B x x x x, , 46a
b b

a
0

0 2{ } ( )( ) ( ) ( )* d dP ¢ = - ¢

A x B x x x, . 47a b ab
0

2{ } ( )( ) ( ) ( )* d d¢ = - ¢m n mn

Comparing with the original Poisson brackets (42), (43), we note that B ,a
i

i
aP are no longer

conjugated variables. In fact, Ba
1 now plays the role of a

2p- and Ba
2 the role of a

1p . Only
B x ,a

a0
0( ) P and A ,a

bpm
n remain as conjugated variables.

After building the generalised brackets, the fundamental differential (44) now takes the
form

f x f x x t f x x

f x x x

d , d , d

, d d .
48

a
a

a
a

0
0

0
0

2)
(
{ }

{ }
( )

( ) { ( ) ( )} ( ) ( )

( )
( )

* *

* 

 



ò l= ¢ ¢ + ¢ ¢

+ ¢ ¢ ¢

We still need to analyse the integrability condition of the Hamiltonians a
0¢ and a

0¢ . By
imposing d 0a

0¢ = and d 0a
0¢ = we note that we need to introduce two new Hamiltonians:

D B 0, 49a a0 ( )¢ º =gn
g n

F f B B
1

2
0. 50a a a

bc
b c0 ( )¢ º - L =gn

gn g n
⎡⎣ ⎤⎦

Note that the canonical Hamiltonian (36) now can be written as A Ba
a

a
a

0 0 0  = - ¢ - ¢ .
The fields a

0¢ and a
0¢ have the role of Lagrange multipliers since they are coefficients of the

constraints in the canonical Hamiltonian. The new constraints also satisfy the integrability
condition and there is no need to introduce new constrains or redefine the algebra. The
integrability programme is then achieved and the complete set of involutive Hamiltonians is

, , ,a a
a a0 0   ¢ ¢ ¢ ¢ .

Let us define

C y y yd , 51a a 2( ) ( ) ( ) ( )òa a¢ º ¢

D y y yd , 52a a 2( ) ( ) ( ) ( )òb b¢ º ¢

where α and β are weight functions. The below relations follow:

C C f C, , , 53a b ab
c

c
1 2 1 2{ }( ) ( ) ( ) ( )*a a a a¢ ¢ = ¢

C D f D, , , 54a b ab
c

c
1 1 1 1{ }( ) ( )( ) ( )*a b a b¢ ¢ = ¢

D D f C, , . 55a b ab
c

c
1 2 1 2{ }( ) ( ) ( ) ( )*b b b b¢ ¢ = -L ¢

Note that for Λ = 0, i.e., the pure three-dimensional gravity, the Hamiltonians satisfy the
Poincarè algebra ISO 2, 1( ), and we also identify D a¢ , which now commutes with all the other
Hamiltonians as the generator of translations. For 0L ¹ , the Hamiltonians close the AdS or
dS algebra.

5. Characteristic equations of the 3D BF gravity

The integrability condition allows us to find the complete set of involutive Hamiltonians:
, , ,a a

a a0 0   ¢ ¢ ¢ ¢ , all of which play a role in the evolution of the systems and must be added
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in the fundamental differential. Let us rename

,

,

,

,

a a a

a a a

a a a

a a a

0 0 0

1 0 1

2 2

3 3

⟶
⟶
⟶
⟶

 

 

 

 

w

w

w

w

¢ º ¢

¢ º ¢

¢ º ¢

¢ º ¢

where the aw are the respective parameters. The final form of the fundamental differential is

f x x f x x t f x xd d , d , d . 56a a
0

3

{ }( ) { ( ) ( )} ( ) ( ) ( )* * ò å w= ¢ ¢ ¢ + ¢ ¢
k

k k

=

⎛
⎝⎜

⎞
⎠⎟

The characteristic equations are obtained from (56) by evaluating f for the fields A B,a a( )m m and
the momenta ,a a( )p Pm m . For the first set we have

A D A f B B t D f Bd d d d d , 57a ab
b

i
i

a a
bc i

b c ab
i b

ab
c i

c
b

0 0
0 0

2 3( ) ( )d d w d d w w= + - L - + Lm m m
⎡⎣ ⎤⎦

B D B f A B t f B Dd d d d d , 58a a i
i

a a
bc

b
i
c ab

c i
b

c
ab

i b
0 1

0 0
2 3( ) ( )d w d w d w= + - - -m m m

⎡⎣ ⎤⎦
and

D B D B f A B t

f B D

d d

d d ,
59

a a a a
bc

b c

bc
a c b a

b
b

0
0 0 0

0 2 3{ }
( )

( )




p d d

d w d d w

= - -

+ +

m gr m
g r r

m
g g

gr
g
m

r g
m

g

⎡⎣ ⎤⎦

td d . 60a a0
3 ( )dP = ¢m m

The integrability condition ensures independence between the parameters related to the
involutive set of Hamilton–Jacobi partial differential equations. Therefore, since t x0= is one
of these parameters, we can analyse the temporal evolution of the fields independently. We
have

