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Abstract: An estimation procedure for transmission line parameters is developed that combines a new method of
determining line parameters with others available in the technical literature. Each estimation method has certain
advantages and restrictions that depend on the operating conditions of the transmission system (e.g. the load profile),
the physical characteristics of the line (e.g. the length and the geometry) and electromagnetic phenomena (e.g. single-
or multiphase faults). The proposed estimation procedure exploits the major attributes of both the new determination
method developed in this study and other well-established methods previously presented in the technical literature.
Based on current and voltage measurements obtained from synchronised fault records from both line terminals, a
combination of multiple methods can be used to accurately estimate most line parameters, a task that is typically
impossible using a single method.
1 Introduction

Knowledge of the electrical characteristics of a power transmission
system is an important requirement for reliable operation of an
electric power system. Accurate parameter determination in a
power grid is directly related to many aspects of power system
analysis such as fault detection/location in overhead transmission
lines and underground cables, correct parameterisation of
protection systems, proper analysis of the insulation coordination,
and knowledge of the propagation characteristics, transient
conditions and possible overvoltages in the transmission system,
which is necessary for the design of the surge protection system.

The electrical parameters of transmission lines can be calculated
as a function of the line structure and the physical characteristics
of the lines (e.g. the line height, the geometry of the towers and
phases, the soil characteristics and the cable properties) while
considering the earth-return current and the skin effect in the
wires. Determining line parameters using the classical analytical
methods based on Bessel and Carson functions results in certain
inaccuracies because of the approximations that are used for the
varying environmental conditions, the non-homogeneous soil
conductivity and the geometrical structure of the lines [1, 2].

Line parameters can also be estimated based on current and
voltage measurements at the line terminals. These measurements
can be obtained in a synchronised manner using phasor
measurement units (PMUs) or using fault records obtained from
protective relays at the sending and receiving ends of the
transmission lines [3–7]. Theoretically, the estimation of the
parameters of transmission lines from such synchronised
measurements is a simple and accurate procedure; however, from a
practical standpoint and based on the few methods available in the
technical literature, line parameter estimation is far from being a
trivial task. The performance of the various estimation methods
differs depending on the system characteristics, the load profile,
the line geometry and the system dynamics (i.e. transient or steady
state). Therefore, each estimation method is effective for specific
operating conditions of the power system, and typically, only a
few parameters of the impedance and admittance matrices, [Z] and
[Y], respectively, can be accurately estimated [5, 8].
The estimation methods that are available in the technical
literature may be classified into two basic types: frequency- and
time-domain methods [5, 8]. Most frequency-domain methods
were developed for transposed or symmetrical transmission lines
with a vertical plane of symmetry. In these methods, the line
parameters are estimated based on synchronised measurements of
current and voltage phasors at both line terminals [5, 6]. However,
frequency-domain methods have been shown to be unreliable for
certain line configurations and operating conditions. For example,
the frequency-domain method for symmetrical lines proposed in
[3] is not fully reliable because the filter-based phasor calculation
may cause errors in the parameter determination [4]. Kurokawa
et al. [5] present an estimation method that identifies the resistance
parameters of three-phase transmission lines with reasonable
accuracy; however, the accuracy depends on the line structure (the
geometrical characteristics) and the load profile at the receiving
end of the line. Meanwhile, the estimation method proposed in [6]
is restricted to determining the inductance parameters of
transmission lines. Furthermore, Hu and Chen [6] provide an
interesting discussion of some of the possible limitations of
parameter estimation using frequency-domain methods and
synchronised phasor measurements.

There are also frequency-domain estimation methods based on
unsynchronised phasor measurements and post-synchronisation
methods. In [8], the Prony method is used to overcome the
inaccuracies introduced by the re-synchronisation of fault data.
These inaccuracies are partially resolved by constructing the fault
signal from the fault records using digital signal-processing
techniques.

A time-domain estimation method based on the representation of a
line by a three-phase π circuit using a temporal sequence has been
proposed [4]. The differential equations for the equivalent
three-phase π circuit are expressed as state equations, and the
parameter estimates are obtained using time-domain fault records
obtained from protective relays. The first-order system consists of
a set of differential equations (state equations), where the number
of equations depends on the number of samples extracted from the
fault records. The solution of the state equations is obtained using
the well-established least-squares method. Theoretically, the
2617



time-domain method proposed in [4] is capable of identifying most
of the parameters in [Z] and [Y], but there are certain restrictions.
First, the method applies only to a single-phase fault, where only
the resistance and the inductance of the faulty phase can be
determined with good accuracy. In addition, the mutual parameters
in [Z] and [Y] cannot be estimated with acceptable accuracy. The
Prony method can be used to mitigate these errors that arise in the
time-domain method proposed in [4] by fitting the fault signal
obtained from the fault records. Using this method, which is based
on digital signal processing, the time-domain method of [4] can be
used to estimate other line parameters with acceptable accuracy.
However, the application of the Prony method for parameter
estimation requires a very complex algorithm. Although the
estimation procedure using the Prony method can determine the
line parameters with acceptable accuracy, from a practical
standpoint, it is desirable to considerably simplify the estimation
process.

