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Abstract—In this work, a new methodology based on a mixed
integer linear programming formulation is proposed to solve the
optimal charging coordination of electric vehicles (EVs) in unbal-
anced electrical distribution systems (EDS) considering vehicle-to-
grid (V2G) technology. The steady-state operation of the EDS is
represented using the real and imaginary parts of voltages and
currents at nodes and circuits respectively. Distributed genera-
tion (DG) and the imbalance of the system circuits and loads
are taken into account. The developed method defines an optimal
charging schedule for the EVs. This charging schedule consid-
ers the EVs’ arrival and departure times and their arrival state
of charge, along with the energy contribution of EVs equipped
with V2G technology. The presented formulation was tested in a
123-node distribution system. The charging schedule obtained was
compared in terms of V2G and DG scenarios, demonstrating the
efficiency of the proposed method.

Index Terms—Charging coordination problem, electric vehicles,
mixed integer linear programming, vehicle-to-grid.

I. NOMENCLATURE

The notation used throughout this paper is reproduced below
for quick reference.

Sets:
F sets of phases, {A,B,C}
L sets of circuits
N sets of nodes
Ξ sets of electric vehicles
V 2G sets of vehicles-to-grid
T sets of time intervals

Constants:
αG
n,t energy cost at node n in time interval t

β electric vehicle energy curtailment cost
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γ (u,m, f) function that indicates whether electric vehicle u
is connected at node m and phase f

Δt duration of the time interval t
φn minimum power factor for the operation of the

distributed generator at node n
δmn discretization step for the current of circuit mn
λ number of blocks of the square current piecewise

linearization
θ vector of reference phase angles
θ1 maximum negative deviation of the phase angle

from the reference angle for each phase
θ2 maximum positive deviation of the phase angle

around the reference angle for each phase
σmn,λ slope of the λth block of the piecewise lineariza-

tion for the current of circuit mn
ξ minimum percentage of energy for electric

vehicles
Bmn,f shunt susceptance of circuit mn for phase f

E
EV

u energy capacity of electric vehicle u
Eini

u initial charge state of electric vehicle u
Imn maximum current flow magnitude of circuit mn
PD
n,f,t active power demand at node n for phasef in time

interval t
P

CH

u maximum power consumption of electric
vehicle u

P
DC

u maximum power injection of electric vehicle u

P
G

n maximum active power of the distributed genera-
tor at node n

QD
n,f,t reactive power demand at node n for phasef in

time interval t
Q

G

n,Q
G

n
maximum and minimum reactive powers of the
distributed generator at node n

Rmn,f,h resistance of circuit mn between phases f and h
S substation node
Tf last time interval of the time period
V , V maximum and minimum voltage magnitude

limits
V re∗
n,f,t real part of the estimated voltage at node n for

phase f in time interval t
V im∗
n,f,t imaginary part of the estimated voltage at node n

for phase f in time interval t
V̂ re∗
u,t real part of the estimated voltage at the node and

phase associated with electric vehicle u in time
interval t
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V̂ im∗
u,t imaginary part of the estimated voltage at the

node and phase associated with electric vehicle u
in time interval t

Xmn,f,h reactance of circuit mn between phases f and h

Variables:
δmn,f,t,λ value of the λth block of the piecewise lineariza-

tion for the current of circuit mn for phasef in
time interval t

τu time interval at which charge and discharge cycles
are separated for electric vehicle u

τ̇u auxiliary variable used for the calculation of τu
EEV

u,t energy of electric vehicle at node u at the end of
time interval t

EEV
u,T energy of electric vehicle at node u at the end of

the time period
ESH

u energy curtailment of electric vehicle u at the end
of the time period

IDim
n,f,t imaginary part of the current demanded by a con-

ventional load at node n for phase f in time
interval t

IDre
n,f,t real part of the current demanded by a con-

ventional load at node n for phase f in time
interval t

IEV im
u,t imaginary part of the current demanded by elec-

tric vehicle u in time interval t
IEV re
u,t real part of the current demanded by electric

vehicle u in time interval t
IGim
n,f,t imaginary part of the current generated at node n

for phase f in time interval t
IGre
n,f,t real part of the current generated at node n for

phase f in time interval t
Iimmn,f,t imaginary part of the current in circuit mn for

phase f in time interval t
Iim+
mn,f,t positive component of the current’s imagi-

nary part in circuit mn for phase f in time
interval t

Iim−
mn,f,t negative component of the current’s imagi-

nary part in circuit mn for phase f in time
interval t

Iremn,f,t real part of the current in circuit mn for phase f
in time interval t

Ire+mn,f,t positive component of the current’s real part in
circuit mn for phase f in time interval t

Ire−mn,f,t negative component of the current’s real part in
circuit mn for phase f in time interval t

Isqrmn,f,t square of the current in circuit mn for phase f in
time interval t

PEV
u,t active power consumption of electric vehicle u in

time interval t
PG
n,t active power generated at node n in time interval t

QG
n,t reactive power generated at node n in time

interval t
V re
n,f,t real part of the voltage at node n for phasef in

time interval t
V im
n,f,t imaginary part of the voltage at node n for phase

f in time interval t

V̂ re
u,t real part of the voltage at the node and

phase associated with electric vehicle u in time
interval t

V̂ im
u,t imaginary part of the voltage at the node and

phase associated with electric vehicle u in time
interval t

yu,t binary variable associated with the charging state
of electric vehicle u in time interval t

zu,t binary variable associated with the discharging
state of V2G vehicle u in time interval t