A D A f B B , 61a i
i

a a
bc i

b c
0 0 0( ) ( )d¶ = - Lm m

B D B f A B . 62a i
i

a a
bc

b
i
c

0 0 0( ) ( )d¶ = -m m

Note that the component 0m = of these equations states that A B,a a
0 0 are time independent

parameters. This reinforces the character of the Lagrange multipliers of these variables in the
canonical Hamiltonian. On the other hand, the spatial components of (61) are equivalent to
equation (31). Analogously, the spatial components of (62) resemble equations (32).

For the second set of characteristic equations, we have

D B D B f A B , 63a a a a
bc

b c0
0

0 0 0( ) ( )p d d¶ = - -m gr m
g r r

m
g g

⎡⎣ ⎤⎦
. 64a a0 0

3 ( )d¶ P = ¢m m

Note that the temporal evolution of the component ap
m is equal to the Hamiltonian 0a

2¢ = ,
leaving a

0p undetermined, just as its correspondent conjugated variable A a
0 . For the component

a
ip , we find that its temporal evolution equation is in agreement with the definition of

canonical momenta. For aPm, we find that its temporal evolution is equal to zero. This result is
in agreement with the fact that a

0P is conjugated to a Lagrange multiplier and a
iP is no longer a

canonical variable.
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5.1. Generators of canonical and gauge transformations

As it was shown in section 2, the characteristic equations also give us the generator of the
canonical transformations. In our case, we need to consider the variations along the inde-
pendent parameters aw .

A D f Bd d d d , 65a ab
b

i ab
i b

i ab
c i

c
b

0 0 2 3 ( )d d w d d w d w= - - Lm m m m

B f B Dd d d d . 66a a i ab
c i

b
c

i ab
i b

0 1 2 3 ( )d w d w d d w= - -m m m m

These expressions can be rewritten in a much simple form if we define the function

G xd d d d d . 67a
a

a
a

a
a

a
a

can
0

0
1

1
2

2
3

3 2 ( )   ò w w w wº ¢ + ¢ + ¢ + ¢⎡⎣ ⎤⎦
It enables us to write

A A Gd , , 68a a can{ } ( )*=m m

B B Gd , . 69a a can{ } ( )*=m m

As the variations of the phase space coordinates can be expressed in this way, we call Gcan the
generator of canonical transformations.

On the other hand, in order to relate generator of canonical transformations with that of
symmetries, we need to go further with the integrability condition. Let us consider the set of
variations (65) and (66) now rewritten as

A D f B , 70a ab
b

i ab
i b

i ab
c i

c
b

0 0 2 3 ( )d d d dw d d dw d dw= - - Lm m m m

B d f B D , 71a a i ab
c i

b
c

i ab
i b

0 1 2 3 ( )d d w d dw d d dw= - -m m m m

where the variations adwk may depend on each other. If the variations (70), (71) are
symmetries of the three-dimensional BF gravity, then they must be solutions of the fixed point
variation

F f B B B B D A
1

2
0. 72a

bc
a b c a a

a( ) ( ) d d d= -L + =amn
mn m n a

amn
m n a

By replacing (70)–(72) and using the Bianchi identity it follows that

F f B B D D F D

f B B f B B B D

f B D B B D B

1

2
1

2

. 73

ij
ij
a a

abc
b

c i
a

j a a a j i
a

abc
ij

i
b

j
c a

nm
a n m a

j
c

i
b

abc
ij a

i j
b c

i
a

j
b c

1
0

2
0

2 0
0

3

1
0

2
0

3

0
3

0
3

( ) ( )

( ) ( )
( )

( )







d dw dw dw dw dw

dw dw dw

dw dw

= + + + +

+ -L + -

+ -L - +

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦
Since this is one equation for four parameters, we expect to obtain a relation between some of
the adwk. A good approach to solve 0d = is by considering special cases, such as setting
some of the parameters equal to zero. However, by inspection of (73), we see that 0a0dw =
or 0a1dw = are not good choices for solving the equation. On the other hand, if we consider

0a3dw = , equation (73) becomes
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F f B B D D

f B B f B

1

2
1

2
. 74

ij
ij
a a

abc
b

c i
a

j a a

abc
ij

i
b

j
c a

nm
a n m

1
0

2
0

2 0

1
0

2

( ) ( )
( ) ( )





d dw dw dw dw

dw dw

= + + +

+ -L +

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Of course, we have an invariance, 0d = , when we choose Da a
0

0
2dw dw= - and

f Ba
bc
a b c1

0
2dw dw= - . By replacing it in the set of Hamilton–Jacobi variations, we get

B f B

A D

,

.

