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Abstract In this paper, we review our main results involving the single particle momentum distribution of
bosonic trimer states in two and three dimensions. A summary table makes easier the comparison between the
matrix elements and the different terms of the momentum distributions. We also show a practical method to
continuously interpolate between different dimensions.

1 Introduction

Many nature laws can be strongly affected if dimensionality is changed. As already pointed out by Landau in
his classic book [1], any infinitesimal amount of attraction produce a bound state in 2D, while a finite amount
of attraction is necessary to bind a 3D system. A remarkable phenomenon related to the dimensionality of
the system arises in the study of three identical bosons, where the differences in the energy spectrum (and
also other observables) are directly related to the number of dimensions that this system may access: in 2D
there are only two three-body bound states linked to one two-body bound state in the limit where the range of
the potential goes to zero [2]. On the other hand, in 3D, the number of three-body bound states may grow to
infinity [3,4]—this effect is now called by Efimov effect.

The Efimov effect corresponds to an accumulation of the three-boson energy levels, toward zero energy,
when the two-body scattering length tends to infinity. In this limit, where the two-body energy is zero, the
energies of successive states are geometrically spaced obeying a universal ratio. These states were predicted
and observed for three identical bosons in 3D systems [5,6], but are absent in 2D even in the most favorable
scenario of mass-imbalanced systems [7,8], where a mass-dependent effective potential favors the binding of
a light particle to a heavy dimer [9].

The appearance of Efimov states in 3D is very closely related to the possibility of collapse the three-body
system. This collapse (Thomas collapse), firstly derived by Thomas in 1935, says that the three-body ground
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state energy may be made as deep as you want by decreasing the range of the potential (r0)—in the limit
r0 → 0 the three-body binding energy tends to infinity. This divergence demands the inclusion of a cutoff or,
equivalently, a new physical scale independent of the two-body energy. In 2D, this collapse is absent in such a
way the three-body observables are proportional to the two-body energy. For example, the three-body ground
state energy is 16.52E2 and the energy of the first excited state is 1.267E2 for three identical bosons [2].

There are many examples of observables in cold atomic gases that are affected by the dimensionality of
the system. We would like to start mentioning the two- (C2) and three-body (C3) contact parameters. The
connection between universal two-body correlations to many-body properties through the quantity C2 was
proposed by Tan [10] (this quantity is often called Tan’s contact parameter). For example, the variation in
the energy of a Fermi gas of momentum kF with the interaction strength (scattering length a) is directly
proportional to this C2, namely

2π
dE

d[−1/(kFa)] = C2. (1)

Furthermore, the virial theorem for this atomic gas also relates with C2 through

E − 2V = − C2

4πkFa
. (2)

These relations, in the way they are presented, were confirmed in experiments with two-component Fermi
gases [11], where each side of Eqs. (1) and (2) were measured independently and after compared to each other.
A later experiment showed that similar relations also hold for bosons [12].

The quantities on the left-hand-side of Eqs. (1) and (2) are defined through the many-body properties of the
gas, while the contact parameter is defined in the few-body sector. A way to determine this parameter is to find
the coefficient in the leading order of the asymptotic one-body large momentum density, n(q), of few-body
systems, given by

lim
q→∞ n(q) → C2

q4
+ C3F(q) + · · · . (3)

The next order in this expansion defines the three-body contact parameter,C3, whichmay be important only for
bosonic systems, since the Pauli principle suppresses the short-range correlations for two-component Fermi
gases. Notice that the momentum dependence of the leading order term in this expansion is the same for 1D,
2D and 3D systems [13], but the function F(q) depends on the dimensionality of the system [14]. The two-
and three-body contact parameters were determined for three identical bosons in 2D [14] and 3D [15], and for
mixed-species systems in 2D [16] and 3D [17].

An interesting point about the two-body contact parameter is that, despite the considerable difference
between the binding energy of both states for three identical bosons in 2D (where the well-known limit cycle
is not present), the ratio C2

E3
is the same for the two states [14]. In general, for a mixed-species system—which

have a richer energy spectrum [9,18]—the ratio C2
E3

is not the same for all states, but only in the special and
experimentally accessible case of a three-body system composed for at least two identical non-interacting
particles [16].