II. INTRODUCTION

I N RECENT years, energy and transport sectors have been
experiencing revolutionary changes due to environmental

concerns and desires for energy independence. The transport
sector is becoming part of the electrification movement. As
such, the use of electric vehicles (EV) will increase over the
coming years [1], [2]. Instead of fossil fuel energy, EVs use bat-
teries to store the energy needed for transportation. Reducing
the dependency on fossil fuel, these batteries are charged on an
electric distribution system (EDS). If the charging of EVs is not
controlled, the EDS can experience overloads, voltage limit vio-
lations, and an excessive increase in power losses [3], [4]. Given
the increasing presence of EVs in the EDS, these issues must be
anticipated. To counteract the problem associated with a high
load of EVs linked to the system, a charging schedule must be
set to coordinate the recharging of EV batteries. The commu-
nication infrastructure of forthcoming smart grids will become
an essential part of controlling EV recharging in EDSs [5].

The EV charging coordination (EVCC) problem seeks an
optimal charging schedule for the recharging of EV batteries
in a specific time period. In addition to throttling the bat-
tery charge, the optimal charging schedule must maximize the
energy charged to the EV batteries and minimize power losses.
Also, an economical operation for the EDS must be defined,
while satisfying operational constraints. Various works have
approached the EVCC problem in EDSs [4]–[6]. Charging costs
are optimized in [6] by using a mixed integer linear program-
ming (MILP) formulation in which battery charging profiles
are detailed. Mobility demands and maximum power limits
are considered, but the impact of the EV load on the grid is
disregarded.

Real-time solutions for EVCC are presented in [7]–[9]. A
multi-period optimization for EV charging in EDSs is proposed
on [7]. This optimization aims to minimize the cost of charg-
ing EVs, while disregarding the energy cost of the loads on
the EDS. A nonlinear programming model is proposed and
solved using a nonlinear programming function of MATLAB.
In [8], the goal is to optimally charge the EVs and minimize
system operating costs without violating the power system con-
straints. A prediction unit that forecasts the EV power demand
is proposed to ensure the feasibility of the charging process. A
two-stage optimization process is presented to ensure effective
charging coordination. In [9], an algorithm based on sensitivi-
ties is proposed for the real-time coordination of EV charging
considering the random arrivals and departures of EVs, voltage



598 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 7, NO. 2, APRIL 2016

profile, and power generation limits, in order to minimize the
total energy cost.

In [10]–[12], EV charging management models with oper-
ational frameworks based on multi-agent system (MAS) tech-
nology are proposed. A distributed price-based control method
that considers owners’ preferences is developed in [10]. In [11],
a charging control method developed over a three-layer archi-
tecture MAS is presented. The optimal EV charging schedule
at the beginning of each charging period is obtained by solv-
ing an optimization problem, which considers individual EV
needs. The charging schedules are later validated to ensure
the technical viability of the solution. In [12], important fea-
tures are added to the approach presented in [11]. The control
method presented in [12] is also based on a three-layer MAS.
This formulation presents not only an optimal charging scheme
for normal operation but also an emergency planning method
employed when normal conditions are restored after a techni-
cal limit breach. However, the EVs are disconnected to restore
the proper performance of the EDS (i.e., thermal or voltage
limits are already unfulfilled) and not to avoid technical limit
violations.

As EVs are gaining relevance in EDSs, the idea of power
flowing in both directions is taking hold. The ability of EVs to
inject power into the grid is called vehicle-to-grid (V2G) tech-
nology. V2G can be defined as the purveyance of energy and
ancillary services from an EV to the grid [13]. Either at home
or in a parking lot, EVs with V2G technology (EV-V2Gs) can
provide power to the grid, increasing the stability and reliability
of the EDS and reducing costs [14]. Studies of battery sizing
together with economic assessments of V2G availability have
proved how profitable this technology may become [15], [16].

Different approaches to taking advantage of V2G technol-
ogy have been proposed in the specialized literature. In [17],
an aggregator for V2G frequency regulation is developed. This
approach establishes that any vehicle that is idle and under
aggregator control is a potential provider of a regulation ser-
vice, considering its available power capacity. The objective
is to optimize the aggregator’s revenue, while fulfilling the
energy requirements of the EV owner. An estimation algorithm
for V2G real-time capacity is presented in [18]. This paper
proposes a dynamic scheduling algorithm for EV charging in
high-rise residential buildings, office buildings, and commercial
buildings. Furthermore, the capacity of an EV fleet to supply
V2G power to a building during peak hours is demonstrated,
and renewable energy resources are taken into account. The EV-
V2Gs were shown to be effective for load peak shaving, but the
impact on the EV battery’s lifetime was not assessed.

Recent works such as [18] and [19] have foregrounded the
importance of the dynamic scheduling on EV charging. In
the latter work, the issues arising in the EDS due to uncon-
trolled EV charging processes are remarked. Nevertheless, the
EV charging scheduling alone does not account for EV own-
ers’ behavior patterns or unforeseen changes in EV features.
Dynamic scheduling is, therefore, crucial for attending EV
owners’ needs because scheduling may involve the random
arrivals and departures of EVs and varying values for the ini-
tial charge of the EV batteries. These are the most important EV
characteristics addressed by the EVCC problem, and the correct

inclusion of these features ensures the better performance of the
presented solution method.