This research investigates a simpler alternative estimation
procedure in the time domain that combines two different
methods. One of these methods is essentially the time-domain
method developed in [4] without the use of the Prony method.
This method performs well in the determination of the
self-resistance and self-inductance of a faulty phase. The
transmission line is represented by a three-phase π circuit, where
the impedance and admittance parameters in the matrices [Z] and
[Y], respectively, are intrinsically represented by electrical circuit
elements. As the line model presented in [4] is developed directly
from the Z and Y parameters of the line, it is a phase-domain
model. The other estimation method that is used is a new
procedure based on modal decoupling techniques, i.e. the
three-phase transmission line is decoupled into three independent
propagation modes, which are modelled as three single-phase lines
using conventional π circuits, unlike the three-phase π
representation required in the first method. Thus, this estimation
method exists in the modal domain.

The premise of this research is that the use of two or more
estimation methods provides redundancy, i.e. greater confidence in
the estimates. Thus, using a large database and suitable analysis,
more reliable values of Z and Y parameters can be estimated.
2 Transmission line electrical parameters

The propagation characteristics of multiconductor transmission lines
are defined by the electrical parameters in the impedance and
admittance matrices, [Z] and [Y], respectively. These matrices are
expressed as in (1) and (2).

Z[ ] =

Z11 Z12 · · · Z1n
Z21 Z22 · · · Z2n

..

. ..
. . .

. ..
.

Zn1 Zn2 · · · Znn

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (1)

Y[ ] =

Y11 Y12 · · · Y1n
Y21 Y22 · · · Y2n

..

. ..
. . .

. ..
.

Yn1 Yn2 · · · Ynn

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (2)

Matrices [Z] and [Y] are square matrices with dimensions equal to
the number of phases n. The terms on the main diagonals are the
self-impedances or self-admittances, and the remaining terms are
the mutual impedances or admittances, which represent the
interactions between phases. The self- and mutual impedances in
[Z] consist of a frequency-dependent resistance and a
frequency-dependent inductance.

The self-impedances consist of a real component that represents
the frequency-dependent resistance and an imaginary term
associated with the frequency-dependent inductance. The
self-impedance depends on the skin effect in the wires, the
earth-return current through the soil, and a constant term that
2618
represents the external impedance. The mutual impedance terms in
the impedance matrix [Z] are functions of the earth-return
impedance and the external impedance related to the
electromagnetic coupling between the two phases [9].

Conventionally, the skin effect is calculated using Bessel
functions and the physical and geometrical characteristics of the
conductors [2]. The earth-return impedance is calculated using the
Carson trigonometric series, assuming a constant value for the soil
conductivity [1]. This assumption may be inappropriate because
the soil conductivity is highly variable, depending on geological
formations and environmental conditions. The external impedance
is constant, and it is calculated based on the geometrical and
structural characteristics of the line [9].

The impedance matrix [Z] is composed of a resistance matrix [R]
and an inductance matrix [L] which can be expressed as follows for
an n-phase line

R[ ] =

R11 R12 · · · R1n

R21 R22 · · · R2n

..

. ..
. . .

. ..
.

Rn1 Rn2 · · · Rnn

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (3)

L[ ] =

L11 L12 · · · L1n
L21 L22 · · · L2n

..

. ..
. . .

. ..
.

Ln1 Ln2 · · · Lnn

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (4)

The admittance matrix [Y] is composed of conductance and
capacitance terms. Conventionally, in transmission line modelling
(TLM), the transverse conductance is neglected in the admittance
calculation. Thus, the real term of the complex admittance is
neglected, and Y becomes a purely imaginary value representing a
capacitive reactance [9].

The self- and mutual capacitances in [Y] do not depend on the
frequency and are calculated as functions of the geometrical and
physical characteristics of the line and the conductivity of the air.
This approach may also be inappropriate because the shunt
capacitance and the capacitances between phases are intrinsically
associated with environmental conditions such as the atmospheric
humidity, the dielectric constant and the weather [10]. The
capacitance matrix for a multiconductor transmission line can be
expressed as follows

C[ ] =

C11 C12 · · · C1n

C21 C22 · · · C2n

..

. ..
. . .

. ..
.