Among the several differences involving the dimensionality of the system we would like to stress that the
function F(q) in Eq. (3) has very distinct forms in each case of 2D or 3D. This function is directly related to the
spectator functions f (q) [given in Eqs. (4) and (5)], whose asymptotic form were discovered in the 60’s for 3D
systems [19] and approximately 50 years later for 2D systems [14,16]. Thus, an interesting question is whether
it is possible to interpolate between the 3D and 2D limits in a simple theoretical way and subsequently explore
this in simulations using bothmore involved numericalmethods and experimental setups since the development
of the techniques for cooling and trap atoms allows the interpolation between different dimensions [20,21].

We proposed a model that has the ability to interpolate geometrically between two and three spatial
dimensions and thus study this crossover for both two- and three-body bound states of identical bosons.
A “squeezed” dimension, whose size can be varied to interpolate the two limits, is employed with periodic
boundary conditions (PBC). This model has the unique feature that it can be regularized analytically, which is a
great advantage for its numerical implementation allowing to go smoothly between both limits. The theoretical
elegance and tractability of calculations in the three-body system is itself a strong incentive for pursuing this
geometry, but in spite of this elegance, a direct connection between experiments and the parameter that dials
between different dimensions with PBC in this model was not found yet.
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Table 1 Matrix elements of the two-body T-matrix, τ D
α (q, E3) and the kernels K D

αβ(q, k, E3) and K D
αγ (q, k, E3) for both 2D and

3D systems, where μ is the subtraction point (see, for example, [22])

2D 3D

[
τ D
α (q, E3)

]−1
4πmβγ ln

⎛

⎝

√
q2

2mβγ,α
−E3

|Eβγ |

⎞

⎠ π
(
2mβγ

)3/2
(√(

q2

2mβγ,α
− E3

)
−√|Eβγ |

)

K D
αβ(q, k, E3)

1√(
−E3+ q2

2mαγ
+ k2

2mβγ

)2−
(

k q
mγ

)2
mγ

q

(

ln
−E3+ q2

2mαγ
+ k2

2mβγ
+ k q

mγ

−E3+ q2
2mαγ

+ k2
2mβγ

− k q
mγ

− ln
μ2+ q2

2mαγ
+ k2

2mβγ
+ k q

mγ

μ2+ q2
2mαγ

+ k2
2mβγ

− k q
mγ

)

K D
αγ (q, k, E3)

1√(
−E3+ q2

2mαβ
+ k2

2mβγ

)2−
(
k q
mβ

)2
mβ

q

(

ln
−E3+ q2

2mαβ
+ k2

2mβγ
+ k q

mβ

−E3+ q2
2mαβ

+ k2
2mβγ

− k q
mβ

− ln
μ2+ q2

2mαβ
+ k2

2mβγ
+ k q

mβ

μ2+ q2
2mαβ

+ k2
2mβγ

− k q
mβ

)

In the next sections we review our main results involving the momentum distributions in three and two
dimensions. Both results are put together side-by-side in a table where the comparison becomes easier. In the
last section we give an overview of our method that continuously interpolates between 3 and 2D limits.

2 Integral Equation for Bound States

We investigate abc bound systems whose dynamics is restricted to either two (2D) or three spatial dimen-
sions (3D). The masses are ma,mb,mc and the pairwise interactions are described for attractive zero-range
potentials, being Eab, Eac, Ebc the energy of each pair. The three-body wave function 〈qα,pα|Ψabc〉 has the
same functional form in both 2D and 3D. For any s-wave bound state, the energy E3 is a solution of the
free Schrödinger equation, except in the region where particles overlap. Using the Faddeev decomposition in
momentum space, the bound state wave function in units of h̄ = 1 is written as

〈qα,pα |Ψabc〉 = Ψ (qα,pα) =
fα (qα) + fβ

(∣∣∣pα − mβ

mβ+mγ
qα

∣
∣∣
)