A step-by-step methodology based on a MILP formulation is
proposed in this paper to solve the optimal charging coordina-
tion of EVs in unbalanced EDSs considering V2G technology.
The steady-state operation of the EDS is represented using the
real and imaginary parts of voltages and currents at nodes and
circuits, respectively. Linearization techniques were applied to
the formulation in order to obtain a MILP model. The imbal-
ance of the system circuits and loads are taken into account. In
addition, the proposed formulation considers distributed gener-
ation (DG). The developed method defines an optimal charging
schedule for the EVs considering the EVs’ arrival and depar-
ture times and their arrival state of charge, along with the energy
contribution of EVs equipped with V2G technology. The model
was written in mathematical modeling language AMPL and
solved using the commercial solver CPLEX. The classical
optimization techniques used to solve the MILP formulation
guarantee the optimal solution to the problem. The presented
formulation was tested in a 123-node distribution system. The
charging schedules obtained for different EV load scenarios
evaluated on the EDS prove the robustness of the methodology.

This work’s main contributions are as follows:
• A new methodology for dynamically controlling the

EVCC problem considering V2G technology in unbal-
anced distribution systems. The methodology is based on
an MILP formulation that offers the optimal solution to
the problem;

• A step-by-step methodology that considers the random-
ness of EVs’ arrivals and departures times and initial state
of charge, as well as different battery sizes and forecast
uncertainties;

• A methodology that enhances the EDS operation by
including unforeseen EV loads at any time interval. This
approach not only solves the EVCC problem, but also
optimizes the operation of the EDS, reducing the over-
all energy costs, while satisfying operational constraints
such as voltage and thermal limits.

III. METHODOLOGY

The presented methodology solves the EVCC problem find-
ing an optimal schedule for the energy exchange between EV
batteries and the grid; moreover, an economic operation for
the EDS is defined and operational constraints are satisfied.
The optimal charging schedule must minimize the energy cost,
avoiding curtailment on the EV batteries and reducing power
losses in the EDS. As V2G technology on EVs is taken into
account, the solution must provide an optimal schedule that
determines when the EV batteries must be charged and when
the EV-V2Gs must inject energy into the grid. The complex-
ity of the charging schedule increases, as it is responsible for
throttling the battery charge and for allowing the grid to use
the vehicles’ battery stored energy. In this work, the following
considerations are assumed:

• At departure, the vehicles should be completely charged.
• The initial state of charge (SOC) of every vehicle is

known when the vehicle is plugged into the grid.
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Fig. 1. Solution cycle.

• The batteries can be controlled in each time interval into
which the time period is divided.

• The EV-V2Gs can be controlled in order to inject power
into the grid according to their available energy.

• The EV-V2Gs owners permit the EDS operator to utilize
the energy stored in their vehicles.

Operational constraints such as voltage limits, active and
reactive power generation limits, and maximum currents lim-
its, must be satisfied by the model as the charging schedule is
being optimized. When being plugged in, the EV’s SOC is read,
and the EV user may provide a departure time; otherwise, it will
be assumed that the vehicle will remain plugged in until a prob-
able time interval has lapsed, as determined by an EV record
of departure. The model is solved in every time interval updat-
ing the actual number of connected EVs to be charged. Fig. 1
shows how the model is solved for each time interval defining
the next step to be implemented by the EDS operator. The red
boxes in Fig. 1 indicate how the binary nature of variables yn,t
and zn,t, associated with the charging and discharging of the
EVs, is considered only for the next k−intervals (defined by
the EDS operator); in the remaining time intervals, the binary
nature of those variables is disregarded.

The EVs’ charging schedule will be generated between
arrival and departure, ideally dispatching a fully charged battery
for every vehicle. Energy curtailment on any EV at depar-
ture will incur a penalty. With the model being solved in
every time interval, the charging schedule is to be constructed
step-by-step, with previous yn,t and zn,t values given from pre-
ceding solutions and only the immediate interval’s yn,t and zn,t
values fixed. When defining the charging schedule, the later
connection of EVs is taken into account in order to avoid over-
loads in the system when added to the EVs already connected.
Therefore, the proposed model includes expected arrival times
in the solution. Possible plugs, estimated arrival times, and
SOCs are used to get more accurate charging schedules for ini-
tial solutions. Later on in the process, when the EVs are actually
plugged in, the information can be updated with the real param-
eters. In cases where the possible arrival time is reached and the
EV has not arrived, a different estimation may be used, or the
EV may be disregarded altogether. Several techniques can be
applied to EVs in order to obtain the estimated parameters for
initial SOCs, arrival times and departure times, such as those
in [20]–[22]. The mathematical model takes into account these

parameters when building a charging schedule for every vehicle
between their arrival and departure times.

IV. MATHEMATICAL PROGRAMMING MODEL FOR THE EV
CHARGING COORDINATION PROBLEM

A mixed integer nonlinear programming (MINLP) model is
presented in (1)–(23) to solve the EVCC problem consider-
ing EVs and EV-V2Gs. The EVCC problem is later modeled
as a mixed-integer linear programming (MILP) problem. This
will improve the solution’s robustness and permit the utilization
of classical optimization techniques and commercial software,
which will guarantee the optimal solution to the problem. In
order to obtain a MILP for the EVCC problem, linearization
techniques are applied to the MINLP nonlinear expressions.