Cn1 Cn2 · · · Cnn

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (5)

The preceding discussion of transmission line parameters
demonstrates that the electrical parameters can be calculated using
several approaches and mathematical tools. However, the R, L and
C parameters can be obtained with greater accuracy using the
estimation methods that are discussed in the following sections.
3 Parameter estimation using combined methods

The estimation procedure developed in this research combines the
results obtained from two different and independent estimation
methods and uses current and voltage measurements collected by
protective relays at the receiving and sending ends of the line
during a fault.

The primary difference between the two estimation methods lies
in the line modelling. In the first estimation method, the
transmission line is represented as a three-phase π circuit, in which
the self- and mutual line parameters in [Z] and [Y] are modelled as
electric circuit elements. Thus, this line representation is
characterised as a phase-domain model because the impedance and
IET Gener. Transm. Distrib., 2015, Vol. 9, Iss. 16, pp. 2617–2624
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admittance parameters are modelled directly from the line parameters
contained in [Z] and [Y]. By contrast, the second estimation method
is based on modal decoupling techniques, i.e. an n-phase
transmission line is decoupled into n-independent propagation
modes. Hence, there are n-independent systems that can be
represented as n single-phase lines. Therefore, the line model that
is used in the second method is a conventional π circuit, which
has been well studied in the literature on power systems. As the
second estimation method is based on the individual modelling of
each propagation mode, this method exists in the modal domain.
Both estimation methods are applied to the same current and
voltage data recorded at the line terminals during a single-phase
fault, which can be simulated using software such as the
electromagnetic transient program (EMTP) [11].

The combination of two different estimation methods provides
redundancy in the results. Both estimation methods are used to
estimate the electrical parameters of the same transmission line
based on the same current and voltage measurements. Thus, using
a redundant database and suitable analysis, more reliable values of
the R, L and C parameters can be estimated.

3.1 Parameter determination based on the
phase-domain line model

The estimation method that is performed using a phase-domain line
model is based on the representation of the transmission line using a
three-phase π circuit, as illustrated in Fig. 1.

The line parameters in [Z] and [Y] are represented by lumped R, L
and C elements. The electrical circuit depicted in Fig. 1 is an
equivalent representation of a three-phase transmission line [4].

Fig. 1 shows the phase voltages at the sending and receiving ends
of the line, which are labelled as terminals A and B, respectively. The
voltages at terminal A for phases 1, 2 and 3 are vA1, vA2 and vA3,
respectively, and are expressed in vector form in (6). For terminal
B, the phase voltages vB1, vB2 and vB3 are analogously expressed
in (7). The currents at terminal A are iA1, iA2 and iA3, and the
currents at terminal B are iB1, iB2 and iB3; these are expressed in
vector form in (8) and (9), respectively. There are p measurements
of current and voltage, which are obtained from the fault data
recorded at both line terminals, such that in the equations below,
m = 1, 2, …, p. Hence, there are p vectors [vA], [vB], [iA] and [iB],
one for each measurement/record of voltage and current at the line
terminals. Previous knowledge (i.e. measurements) of the currents
and voltages is required for the parameter estimation [4].

[vA]m = vA1 vA2 vA3
[ ]T

(6)

[vB]m = vB1 vB2 vB3
[ ]T

(7)

[iA]m = iA1 iA2 iA3
[ ]T

(8)

[iB]m = iB1 iB2 iB3
[ ]T

(9)

The superscript T indicates the transpose of a vector in (6)–(9) above.
Fig. 1 Transmission line represented by a three-phase π circuit
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The self-resistances and -inductances are explicitly indicated in
Fig. 1, whereas the mutual parameters are implicitly represented in
the mutual voltages induced in phases 1, 2 and 3, namely, vl23,
vl13 and vl12, respectively. The transverse conductances G and the
transverse capacitances C are also implicit in Fig. 1. The terms iAq
and iBq are the shunt currents through the shunt admittances of
phases 1, 2 and 3, as expressed in (10) and (11) [4].

[iAq]m = iAq1 iAq2 iAq3
[ ]T

(10)

[iBq]m = iBq1 iBq2 iBq3
[ ]T

(11)

The unknown currents through the longitudinal self-resistances R
and the longitudinal inductances L are denoted by il1, il2 and il3.
Thus, the voltage drop along the line is expressed by the following
system of differential equations [4]

[Dv]m = [R][il]m + [L]
d

dt
il
[ ]

m (12)

where [Δv]m and [il]m are expressed as in (13) and (14).

[Dv]m = Dv1 Dv2 Dv3
[ ]T

(13)

[il]m = il1 il2 il3
[ ]T

(14)

The shunt admittances connected at terminals A and B are
determined from the shunt currents expressed in (10) and (11) and
from the voltage records obtained at both line terminals [4]

[iAq]m = [G][vA]m + [C]
d

dt
vA
[ ]

m
(15)

[iBq]m = [G][vB]m + [C]
d

dt
vB
[ ]

m
(16)

If the conductance matrix [G] is neglected, then the shunt currents iAq
and iBq become functions of dvA/dt and dvB/dt, respectively.