+ fγ
(∣∣∣pα + mγ

mβ+mγ
qα

∣
∣∣
)

|E3| + q2α
2mβγ,α

+ p2α
2mβγ

, (4)

where α, β, γ are cyclic permutations of a, b, c, qα is the α particle momenta with respect to the CM of the pair
βγ , pα is the pair relative momenta,mβγ,α = mα(mβ +mγ )/(mα +mβ +mγ ) andmβγ = (mβ +mγ )/(mβ +
mγ ) are the reduced masses and fα,β,γ (q) are the Faddeev components, or spectator functions. The three-body
energy, E3, and the spectator functions fα,β,γ are solution of a set of three coupled homogeneous integral
equations, which in a compact form reads

fα (q) = τ D
α (q, E3)

∫ ∞

0
k dk

[
K D

αβ(q, k, E3) fβ (k) + K D
αγ (q, k, E3) fγ (k)

]
, (5)

where the matrix elements of the two-body T-matrix, τ D
α (q, E3) and the kernels K D

αβ(q, k, E3) and

K D
αγ (q, k, E3) are given in Table 1.
An interesting difference between 2D and 3D three-body systems can be seen in Eq. (5) and Table 1.

For each non-interacting βγ pair, the respective spectator function fα(q) = 0. Choosing Eβγ = 0 in the

first line of Table 1 gives different result for 2D and 3D systems. In 3D,
[
τ D
α (q, E3)

]−1
is finite and Eq. (5)

is well-defined even if the three two-body subsystems interact with zero energy. On the other hand in 2D,[
τ D
α (q, E3)

]−1 → ∞, meaning that if at least two pairs have zero energy, Eq. (5) is not well-defined and
three-body bound states do not exist. Therefore, non-interacting and zero-energy two-body systems lead to the
same result in 2D, while they can give completely different results in 3D [17].

3 Momentum Distribution

The one-body density functions are observable quantities even in the limit of large momenta where the number
of atoms is small, which has already been observed in experiments using time-of-flight and the mapping to
momentum space [23], Bragg spectroscopy [11] or momentum-resolved photo-emission spectroscopy [24].
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The one-body momentum density of the particle α is defined through the wave function Ψ (qα,pα) from
Eq. (4) as

n(qα) =
∫

dD pα|Ψ (qα,pα)|2 (6)

and the normalization is
∫
dDqα n(qα) = 1, where D = 2, 3 for 2D or 3D systems, respectively.

Inserting Eq. (4) in Eq. (6) and expanding it, the nine initial terms can be grouped into four components by
using arguments of symmetry, each onewith a distinctly different integrand structure. The one-bodymomentum
density is expressed as a sum of this four terms, i.e., n(qα) = ∑4

i=1 ni (qα).
A general system of three distinguishable particles, presents three distinct one-body momentum distribu-

tions, each one corresponding to a different particle. The four terms for particle α are expressed as

n1(qα) = | fα (qα)|2
∫

dDk
1

(
−E3 + q2α

2mβγ,α
+ k2

2mβγ

)2 , (7)

n2(qα) =
∫

dDk

∣∣ fβ(k)
∣∣2

(
−E3 + q2α

2mαγ
+ k2

2mβγ
+ k·qα

mγ

)2 +
∫

dDk

∣∣ fγ (k)
∣∣2

(
−E3 + q2α

2mαβ
+ k2

2mβγ
− k·qα

mβ

)2 , (8)

n3(qα) = f ∗
α (qα)

∫
dDk

⎡

⎢
⎣

fβ(k)
(
−E3 + q2α

2mαγ
+ k2

2mβγ
+ k·qα

mγ

)2 + fγ (k)
(
−E3 + q2α

2mαβ
+ k2

2mβγ
− k·qα

mβ

)2

⎤

⎥
⎦+ c.c.,

(9)

n4(qα) =
∫

dDk
fβ
(∣∣∣k − mβ

mβ+mγ
qα

∣∣∣
)
f ∗
γ

(∣∣∣k + mγ

mβ+mγ
qα

∣∣∣
)

(
−E3 + q2α

2mβγ,α
+ p2

2mβγ

)2 + c.c. (10)

Notice that the distributions for the other particles are obtained by cyclic permutations of (α, β, γ ) in these
expressions.

Although the equations for bound states (Eq. 5) and momentum distributions (Eqs. 7–10) were derived
for a general case of three distinguishable particles, we now specialize to experimentally relevant systems
composed by two identical bosons a and a distinct particle b. The large momentum limit of Eqs. (7)–(10) were
derived in detail for 2D and 3D systems respectively in [16,17] and the final result for the density profile of
particle b with respect to the pair aa is presented in Table 2, in units of ma = 1.