The circuits and the conventional loads are considered using
a three-phase representation, as the EDS is modeled as an
unbalanced system. The steady state operation of an unbal-
anced EDS is indicated by the set of equations (2)–(14), based
on the model presented in [23], which considers the presence
of DG. In this work, active and reactive power injections of
DGs are taken into account and the loads are modeled as a con-
stant power type. EVs may arrive and leave in any time interval
within the charging period. If no departure time is specified, the
model will schedule a fully charged battery by the EV’s proba-
ble departure time interval. In effect, before its departure time, a
vehicle may have any charge level between its initial SOC and

its E
EV

u . For EV-V2Gs, this energy level may be lower than
its initial SOC but not greater than the maximum depth of dis-
charge (DoD), maintaining at least an minimum energy level(
ĒEV

u ξ
)
. The time period is divided into several time intervals

ordered in the set T ; the time interval that begins at a specific
time t is associated with the t element from set T . The time
duration for every time interval is represented by Δt. The pro-
posed model is solved at the beginning of each time interval,
constructing a step-by-step solution over the entire time period,
and updating the number of EVs connected and their associated
data. The objective function of the EVCC problem represented
by (1) aims to minimize the cost of the energy provided by the
substation and the distributed generators (the first and second
terms, respectively) and to reduce the EV’s energy curtailment
if the EVs can not be completely charged (third term).

min
∑
f∈F

∑
t∈T

αG
S,tΔt

(
V re
S,f,tI

Gre
S,f,t + V im

S,f,tI
Gim
S,f,t

)
+

∑
n∈N

∑
t∈T

αG
n,tΔtP

G
n,t +

∑
u∈Ξ

βESH
u (1)

Subject to:

IGre
m,f,t +

∑
km∈L

Irekm,f,t −
∑

mn∈L

Iremn,t

−
( ∑

km∈L

Bkm,f +
∑

mn∈L

Bmn,f

)
V im
m,f,t

2
= IDre

m,f,t

+
∑
u∈Ξ

IEV re
u,t γ(u,m, f) ∀m ∈ N, f ∈ F, t ∈ T (2)



600 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 7, NO. 2, APRIL 2016

IGim
m,f,t +

∑
km∈L

Iimkm,f,t −
∑

mn∈L

Iimmn,t

−
( ∑

km∈L

Bkm,f +
∑

mn∈L

Bmn,f

)
V re
m,f,t

2
= IDim

m,f,t

+
∑
u∈Ξ

IEV im
u,t γ(u,m, f) ∀m ∈ N, f ∈ F, t ∈ T (3)

PD
n,f,t = V re

n,f,tI
Dre
n,f,t + V im

n,f,tI
Dim
n,f,t ∀n ∈ N, f ∈ F, t ∈ T

(4)

QD
n,f,t = −V re

n,f,tI
Dim
n,f,t + V im

n,f,tI
Dre
n,f,t, ∀n ∈ N, f ∈ F, t ∈ T

(5)

V re
m,f,t − V re

n,f,t =
∑
h∈F

(Rmn,f,hI
re
mn,h,t −Xmn,f,hI

im
mn,h,t)

∀mn ∈ L, f ∈ F, t ∈ T (6)

V im
m,f,t − V im

n,f,t =
∑
h∈F

(Xmn,f,hI
re
mn,h,t +Rmn,f,hI

im
mn,h,t)

∀mn ∈ L, f ∈ F, t ∈ T (7)

0 ≤ PG
n,t ≤ P

G

n ∀n ∈ N, t ∈ T (8)

QG

n
≤ QG

n,t ≤ Q
G

n ∀n ∈ N, t ∈ T (9)

|QG
n,t| ≤ PG

n,t tan(arccos(φn)) ∀n ∈ N, t ∈ T (10)

PG
n,t

3
= V re

n,f,tI
Gre
n,f,t + V im

n,f,tI
Gim
n,f,t ∀n ∈ N, f ∈ F, t ∈ T

(11)

QG
n,t

3
= −V re

n,f,tI
Gim
n,f,t + V im

n,f,tI
Gre
n,f,t, ∀n ∈ N, f ∈ F, t ∈ T

(12)

V 2 ≤ V re
n,f,t

2 + V im
n,f,t

2 ≤ V
2 ∀n ∈ N, f ∈ F, t ∈ T (13)

0 ≤ Iremn,f,t
2 + Iimmn,f,t

2 ≤ Imn
2 ∀mn ∈ L, f ∈ F, t ∈ T

(14)

PEV
u,t = V re

u,tI
EV re
u,t + V im

u,t I
EV im
u,t ∀u ∈ Ξ, t ∈ T (15)

0 = −V re
u,tI

EV im
u,t + V im

u,t I
EV re
u,t ∀u ∈ Ξ, t ∈ T (16)

ĒEV
u = EEV

u,T + ESH
u ∀u ∈ Ξ (17)

PEV
u,t = P̄CH

u yu,t − P̄DC
u zu,t ∀u ∈ Ξ, t ∈ T (18)

EEV
u,t = Eini

u +
∑

k∈T,k≤t

ΔkP
EV
u,k ∀u ∈ Ξ, t ∈ T (19)

min
(
Eini

u , ĒEV
u ξ

) ≤ EEV
u,t ≤ ĒEV

u ∀u ∈ Ξ, t ∈ T (20)

yu,t + zu,t ≤ 1 ∀ u ∈ Ξ, t ∈ T (21)

zu,t ∈ {0, 1} ∀u ∈ Ξ, t ∈ T (22)

yu,t ∈ {0, 1} ∀u ∈ Ξ, t ∈ T (23)

Equations (2) and (3) represent the balance of the real and
imaginary parts of the circuit currents at each node, respec-
tively. The term γ(u,m, f) is a binary function that takes a
value of 1 if the EV u is connected at node m and at phase
f . Equations (4) and (5) define the load currents. The relation-
ship between power, voltage, and current for the loads may also
be written as shown in (24) and (25).