Therefore, given the voltages [vA]m and [vB]m and the currents
[iA]m and [iB]m for p samples obtained from the fault records, the
system of differential equations obtained from (12), (15) and (16)
can be solved using the least-squares method. The step-by-step
algorithm for the phase-domain estimation method is as follows:

(a) Calculate [vA]m, [vB]m, [iA]m and [iB]m in (6)–(9) from the fault
records, where m = 1, 2, …, p is the index representing the current
and voltage samples recorded during the fault;
(b) Calculate [Δv]m and [il]m based on the electric circuit
representation depicted in Fig. 1 and the known values of the
voltages and currents at the line terminals [4];
(c) Form the system of differential equations based on (12), (15) and
(16);
(d) Solve the system of differential equations using the least-squares
method [4];
(e) R, L and C parameters in (3)–(5) are estimated from the solution
of (15) and (16).

3.2 Parameter determination based on a modal-domain
line model

The second method used in the combined estimation procedure is
based on a line model using modal decoupling techniques and a
lumped-parameter representation. A similar line model has been
used in previous research to study electromagnetic transients in
power transmission systems [12, 13]. However, a modified version
of this line model is developed in this section for the
determination of line parameters at an industrial frequency.

The estimation method is developed in the modal domain, where
the three phases are decoupled into three independent propagation
2619



Fig. 2 Propagation mode modelled using a single π circuit
modes that are modelled as three single-phase lines. Each
propagation mode is modelled as a single π circuit in which the
mutual parameters are neglected. The system of differential
equations that is obtained from the line representation with lumped
parameters is solved using the least-squares method.

Initially, p samples of voltage and current are obtained from the
fault data recorded at both line terminals, as described in (6)–(9).
As p vectors of voltage and current are known, the modal voltages
and currents are calculated using a constant and real
transformation matrix [T] [14]

[vAM]m = [T]T[vA]m (17)

[vBM]m = [T]T[vB]m (18)

[iAM]m = [T]−1[iA]m (19)

[iBM]m = [T]−1[iB]m (20)

The matrix [T] is obtained from the product [Z][Y] or [Y][Z], where
the rows and columns of [T] are functions of the eigenvalues and
eigenvectors of the resulting matrix product. A real-valued and
constant transformation matrix is possible for transmission lines
with a vertical plane of symmetry or nearly symmetric matrices
[Z] and [Y]. If [Z] and [Y] are approximately symmetric, then the
transformation matrix contains real and constant terms [13]. Thus,
the transformation matrix [T] considered in the successive modal
transformations is the well-known Clarke’s matrix, since the
parameters are unknown.

From (17)–(20), the voltage and current vectors are calculated for
three independent propagation modes and m = 1, 2, …, p.

vAM
[ ]

m
= vAa vAb vA0

[ ]T
;

vBM
[ ]

m
= vBa vBb vB0

[ ]T (21)

iAM
[ ]

m
= iAa iAb iA0

[ ]T
; iBM

[ ]
m
= iBa iBb iB0

[ ]T
(22)

In (21) and (22), the voltages and currents are obtained for the
propagation modes α, β and 0. Thus, considering that the voltages
and currents are known at both terminals for the propagation
modes α, β and 0, the R, L and C matrices in the modal domain
are expressed as follows

RM

[ ] =
Ra 0 0
0 Rb 0
0 0 R0

⎡
⎣

⎤
⎦ (23)

LM

[ ] =
La 0 0
0 Lb 0
0 0 L0

⎡
⎣

⎤
⎦ (24)

CM

[ ] =
Ca 0 0
0 Cb 0
0 0 C0

⎡
⎣

⎤
⎦ (25)

In (23)–(25), the modal-domain parameters are represented by [RM],
[LM] and [CM], where the subscript M denotes the mode, either α, β
or 0. The off-diagonal elements of [RM], [LM] and [CM] are zero, i.e.
there are no mutual terms, which indicate that there is no coupling
among the modes [13].

As the electrical parameters can be described in the modal domain,
the propagation modes can be modelled as three single-phase lines
using a single π circuit, as shown in Fig. 2.

The system of differential equations that represents the equivalent
circuit depicted in Fig. 2 is expressed in the modal domain as follows

[DvM]m = [RM][ilM]m + [LM]
d

dt
ilM
[ ]

m
(26)
2620
where [ΔvM]m and [ilM]m are vectors that contain the voltage drops
over the modal longitudinal parameters and the currents through
the modal resistances, respectively, with m = 1, 2, …, p

[DvM]m = Dva Dvb Dv0
[ ]T

(27)

[ilM]m = ila ilb il0
[ ]T

(28)

Based on the π representation illustrated in Fig. 2, the capacitances of
modes α, β and 0 are obtained from the differential equations defined
in (29) and (30) at terminals A and B, respectively

[iAqM]m = [CM]

2

d

dt
vAM
[ ]

m
(29)

[iBqM]m = [CM]

2

d

dt
vBM
[ ]

m
(30)

As previously noted, the G parameters are typically neglected in
TLM [9]. Thus, the currents through terminals A and B can be
expressed as functions of CM, as shown in Fig. 2 and in (29) and (30).