a
bc
a b c

a a

2

2

d dw

d dw

=-

=-
m m

m m

By setting a a2w c= - , we obtain the gauge transformation (27). These transformations are
generated by

G D f B xd . 75a b
bc
a c a

a
Gauge

0 0 1 0 2
2 2 ( )  ò dcº ¢ + ¢ - ¢⎡⎣ ⎤⎦

Now, if we set 0a2dw = , we obtain

F B D F D

f B B B D B B D B B B D

1

2
1

2
,

ij
ij
a a

i
a

j a a j i
a

abc
ij

i
b

j
c a a

i j
b c

i
a

j
b c a

j
c

i
b

1 0
0

3

1
0

3
0

3
0

3( ) ( )





d dw dw dw

dw dw dw dw

= + +

+- L - + -

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

which, up to boundary terms, becomes

D B f B F D

f B B D

1

2
1

2
. 76

ij
j i

a
a abc

b c
aij

a a

ij
abc i

a
j
b c c

1
0

3
0

3 0

0
3 0

( ) ( )

( ) ( )





d dw dw dw dw

dw dw

= - - L + +

+ - L +

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

This variation is equal to zero if we set Da a0
0

3dw dw= - and f Ba abc
b c1
0

3dw dw= L . Under
these conditions

B D

A f B

,

.

a a

a abc
b c

3

3

d dw

d dw

= -

= L
m m

m m

The shift transformation (28) can be obtained just by setting a a3h w= - in the previous
relations. Its correspondent generator is given by

G D f B xd . 77a
bc
a b c a

a
shift

0 0 1 0 3
3 2 ( )  ò dhº ¢ - L ¢ - ¢⎡⎣ ⎤⎦

Therefore, we have obtained the gauge and shift transformations as well as their respective
generators with the use of the Hamilton–Jacobi formalism.

6. Final remarks

We have used the Hamilton–Jacobi formalism to analyse the constraint structure of the three-
dimensional BF gravity with a cosmological constant Λ. This procedure consisted of finding
the complete set of involutive Hamiltonians that generates the dynamical evolution of the
system. We achieved this using the Frobenius integrability condition over the initial set of
Hamilton–Jacobi partial differential equations. We noticed that there is a subgroup of
Hamiltonians ( , , ,a a

a a1 2
1 2   ¢ ¢ ¢ ¢ ) that does not satisfy the integrability condition and with
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them we built the generalised brackets and reduced the phase space such that the system was
governed by a new symplectic structure. By satisfying the integrability condition for the rest
of the Hamiltonians, we found new constraints ( ,a a ¢ ¢ ). In the case of a cosmological
constant equal to zero, these Hamiltonians satisfy the ISO 1, 2( ) algebra and the Hamiltonians

a¢ commute. When the cosmological constant is not zero, the Hamiltonians satisfy the AdS
or dS algebra.

Then, we computed the characteristic equations, which depend on the time parameter x0

and the parameters awk related to the involutive Hamiltonians. Since all the Hamiltonians
satisfy the integrability condition, their correspondent parameters are linearly independent.
This means that evolution along any parameter can be considered independently. As a result,
we saw that the time evolution of the characteristic equations are equivalent to the field
equations of BF gravity, and the evolution along the parameters awk is related to the canonical
transformations. Therefore, the linear combination of the four corresponding Hamiltonians
gave the generator of the canonical transformations.

It was possible to relate the generator of canonical transformations with those related to
the gauge and shift transformations. To achieve this, we considered the awk parameters as
dependent on each other. Furthermore, if they are an invariance of the theory they must
eliminate, up to the boundary term, the fixed point Lagrangian variation. This way, we needed
to solve an equation for four dependent variables.

As we mentioned earlier, Dirac’s formalism is one of the most powerful tools to deal with
constraint analysis. However, the problem of finding the gauge structure of a particular theory
as a result of its constraint analysis is still a problem being discussed. Dirac’s conjecture states
that all of the first-class constraints generate the symmetries. Nevertheless, it is only a con-
jecture and some models have been found that contradict it (see for example [23]). One of the
most used algorithms to build the gauge generators of a constrained theory is the one given by
Castellani [24]. As we have shown, in the Hamilton–Jacobi formalism we have obtained the
generators of gauge and shift transformations without the use of Castellani’s algorithm.
Furthermore, we have obtained all constraints from a mathematical theorem: the Frobenius
integrability condition. Also note that this condition allows us to build the generalised
brackets, which, even though they have a close resemblance to Dirac’s brackets, are defined
with only non-involutive constraints.

There is still one element that has not been fully explored yet, which is the characteristic
equation that governs the dynamic of the function S in (5). The integration of this char-
acteristic equation for regular systems leads us to the action functional in the canonical form.
Therefore, for constrained systems, it will be related to an extended action functional that
could provide a method for quantisation via the path integral; however, the quantisation
procedure is still a work in progress.
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