In the following we discuss two interesting properties in the momentum distribution of aab systems in both
2Dand 3D.The geometric scaling of theEfimov states implies that observablesmay be described independently
of the quantum state. The independence of the quantum states is not expected to be valid for 2D systems, since

Table 2 Asymptotic forms for both 2D and 3D systems where A = mb
ma

, tan θ3 =
√

A+2
A for 0 ≤ θ3 ≤ π/2 and tan θ4 =√A(A + 2) for 0 ≤ θ4 ≤ π/2, Γ , ca and cb are normalization constants and n5(qb) is the second order term in the expansion

of n2(qb) in Eq. (8)

2D 3D

n1(qb) 16π A
A+2Γ 2 ln2(qb)

q6b

π2|cb |2
q5b

√
A

A+2

n2(qb)
16π
q4b

A2

(A+1)2
∫∞
0 dk k | fa(k)|2 32π

q4b

A2

(A+1)2
∫∞
0 dk k | fa(k)|2

n3(qb) 32π A
A+1Γ 2 ln3(qb)

q6b

4π2cacb
q5b cosh(

sπ
2 )

{√
A

A+2 cos

(
s ln

√
A+1
2A

)
cosh

[
s
(

π
2 − θ3

)]

+ sin

(
s ln

√
A+1
2A

)
sinh

[
s
(

π
2 − θ3

)]
}

n4(qb) 8πΓ 2 ln3(qb)
q6b

8π2|ca |2
s q5b cosh(

sπ
2 )

A2√
A(A+2)

{√A(A + 2) sinh
[
s
(

π
2 − θ4

)]

− s A
A+1 cosh

[
s
(

π
2 − θ4

)]}

n5(qb)
32π
3

A(A−2)
(A+1)2

Γ 2 ln3(qb)
q6b

− 8π2|ca |2
q5b

A3(A+3)

(A+1)3
√

A(A+2)
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Fig. 1 The leading order term of the one-body momentum density divided by En
3 for each bound state labeled as n in a system

composed of two identical (a =40K) particles and a distinct one (b =6Li) as a function of the momentum q for both Eaa = Eab
and Eaa = 0

they do not present any geometric scaling. However, the leading order in the large momentum distribution
was found to be independent of the state for three identical bosons [14,25] and for aab systems, if the aa
subsystem is not interacting [16].

The effect of the two-body energy on the contact parameter is shown in Fig. 1 for the 40K40K6Li system.
This system has three excited states when Eaa = Eab and only two when Eaa = 0. Notice that the large
momentum limit of the momentum density goes to a constant in all cases. For Eaa = 0 both momentum
distributions are equal in units of the three-body energy, i.e., n0(qb)/E0

3 = n1(qb)/E1
3 , where the superscript

denotes the quantum state. This case is rather special because the two identical particles have zero energy and
cannot provide a scale such that the three-body structure is determined by the identical two-body interactions
in the identical subsystems. In other words the large-momentum limit of the one-body density for particle a is
determined by the properties of the ab subsystem.

This picture changeswhen Eaa = Eab, as seen in Fig. 1. Now, in the large-momentum limit, the coefficients
of the one-body densities change with the excitation energy. The systematics is that the coefficients move
towards the corresponding values for Eaa = 0 as function of excitation energy. First the differences of the
ratios with the two-body energies is understandable, since the interaction of the two identical particles now
must affect the three-body structure at small distances, and hence at largemomenta. However, as the three-body
binding energy decreases, the size of the system increases and details of the short-distance structure becomes
less important.

The independence of the state in the one-bodymomentum distribution of 2D three-body system can happen
or not, depending on the energy of the two-body subsystem. However, both mass-imbalanced and identical
bosons systems present the same functional form to the leading order (LO) and next-to-leading order(NLO)
in the large momentum expansion of the one-body density. The same does not happens in 3D, since the
NLO contribution due to non-oscillatory terms vanishes when A = 0.20, 1.00 and 1.57, i.e., the sum of the
components n1(qb), n3(qb), n4(qb), n5(qb) from Table 2 is null for these mass ratios [17].