The vectors for the modal shunt currents [iAqM] and [iBqM] are
expressed in the transposed form as follows

[iAqM]m = iAqa iAqb iAq0
[ ]T

(31)

[iBqM]m = iBqa iBqb iBq0
[ ]T

(32)

Through substitution of (30) into (29) and algebraic manipulations,
[iAqM] can be expressed individually for each propagation mode as
a function of [iBqM], [vAqM] and [vBM]:

[iAqa] = [iBqa] v̇Ba
[ ]T

v̇Ba
[ ]

v̇Ba
[ ]T( )−1

[v̇Aa] = [iBqa][Qa] (33)

[iAqb] = [iBqb] v̇Bb

[ ]T
v̇Bb

[ ]
v̇Bb

[ ]T( )−1

v̇Ab

[ ]
= [iBqb][Qb] (34)

[iAq0] = [iBq0] v̇B0
[ ]T

v̇B0
[ ]

v̇B0
[ ]T( )−1

v̇A0
[ ] = [iBq0][Q0] (35)

where the matrices [Qα], [Qβ] and [Q0] are expressed as follows

[Qa] = v̇Ba
[ ]T

v̇Ba
[ ]

v̇Ba
[ ]T( )−1

v̇Aa
[ ]

(36)

[Qb] = v̇Bb

[ ]T
v̇Bb

[ ]
v̇Bb

[ ]T( )−1

v̇Ab

[ ]
(37)

[Q0] = v̇B0
[ ]T

v̇B0
[ ]

v̇B0
[ ]T( )−1

v̇A0
[ ]

(38)

The matrices of the derivatives of the modal voltages at terminals A
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Fig. 3 Transmission line with a vertical plane of symmetry
and B for α, β and 0, for p fault records, are expressed as follows

[v̇Aa] = dvAa, 1
dt

dvAa, 2
dt

· · · dvAa, p

dt

[ ]
;

[v̇Ba] =
dvBa, 1
dt

dvBa, 2
dt

· · · dvBa, p

dt

[ ] (39)

[v̇Ab] =
dvAb, 1
dt

dvAb, 2
dt

· · · dvAa, p

dt

[ ]
;

[v̇Bb] =
dvBb, 1
dt

dvBb, 2
dt

· · · dvBb, p

dt

[ ] (40)

[v̇A0] =
dvA0, 1
dt

dvA0, 2
dt

· · · dvA0, p

dt

[ ]
;

[v̇B0] =
dvB0, 1
dt

dvB0, 2
dt

· · · dvB0, p

dt

[ ] (41)

The shunt currents at terminals A and B for the propagation modes α,
β and 0, are expressed for p fault samples as

[iAqa] = iAqa,1 iAqa,2 · · · iAqa,p
[ ]

;

[iBqa] = iBqa,1 iBqa,2 · · · iBqa,p
[ ] (42)

[iAqb] = iAqb,1 iAqb,2 · · · iAqb,p
[ ]

;

[iBqb] = iBqb,1 iBqb,2 · · · iBqb,p
[ ] (43)

[iAq0] = iAq0,1 iAq0,2 · · · iAq0,p
[ ]

;

[iBq0] = iBq0,1 iBq0,2 · · · iBq0,p
[ ] (44)

From the π circuit depicted in Fig. 2, the unknown currents in the
vectors [ilα], [ilβ] and [il0] are obtained as

[ila] = iAa
[ ]− [iAqa] = iBa

[ ]+ iBqa

[ ]
(45)

[ilb] = iAb

[ ]
− [iAqb] = iBb

[ ]
+ iBqb

[ ]
(46)

[il0] = iA0
[ ]− [iAq0] = iB0

[ ]+ iBq0

[ ]
(47)

By substituting [iBqα], [iBqβ] and [iBq0] into (45)–(47), the current
vectors [iAqα], [iAqβ] and [iAq0] can be reformulated as functions of
the current and voltage data at terminals A and B of α, β and 0

iAqa

[ ]
= iAa

[ ]− iBa
[ ]( )

[Qa] I[ ] + [Qa]
( )−1

(48)

iAqb

[ ]
= iAb

[ ]
− iBb

[ ]( )
[Qb] I[ ] + [Qb]

( )−1
(49)

iAq0

[ ]
= iA0

[ ]− iB0
[ ]( )