IDre
n,f,t =

PD
n,f,tV

re
n,f,t +QD

n,f,tV
im
n,f,t

V re
n,f,t

2 + V im
n,f,t

2 , ∀n ∈ N, f ∈ F, t ∈ T

(24)

IDim
n,f,t =

PD
n,f,tV

im
n,f,t −QD

n,f,tV
re
n,f,t

V re
n,f,t

2 + V im
n,f,t

2 , ∀n ∈ N, f ∈ F, t ∈ T

(25)

If the right part of (24) and (25), which are nonlin-
ear functions of the voltage’s real and imaginary parts,
are represented by g(PD

n,f,t, Q
D
n,f,t, V

re
n,f,t, V

im
n,f,t) and

h(PD
n,f,t, Q

D
n,f,t, V

re
n,f,t, V

im
n,f,t), respectively, and taking

advantage of the relatively small and limited variation range
of the voltage magnitude in an EDS, these equations can be
linearized around an estimated operation point (V re∗

n,f,t, V
im∗
n,f,t),

as shown in (26) and (27).

IDre
n,f,t = g∗ +

∂g

∂V re

∣∣∣∣∗ (V re
n,f,t − V re∗

n,f,t) +
∂g

∂V im

∣∣∣∣∗
(V im

n,f,t − V im∗
n,f,t) ∀n ∈ N, f ∈ F, t ∈ T (26)

IDim
n,f,t = h∗ +

∂h

∂V re

∣∣∣∣∗ (V re
n,f,t − V re∗

n,f,t) +
∂h

∂V im

∣∣∣∣∗
(V im

n,f,t − V im∗
n,f,t) ∀n ∈ N, f ∈ F, t ∈ T (27)

Linear equations (26) and (27) can be used to approximate
the currents demanded by the loads previously represented
by the nonlinear expressions (4) and (5). The quality of the
estimated operation point will define the approximation error.
Historical data and the knowledge of the EDS operator are used
to estimate the operation point. Equations (6) and (7) are the
result of applying Kirchhoff’s Voltage Law to each indepen-
dent loop in the EDS. Constraints (8)–(10) define the operation
limits of the DGs and (11)–(12) represent their active and reac-
tive powers. The nonlinearity of the DGs active and reactive
powers is approximated using an estimated operation point
(V re∗

n,f,t, V
im∗
n,f,t) as shown in (28)–(29).

PG
n,t

3
= V re∗

n,f,tI
Gre
n,f,t + V im∗

n,f,tI
Gim
n,f,t ∀n ∈ N, f ∈ F, t ∈ T

(28)

QG
n,t

3
= −V re∗

n,f,tI
Gim
n,f,t + V im∗

n,f,tI
Gre
n,f,t, ∀n ∈ N, f ∈ F, t ∈ T

(29)

The limits for the voltage magnitude in each circuit are stated
in (13). The phase angle variation around the reference volt-
age for each phase in the EDS is small. Because of this fact,
(13) can be modeled by defining the boundaries of the feasible
region of the voltage, considering operation limits. If θ1 and θ2
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Fig. 2. Constraints for voltage limits (phase A).

are the maximum negative and maximum positive deviations of
the phase angle around the reference (θ = [0◦,+120◦,−120◦])
for each phase, then (30), (31), (32), (33), and (34) limit
the voltage magnitudes between [V , V ] and the phase angles
[θf − θ1, θf + θ2]. Constraints (30), (31), (32), (33), and (34)
are related with lines L1, L2, L3, L4 and L5, respectively, as
shown in Fig. 2.

V im
n,f,t ≤

sin(θf + θ2)− sin(θf − θ1)

cos(θf + θ2)− cos(θf − θ1)[
V re
n,f,t − V cos(θf + θ2)

]
+ V sin(θf + θ2)

∀n ∈ N, f = A, t ∈ T (30)

V im
n,f,t ≤

sin(θf + θ2)− sin θf
cos(θf + θ2)− cos θf

[
V re
n,f,t − V cos θf

]
+ V sin θf

∀n ∈ N, f = A, t ∈ T (31)

V im
n,f,t ≥

sin(θf − θ1)− sin θf
cos(θf − θ1)− cos θf

[
V re
n,f,t − V cos θf

]
+ V sin θf

∀n ∈ N, f = A, t ∈ T (32)

V im
n,f,t ≤ V re

n,f,t tan(θf + θ2) ∀n ∈ N, f = A, t ∈ T (33)

V im
n,f,t ≥ V re

n,f,t tan(θf − θ1) ∀n ∈ N, f = A, t ∈ T (34)

The limits for current capacity in each circuit are stated in
(14). As shown in [24], (14) is linearized using (35)–(42). The

terms
∑λ

λ=1 σmn,λδ
re
mn,f,t,λ and

∑λ
λ=1 σmn,λδ

im
mn,f,t,λ are the

linear approximations of Iremn,f,t
2 and Iimmn,f,t

2
, respectively.