We want to emphasize that both the results for 2D and 3D can be experimentally checked in the near future,
since the calculations were made for alkali atoms. Besides the identical mass case, the other two mass ratios
used in the 3D calculations can be obtained with mixtures of 133Cs and 87Rb (A = 1.565) or 6Li and 39K
(A = 0.179).
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4 3D: 2D Transition with PBC

The physical and mathematical differences of three-body systems restricted to either 2D or 3D, presented in
the previous sections, are the motivation that lead us to pursuit a method where the dimensionality enters as a
parameter allowing to continuously interpolate between the well-known extremes of 2D and 3D. We restrict
analyses to three-identical bosons, which presents the Efimov effect in 3D, but only two three-body bound
states in 2D. Furthermore, the dimensionality plays an important role in the momentum distribution already
in this simplest case, as can be seen in Table 2 for A = 1.

Periodic boundary conditions (PBC) are assumed to be valid for the distance between the particles in the
z direction. The relative momentum is given by p⊥ = (px , py) in the flat 2D surface and by

pz =
√
2πn

L
= n

R
, n = 0,±1, ±2, . . . , (11)

in the transverse direction, with L = √
2πR being the size of the compact dimension corresponding to a radius

R, which is the parameter that dials between two and three-dimensions. When R → 0 it selects the 2D case
and in the opposite limit, i.e., R → ∞, the 3D case is selected [26]. The momentum p and its corresponding
phase factor dp are, with PBC, defined as

p2 = p2⊥ + n2

R2 and dp = 1

R
d2 p⊥. (12)

We introduce the symbol
∫

, which indicates an integration over the continuum momentum in the plane (p⊥)

and a sum over the discrete perpendicular momentum
(
pz = n

R

)
. It reads

∫∑
dp ≡

∞∑

n=−∞

∫
1

R
d2 p⊥. (13)

Using definition (12), the three-body free Hamiltonian becomes

H p
0 (q,k) = (q⊥ + qz)2 + (k⊥ + kz)2 + (q⊥ + qz) · (k⊥ + kz) ,

= q2⊥ + k2⊥ + q⊥ · k⊥ + n2

R2 + m2

R2 + n m

R2 (14)

and considering Eqs. (12)–(14), the integral equation for the bound state (5) for a compact dimension with
PBC is found to be

f (q⊥, n) = − 2

R
τp

[
3

4

(
q2⊥ + n2

R2

)
− E3

] ∞∑

m=−∞

∫
d2k⊥

(
f (k⊥,m)

−E3 + H p
0 (q,k)

− f (k⊥,m)

μ2 + H p
0 (q,k)

)

,

(15)

with τp(E) given in Eq. (16) and H p
0 (q,k) in Eq. (14). The subtraction is kept even after the discretization

because the Thomas collapse is always present for any finite compact radius, no matter how small it is. It is
worthwhile to remind that, for R → ∞, Eq. (15) returns precisely the equation for the spectator function in
3D (5).

The two-body scattering amplitude is

τp(E)−1 = −2π

R
ln

[
sinh

(
πR

√|E |)

sinh
(
πR

√|E2|
)

]

, (16)

which recovers the matrix elements of 3D and 2D systems in the limits R → ∞ and R → 0, respectively.
The first case is straightforward an reads

τ−1
3D (E) = lim

R→∞ τ−1
p (E) = −2π2

(√|E | −√|E2|
)

. (17)
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Fig. 2 ε3/ε2 as a function of r , for ε2 = 10−7 (fulled circles) and 10−6 (open circles). The solid and dashed lines are guides to
the eye. As the 2D limit (r → 0) is approached, higher excited states disappear and only the ground and first excited states remain

Going to the 2D limit, it is important to notice that a quasi-2D system is in practice a 3D system. Then, the
units of τ−1

3D (E) and τ−1
p (E) are exactly the same, but are different from τ−1

2D (E). Taking into account the
correct units, the 2D limit of Eq. (16) reads

τ−1
2D (E) = lim

R→0
R τ−1

p (E) = −2π ln

(√
|E |
|E2|

)

. (18)

Expressions in Eqs. (17) and (18) are respectively identical to the expressions presented in Table 1 for 3D and
2D two-body T-matrix when ma = mb = mc.