[Q0] I[ ] + [Q0]
( )−1

(50)

From the relationships expressed in (45)–(47) and (48)–(50), the
current vectors [ilα], [ilβ] and [il0] can be restructured as follows

[ila] = iBa
[ ]+ iAa

[ ]− iBa
[ ]( )

I[ ] + [Qa]
( )−1

(51)

[ilb] = iBb

[ ]
+ iAb

[ ]
− iBb

[ ]( )
I[ ] + [Qb]

( )−1
(52)

[il0] = iB0
[ ]+ iA0

[ ]− iBb

[ ]( )
I[ ] + [Qb]

( )−1
(53)

From the previous knowledge of the modal voltages and currents at
terminals A and B of each propagation mode, obtained from (17) to
(20), currents iAq, iBq and il can be calculated for p measurements
and the system of differential equations based on (26), (29) and
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(30) can be solved using the least-squares method to obtain the R,
L and C parameters in the modal domain.

As a further step, the phase-domain matrices [R], [L] and [C] are
obtained from the modal-domain matrices [RM], [LM] and [CM],
respectively. The modal matrices are converted into the phase
domain using the well-known Clarke’s matrix [12, 13, 14]. The
estimated [R], [L] and [C] matrices are obtained through the
following mode-to-phase transformations

[R] = [T]T[RM][T]
−1 (54)

[L] = [T]T[LM][T]
−1 (55)

[C] = [T]−1[CM][T] (56)

The process of estimation using the modal-domain method can be
summarised as the following algorithm:

(a) Calculate [vA]m, [vB]m, [iA]m and [iB]m in (6)–(9) from the fault
records, where m = 1, 2, …, p is the index representing the current
and voltage samples recorded during the fault;
(b) Calculate the voltages and currents for the propagation modes α,
β and 0, as described in (17)–(20);
(c) Calculate Δv and il for the propagation modes α, β and 0, as
represented by the single π circuit depicted in Fig. 2;
(d) Form the systems of differential equations given by (26), (29)
and (30) for the propagation modes α, β and 0;
(e) Solve the systems of differential equations using the
least-squares method [4];
(f) [RM], [LM] and [CM] are obtained from the solution of (26), (29)
and (30);

(g) [R], [L] and [C] are estimated from the modal transformations
expressed in (54)–(56), where [T] is the Clarke’s matrix.

4 Estimation of line parameters by combining the
results of the phase- and modal-domain methods

The estimation methods based on the phase- and modal-domain line
models are used to identify the electrical parameters of an
asymmetrical transmission line during a single-phase fault. Using
the voltage and current values recorded at both line terminals, the
two estimation methods are employed to identify [R], [L] and [C].

The geometrical characteristics of the line are shown in Fig. 3.
The tower structure supports a transmission line with a vertical

plane of symmetry. The R, L and C parameters given in (45)–(47)
indicate that the transmission line is also non-transposed. These
values are used to simulate the reference voltages and currents for
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Fig. 5 Relative errors of the self- and mutual R parameters estimated using
the modal- and phase-domain methods

Fig. 6 Relative errors of the self- and mutual L parameters estimated using
the modal- and phase-domain methods

Fig. 7 Relative errors of the self- and mutual C parameters estimated using
the estimation procedure and to calculate the relative errors.

R[ ] =
58.221 47.104 47.063
47.104 58.224 47.104
47.063 47.104 58.221

⎡
⎣

⎤
⎦mV/km (57)

L[ ] =
1.6876 0.8652 0.7267
0.8652 1.6876 0.8652
0.7267 0.8652 1.6876

⎡
⎣

⎤
⎦mH/km (58)

C[ ] =
11.305 −2.446 −0.820
−2.446 11.775 −2.446
−0.820 −2.446 11.305

⎡
⎣

⎤
⎦hF/km (59)

An untransposed three-phase line of 300 km in length was modelled
using the software EMTP based on the parameters given in (45)–
(47). The sending end of the line was connected to a balanced
three-phase source of 440 kV at a fundamental frequency of
60 Hz. The receiving end was connected to a three-phase load of
500 kVA and a power factor of 0.97. A short circuit was simulated
at the load terminal of the line in phase 1, and the fault voltages
and fault currents were obtained at both ends simultaneously. The
currents obtained for the three phases at the receiving end with a
short circuit in phase 1 are shown in Fig. 4.

The duration of the simulation was 0 < t < 0.3 s. However, the time
window shown in Fig. 4 is from 0.1 to 0.3 s to eliminate the
transients following the occurrence of the short circuit. If the
high-frequency oscillations in the transient state were to be
included, digital signal-processing techniques should be applied to
model the voltage and current signals, as in [4].

The same R, L and C parameters given in (57)–(59) are considered
as reference values for measuring the relative errors between the
calculated and estimated values of [R], [L] and [C].