σmn,λ and δmn are constant parameters, as defined by (43)
and (44).

Isqrmn,f,t =

λ∑
λ=1

σmn,λδ
re
mn,f,t,λ +

λ∑
λ=1

σmn,λδ
im
mn,f,t,λ

∀mn ∈ L, f ∈ F, t ∈ T (35)

Iremn,f,t = Ire+mn,f,t − Ire−mn,f,t ∀mn ∈ L, f ∈ F, t ∈ T (36)

Iimmn,f,t = Iim+
mn,f,t − Iim−

mn,f,t ∀mn ∈ L, f ∈ F, t ∈ T (37)

Ire+mn,f,t + Ire−mn,f,t =

λ∑
λ=1

δremn,f,t,λ, ∀mn ∈ L, f ∈ F, t ∈ T

(38)

Iim+
mn,f,t + Iim−

mn,f,t =

λ∑
λ=1

δimmn,f,t,λ, ∀mn ∈ L, f ∈ F, t ∈ T

(39)

0 ≤ δremn,f,t,λ ≤ δmn, ∀mn ∈ L, f ∈ F, t ∈ T, λ=1 . . . λ

(40)

0 ≤ δimmn,f,t,λ ≤ δmn, ∀mn ∈ L, f ∈ F, t ∈ T, λ=1 . . . λ

(41)

Ire+mn,f,t, I
re−
mn,f,t, I

im+
mn,f,t, I

im−
mn,f,t ≥ 0

∀mn ∈ L, f ∈ F, t ∈ T (42)

σmn,λ = (2λ− 1)δmn ∀mn ∈ L, λ=1 . . . λ (43)

δmn =
Imn

λ
∀mn ∈ L (44)

Along with the estimated operation point, the number of dis-
cretization blocks λ must be adjusted in order to enhance the
quality of the linear approximations. The EVs’ active and reac-
tive demanded powers are specified in (15) and (16). Similar
to (11)–(12), (15)–(16) are approximated using (V re∗

u,t , V im∗
u,t );

(45)–(46) show these approximations.

PEV
u,t = V re∗

u,t IEV re
u,t + V im∗

u,t IEV im
u,t ∀u ∈ Ξ, t ∈ T (45)

0 = −V re∗
u,t IEV im

u,t + V im∗
u,t IEV re

u,t ∀u ∈ Ξ, t ∈ T (46)

Equation (17) establishes the energy balance between the
EV’s storage capacity, charged energy, and energy curtailment.
The demanded power for each vehicle in each time interval is
specified by (18). Equation (19) represents the energy stored
in every EV in each time interval. The energy limits of an EV
are defined by (20), which ensures that the maximum energy
level is not violated for all EVs. Furthermore, the grid will not
take more than the available energy from the EV-V2G batter-
ies, complying with a security level that limits the minimum
energy level for each EV battery. The binary variables yn,t and
zu,t define the EV’s charging state, influencing the demanded
power directly. Equation (21) limits the direction of the power
flow in each time interval for every EV. The set of EV charging
state variables has a binary nature, as detailed in (22) and (23).
These two variables, model the energy transference between an
EV battery and the grid. yn,t has a value of 1 if the battery is

charging at its maximum power P
CH

n and a value of 0 if the
battery is not charging; zn,t has a value of 1 if the battery is

injecting energy into the grid at its maximum capacity P
DC

n

and a value of 0 otherwise. In this way, the EVCC problem is
modeled as a MINLP in (1)–(23), the complete MILP model for
the EVCC problem is modeled by:

min (1)

Subject to: (2)–(3), (6)–(10), (17)–(23), (26)–(42), (45)–(46)

0 ≤ Isqrmn,f,t ≤ Imn
2 ∀mn ∈ L, f ∈ F, t ∈ T (47)

A linear relaxation of the MILP model, where the binary
nature of the decision variables is temporarily ignored, is ini-
tially solved in order to obtain a more accurate estimated
operation point. To extend the lifetime of the EV batteries,
equations are included to separate the charging and discharging
cycles of EV-V2Gs. Constraints (48)–(52) prevent alternation
between charging and discharging cycles, thereby, disallowing
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TABLE I
HOURLY ENERGY COST AND LOAD VARIATION

the commencement of a discharging cycle once the charging
cycle has begun. In addition, these equations use the auxiliary
variables τ̇u,t and τu to find the optimal time interval to switch
from discharging to charging for every EV.

tyu,t ≥ τ̇u,t ∀u ∈ V 2G, t ∈ T (48)

tzu,t ≤ τu ∀u ∈ V 2G, t ∈ T (49)

1 ≤ τu ≤ Tf ∀u ∈ V 2G, t ∈ T (50)

τ̇u,t ≤ Tfyu,t ∀u ∈ V 2G, t ∈ T (51)

τu − τ̇u,t ≤ Tf (1− yu,t) ∀u ∈ V 2G, t ∈ T (52)

V. TESTS AND RESULTS

The proposed model was tested in a 123-node distribution
system with nominal voltage of 4.16 kV based on [25]. The
maximum and minimum voltage magnitude limits were 1.00pu
and 0.90pu, respectively. The voltage magnitude at the substa-
tion was fixed at 1.0pu. The energy capacity of the EV batteries
was 50 kWh for Tesla EVs and 20 kWh for Nissan Leafs [26],
[27]. The charging maximum power was 10 kW and 4 kW, and
for EV-V2Gs the discharging maximum power was 5 kW and
2 kW, respectively. The parameter Imn was 500 A for all feed-
ers. The time period was set from 18:00h to 08:00h, divided
into half-hour time intervals; β was 10 US$/kWh. The parame-
ters θ1 and θ2 were set to 5◦ and 3◦, respectively, and λ was set
at 10. The full day hourly energy cost and load variation per-
centage are presented in Table I. The considered time period is
the bolded area on Table I and it is assumed that any vehicle can
arrive and depart during this period.