Introducing dimensionless variables, ε3 = E3/μ
2, ε2 = E2/μ

2, r = R μ, y⊥ = q⊥/
√

μ and x⊥ =
k⊥/

√
μ and integrating over the angular dependence, since the focus is on states with zero angular momentum,

the integral equation (15) is written as

f (y⊥, n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π ln

⎡

⎢
⎢⎢
⎣

sinh

(
πr

√
3
4

(
y2⊥ + n2

r2

)
− ε3

)

sinh
(
πr

√
ε2
)

⎤

⎥
⎥⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

−1

×
∞∑

m=−∞

∞∫

0

dx⊥ x⊥ f (x⊥,m)

⎛

⎜
⎜
⎝

1
√(

−ε3 + y2⊥ + x2⊥ + n2

r2
+ m2

r2
+ n m

r2

)2 − y2⊥ x2⊥

− 1
√(

1 + y2⊥ + x2⊥ + n2

r2
+ m2

r2
+ n m

r2

)2 − x2⊥ y2⊥

⎞

⎟
⎟
⎠ . (19)

The dimensional crossover transition is explored through the numerical solution of Eq. (19). In Fig. 2 the
ratios ε3/ε2 are showed as function of the compact dimension radius r , for the ground, first, and second excited
states. Notice that the last state goes into the continuum before the 2D limit is reached.

The computations were performed for two fixed two-body energies ε2 = 10−6 (empty circles/dashed
lines) and 10−7 (full circles/solid lines). Note that the Efimov ratio between two consecutive three-body states,
∼ 515, is not completely reproduced for a finite a. The points at which the energies are calculated are showed
explicitly, while the curves are guides to the eye and for r = 1000 the energies are obtained from the pure 3D
equation.
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An interesting dimensional crossover result is seen in Fig. 2, where only one sharp transition is present for
the ground state while there are two for the first excited state. This behavior can be understood by considering
the size of the trimer given roughly by r̄ ∼ 1/

√
ε3. For ε2 = 10−7, the ground state plateau for ε3/ε2 = 93330

is placed at r̄ = 10.35 and first excited state plateau for ε3/ε2 = 211.79 at r̄ = 217.29. These r̄ values give
approximately the region of the jumps signaling that the 3D limit, represented by the plateau, is reached once
the trimer size matches the size of the squeezed dimension, r . The same analysis can be made for ε2 = 10−6

with r̄ = 10.27 and r̄ = 188.98, respectively, for the ground and first excited state. Varying r from large to
small values, the 3D→2D transition occurs for r ∼ 10, where it is possible to notice the disappearance of the
higher excited states in order to reproduce the well known 2D results with two trimer bound state energies
proportional to ε2 with the ratios ε3/ε2 = 16.52 and ε3/ε2 = 1.27 [2].

From the experimental point of view it may be difficult to keep the dimer energy constant. However, the
transition observed in Fig. 2 will not disappear due to a variation of ε2 with r . The increase of the dimer energy
will merelymove the beginning of the jumps towards smaller r . The optimal way to probe these jumps is to start
from a two-body energy in the unitary limit (a → ∞) where the 2D plateaus are fixed. Larger dimer energies
will cause the 3D plateau to move to lower ε3/ε2 ratio and push the beginning of the transition to smaller r ,
thus making the transition region broader. Another interesting study about the dimensional crossover, where
three identical bosons are confined by a harmonic potential along one direction is found in [27].

5 Conclusion

In this paper we summarized our main results involving the single particle momentum distributions in two and
three dimensions. The summary tables, comparing thematrix elements and the functional form for the different
terms of the momentum distribution makes the comparison between the 2D and 3D regimes much easier. In the
last section we presented in a very schematical form a method to continuously interpolate between different
dimensions. The same technique used here to go from 3D to 2D, may be used to go from 2D to 1D systems. All
discussions in this text followed closely the papers [16,17,26]. An interesting direction for future investigation,
which connects all the results discussed in this work, is to understand whether the contact parameter tell us
how much of the wave function is in each dimension in the transition region presented in Fig. 2 [13].
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