The relative errors between the calculated and estimated
resistances in the matrix [R] that are obtained using both
estimation methods are shown in Fig. 5.

The estimation method based on the phase-domain line model
appears to be accurate in identifying only the self-resistance of the
faulty phase, achieving a relative error of less than 6.5%. The
other R parameters that were identified using the phase-domain
method exhibit significant errors (greater than 50%); therefore,
these results are discarded and are not shown in Fig. 5. By
contrast, the errors in the estimates of the self- and mutual terms in
[R] that are obtained using the modal-domain method are
acceptable, with relative errors of no greater than 6.5%.

The results obtained for [L] and [C] exhibit behaviour similar to
that of those for [R], as shown in Figs. 6 and 7, respectively. The
self- and mutual terms in [L] and [C] can be determined with
acceptable accuracy using the modal-domain method. As in the
case of the resistance, however, the phase-domain method
accurately estimates only the self-parameters of the faulty phase.
The other self-parameters and the mutual parameters exhibit
relative errors greater than 50% and are excluded.
Fig. 4 Short-circuit currents in phases 1, 2 and 3 at the load terminal
(receiving end)

the modal- and phase-domain methods
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An error of approximately 8% is observed in the mutual
inductance between phases 2 and 3, whereas the other mutual and
self-terms in [L] exhibit relative errors of less than 4.5%. The
relative errors of the self- and mutual terms in the capacitance
matrix [C] are less than 6.5%.
5 Discussion of combined methods for parameter
determination: performance, reliability and possible
applications

Most methods for parameter determination have limitations, and
their performance depends on the characteristics and operating
conditions of the transmission system. The accuracy of time- and
IET Gener. Transm. Distrib., 2015, Vol. 9, Iss. 16, pp. 2617–2624
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Fig. 8 Fitting (correction) of the R self-parameters by combining the
estimates from the phase- and modal-domain methods
frequency-domain methods depends on factors such as the
geometrical/structural characteristics of the line, the load, the
operating conditions, the transient conditions, and the use of
synchronous or asynchronous measurements at the terminals [3–8].

The novel contribution of this research is the development of a
new modal-domain estimation method in the time domain
combined with another well-established estimation method that
does not require signal modelling using digital signal-processing
techniques. The proposed estimation procedure could also be
performed to combine two or more estimation methods to increase
the reliability of the results.

In this research, two methods based on time-domain line models
and measurements are applied. The first method is developed
directly in the phase domain using explicit models of the self- and
mutual parameters. The second estimation method is developed
based on a modal-domain representation of the line, where the
propagation modes are decoupled using transformation matrices,
thereby eliminating the explicit modelling of the mutual
parameters of the three-phase transmission lines, as described in
Section 3.

The two estimation methods use voltage and current
measurements recorded at the sending and receiving ends of the
line during a fault. The phase-domain method provides accurate
results only for the self-parameters of the faulty phase, whereas
the modal-domain method produces acceptable results for most of
the self- and mutual parameters. However, the objective of this
study is not to compare the performance of the two estimation
methods but rather to determine whether the combination of
results obtained from both methods can improve the reliability and
accuracy of the parameter estimation.

This section presents a discussion of the estimates of the [R], [L]
and [C] matrices obtained using the phase- and modal-domain
methods. The results obtained from the two estimation methods
are examined in detail, and methods of combining the results of
multiple estimation methods to improve the accuracy and
reliability of the estimation process are discussed.
5.1 Resistance matrix

Among the results presented in Fig. 5, certain values of the mutual
resistances estimated using the modal-domain method have errors
of less than 6%, whereas most of the values of the mutual
resistances have errors of no greater than 2%. By contrast, the
errors in the self-resistance are as high as 10% for phases 2 and 3
and approximately 6% for phase 1. The estimation of the
self-resistance for phase 1 obtained using the phase-domain
method also results in an error close to 6%, nearly identical to that
calculated using the modal-domain method. Thus, the estimated
resistance value for phase 1 is highly reliable because both
methods produce similar results. In addition, although an
asymmetrical transmission line was used as the reference, the
self-resistance parameters in (45) are very similar. As of this
similarity, the same resistance value and relative error obtained for
R(1,1) can be extended to R(2,2) and R(3,3) to correct the errors in
the estimates of the self-resistances of phases 2 and 3 by
approximately 4%, i.e. the same resistance value estimated for R
(1,1) can be used for R(2,2) and R(3,3), thereby reducing the
relative error from 10 to 6%. The correction procedure, which
combines the results estimated using the two methods, is
graphically illustrated in Fig. 8 (based on the results previously
presented in Fig. 5).