Phases A, B, and C of the EDS were charged with 40.7%,
26.2%, and 33.1% of the total demand, respectively. The con-
ventional demands of the system were 1420 kVA, 915 kVA and
1155 kVA, connected to phases A, B and C, respectively. Tests
were carried out for nine different cases. Table II presents the
different cases tested in the 123-node system and their specific
features. For all cases, the k-number of time periods, which
considers the binary nature of the charging variables, was set
at 3. Table II also shows the dumb charge operation for Case
I. In this instance, the EDS had the same settings as in Case
I, except that the EV recharge was done without any charg-
ing coordination. This meant that the EV batteries started an

TABLE II
CASE DESCRIPTION

Fig. 3. Arrival and departure distribution function probability.

uninterrupted charging process as soon as they were plugged
into the system.

In Case III, the EDS had two DGs connected at nodes 56 and
104, with energy cost αG

n,t equal to 0.04 US$/kWh. The max-
imum active powers were 1200 kW and 400 kW, respectively.
The minimum and maximum reactive powers were equal to
–300 kVAr and 300 kVAr and –100 kVAr and 100 kVAr, respec-
tively. Finally, the minimum power factor for the operation of
both DGs was 0.90. As described in section III, the model takes
into account the later connection of EVs. In the initial time
intervals, the estimated arrivals and initial SOCs of expected
EVs are included to avoid overloads in the system. Case V stud-
ied a scenario in which 10% of the forecasts for arrivals and
initial SOCs were not correct. This test was carried to iden-
tify the performance of the proposed methodology when there
is unexpected power demand. Cases VII and VIII have been
included to demonstrate the performance of the formulation
under different levels of EV penetration in the EDS.

For Cases I–VIII, the arrival and departure time intervals
were generated based on the two chi-squared probability func-
tions with 8 and 4 degrees of freedom, respectively, as shown
in Fig. 3. Moreover, the initial SOC of the EVs was generated
using the normal-based probability function displayed in
Fig. 4. The mean value and the standard deviation of the SOC
probability function were set at 15 and 10, respectively. All
of the values were maintained within the red limits shown in
both figures. The model was implemented in AMPL [28] and
solved with CPLEX [29] using a computer with an Intel i7
4770 processor. The time limit for the solution process in each
time interval was 180s.

Table III shows a summary of the results from the test cases.
For all of the tests, the resultant EV charging schedule presented
no energy curtailment, which means that all of the EVs were
completely charged at the time of departure. In Figs. Fig. 5–
Fig. 17, the power related to the grid and EV-battery energy
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TABLE III
SUMMARY OF THE TEST CASES

Fig. 4. Initial SOC distribution function probability.

Fig. 5. Dumb Charge simulation results.

Fig. 6. Case I simulation results.

exchange are shown for each case. The power related to the
charging of EVs is shown in red, while the power related to
the discharging of EV-V2Gs is shown in blue. Following con-
vention, the EV charging power and the EV-V2G discharging
power are given in positive and negative values, respectively.

Figure 5 presents the EV power for the Dumb Charge Case.
As explained, no coordination was applied to the EV batteries
at recharge, and all vehicles were continuously charged upon

Fig. 7. Case II simulation results.

Fig. 8. Dumb Charge total active power demand.

Fig. 9. Case I total active power demand.

Fig. 10. Maximum current magnitudes (Dumb Charge vs Case I)

being plugged into the grid. The peak load for this case was
between 21:00 and 22:00, that is, the time when most vehicles
had arrived and were already plugged in. As shown in Table III,
this case presented the highest objective function due to the
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Fig. 11. Case III simulation results.

Fig. 12. Case IV simulation results.

Fig. 13. Case V simulation results.

fact that the EV recharge peak load corresponded with the time
intervals when energy prices were the highest.

Figures 6 and 7 show the solutions for Cases I and II. For
Case I the EVs were balanced on the EDS phases, while for
Case II the EV imbalance shown in Table II was considered.
Table III shows a a very small difference between the objective
functions of these two cases, evidencing the flexibility of the
model when there is an imbalance in the EVs connected.

The total active power demand for the dumb charge case and
Case I are shown in Figs. 8 and 9, respectively. As the EVCC
is included, the load peak is reduced and reallocated to the low-
cost energy time intervals. Figs. 10 and 19 depict the overload
on the EDS and the voltage statutory limit outstrip, respectively,
due to the uncoordinated connection of EVs. Hence, the coor-
dination of EV recharging in the EDS is beneficial not only for
load peak reduction, but also for maintaining the operation of
the EDS within the stipulated voltage and thermal limits.

Fig. 14. Case VI simulation results.