Most of the estimation methods that are available in the technical
literature apply to transposed transmission lines. In fact, most
transmission lines are transposed, and this characteristic facilitates
the estimation process because all of the self-parameters and
mutual parameters are similar. Thus, the correction procedure
presented in Fig. 8 can be extended to the mutual parameters, i.e.
the off-diagonal terms in [Z] and [Y]. For example, the resistance
value of R(3,1), which has a relative error of less than 2%, can be
used as a reference to correct the estimated values of R(2,3) and R
(3,2) (approximately 6%).
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A further significant improvement in the reliability of the
estimated values could be achieved by using one or two additional
estimation methods in parallel with the phase- and modal-domain
methods. Estimates obtained using three or more different
estimation methods could provide greater redundancy in the
results, thereby providing a more accurate and reliable parameter
estimation.
5.2 Inductance and capacitance matrices

Unlike the resistance matrix [R], the matrices [L] and [C] exhibit low
relative errors in their self-terms. The self-L and self-C terms have
relative errors of no greater than 1%. In this case, the
self-parameters estimated using the phase-domain method improve
the reliability of the self-parameters estimated using the
modal-domain method because both results produce similar values
with very low relative errors.

In Fig. 6, a maximum relative error of 8% can be observed for the
elements L(2,3) and L(3,2), which are, in fact, the same (the mutual
inductance between phases 2 and 3). The other mutual inductances
have relative errors of no greater than 4.5%. The self-inductances
have relative errors of less than 1%, which can be confirmed based
on the self-inductance obtained using the phase-domain method
for a fault in phase 1. The difference in the self-inductances
estimated using the modal- and phase-domain methods is
approximately 0.5%, proving that the estimates of the
self-inductance are reliable.

Similar conclusions may be drawn from the results obtained for
the capacitance matrix [C]. The mutual capacitances have errors of
less than 7%, whereas the self-capacitances have errors of no
greater than 1%. The self-capacitances estimated using both
methods are of very similar magnitudes, as shown in Fig. 7 for a
fault in phase 1. This result indicates that the comparison of the
two methods that can be applied for phase 1 can also be
reasonably extended to phases 2 and 3, as discussed previously.
6 Conclusion

The proposed technique is based on the premise that the combination
of the results obtained using two or more estimation methods will
improve the reliability of the values of [R], [L] and [C] estimated
for multiconductor transmission lines. In this preliminary study,
the results obtained from two different estimation methods were
combined to improve the accuracy and reliability of the estimated
parameters. The first method was developed directly in the phase
domain, i.e. the line was modelled directly from the line
parameters contained in [Z] and [Y]. The second estimation
method was developed in the modal domain, i.e. the three-phase
line was decoupled into three independent propagation modes,
where each mode was modelled as a single-phase line. Both
methods were applied based on synchronised measurements of the
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currents and the voltages recorded at the sending and receiving ends
of the line during a single-phase fault, specifically, a short circuit at
the receiving end in phase 1.

The modal-domain estimation method produced acceptable results
for the self- and mutual parameters of the matrices [R], [L] and [C],
whereas the phase-domain method produced accurate results only for
the self-parameters of the faulty phase. It was observed that two
major benefits could be achieved by comparing the results
obtained using the two methods. The first benefit is the
improvement in the accuracy of the estimates of the self-terms of
the resistance matrix [R] obtained using the modal-domain
method. As discussed in Section 5.1, the results obtained using the
modal- and phase-domain methods are also useful for improving
the accuracy of the estimates of the self-resistances of phases 2
and 3, even for asymmetrical transmission lines. The second
benefit of combining the results of the two methods is an increase
in reliability, which is achieved because the parameters are
estimated using two distinct and independent estimation processes.
For example, the values of the self-terms of [L] and [C] that were
estimated using the phase- and modal-domain methods exhibited
low relative errors and very similar values. These similarities
indicated that the estimated values were correct because they were
obtained using different and independent estimation methods.
These are the major advantages of using multiple estimation
methods in parallel for the determination of transmission line
parameters. Moreover, the same estimation procedure could also
be performed using more than two independent and different
estimation methods available in the technical literature to provide
greater redundancy.

The combined procedure using both a new modal-domain method
and a well-known phase-domain method that is documented in the
technical literature represents a simple and efficacious
methodology for determining the electrical parameters of
transmission lines based on time-domain currents and voltages
recorded during a fault. Other, similar techniques could also be
developed based on the modal-domain method and other
well-established methods in the technical literature. The use of the
modal-domain method combined with two or three other
estimation methods represents an avenue for further research.
Combining the results obtained from two or more different
estimation methods could represent an efficient method of
obtaining even more reliable and accurate values for [R], [L] and
[C] than those obtained using only the two estimation methods
investigated in this research. This concept can be explored in
2624
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further research on estimation procedures based on the same
premise followed in this paper: estimation procedures using
multiple methods for greater redundancy in the estimated data.
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