Fig. 15. Case VII simulation results.

The inclusion of DGs was studied in Case III. This case pre-
sented the lowest objective function because of the utilization
of the low cost energy from the DGs. Due to the alleviation that
DGs offer to the EDS, Fig. 11 shows how more EVs were able
to be charged during high energy cost time intervals with a sub-
stantial reduction to the objective function. Figure 12 shows the
power exchange for Case IV, where the V2G technology was
disregarded for all vehicles. The objective function for this case
rose by 4% when compared to Case I, evidencing the improve-
ment offered by V2G technology. Similar to all the presented
cases with controlled EV recharge, the EV peak load of Case IV
was between 05:00 and 06:00; yet, in the best charging schedule
found for this case, no EVs were charged before midnight.

As shown in Table III, Case V included a 10% forecast
error. This means that 10% of the EVs had a mistaken fore-
cast in terms of the time of arrival and initial SOC. In the initial
time intervals when most of the EVs have not yet arrived, the
methodology finds charging schedules using data from inac-
curate forecasts. These schedules may not fit the EVs’ actual
plugging periods and energy requirements. Unexpected late
arrivals and low initial SOCs may create overloads on the EDS
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Fig. 16. Case VIII simulation results.

Fig. 17. Case IX simulation results.

Fig. 18. Initial SOC distribution function probability Case IX.

or force energy curtailments on the EV batteries. Even under
these conditions, the methodology found a charging schedule
with null energy curtailment and with a minimal difference
in terms of the objective function. These results demonstrate
the adaptability of the methodology when unforeseen changes
occur in the EVs’ arrivals or SOCs. Case VI tested the pro-
posed method with different types of batteries connected to the
grid. 10% of the EVs that were plugged in were Nissan Leafs
with the aforementioned specifications. The solution found pre-
sented no energy curtailment and a US$603.91 improvement in
the objective function compared to uncontrolled EV charging
under Case VI conditions; however, the objective function value
cannot be compared with previous cases because the EV energy
demand of Case VI was less, since smaller batteries were
connected to the grid. Furthermore, Cases VII and VIII were
tested in order to demonstrate the efficiency of the methodology
with different EV penetration. Both charging schedules were
developed with no energy curtailment for the EVs.

For Case IX, the values of the initial SOC were obtained
by applying the formulation presented in [20] to a mid-sized
city in Brazil. Figure 18 shows the probability distribution

Fig. 19. Minimum voltage magnitudes.

function obtained from this data. The mean and standard devi-
ation calculated for the sample were 10.78 kWh and 5.90 kWh,
respectively. The initial SOC profile obtained was lower than
that one used in the previous cases. As expected and as shown
in Table III, the energy demand of the complete EV fleet is
higher than in Case I, which is directly reflected in an increase
in the objective function. For this case, the methodology found
a solution that also presents no energy curtailment on the EV
batteries.

The minimum voltage in the EDS for each time interval is
shown in Fig. 19 for all test cases. For the dumb charge sce-
nario, the EDS did not satisfy operational constraints, as the
voltage magnitude dropped below the acceptable limit between
20:00 and 22:00. This fact demonstrate the significance of the
burden added to the grid by the EVs and proves the impor-
tance of a coordinated EV recharging schedule. For all cases
including V2G technology, the EV-V2G energy available for
the grid was used during earlier time intervals due to their high
energy cost. At the same time, the charging process for most
EVs occurred during the final time intervals when the EDS had
low energy costs. The charging process was completed between
arrival and departure times, and all presented cases generated
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schedules ensuring that the EVs left with a fully charged battery
at the end of the charging period.

Comparing Case I and Case IV, as shown in Table III, the
objective function was reduced by 3.74% when the V2G prop-
erty of the EVs was considered. At the end of the time period,
the economic improvement for the EDS was US$74.62. In Case
I, 100% of the EV-V2Gs with energy available and connected
to the grid were employed; in more than 98% of the cases, all
the available energy was drawn from the EV-V2Gs.

The EV-V2G owners should be compensated for the energy
delivered to the grid, as this energy is used during high energy
cost time intervals and supplied back during low energy cost
time intervals. This compensation corresponds to the additional
energy consumed by the EV-V2G to recharge the battery up to
its initial value. At the same time, the maximum number of fea-
sible charge cycles of an EV battery is directly influenced by
the DoD. Therefore, the lifetime of an EV battery is reduced as
the discharge depth is increased for each cycle. The following
calculation can be used to estimate the minimum compensa-
tion for EV-V2G owners with respect to anticipated EV battery
replacement.

As they plug into the system, the average DoD of the EV-
V2Gs used by the grid in Case I is 60%; later, once the grid
has taken the energy from the V2G function, the average DoD
of the EV-V2G reaches 90%. Reference [15] presents a char-
acteristic curve of charge cycles influenced by the DoD of the
battery. The number of charge cycles for the EV batteries drops
from 4,357 to 2,497. In other words, the expected lifetime of the
EV battery is shortened from 12 years (4,357 cycles) to 7 years
(2,497 cycles).Therefore, EV-V2G owners must be reimbursed
for the deterioration of their EV batteries in order for them to
allow their EVs to provide the V2G service.

Assuming a battery replacement cost of US$300 per kWh of
storage capacity [30], the 50 kWh Tesla model used in this work
will have a battery cost of US$15,000. The annualized value
for an EV battery replacement increases from US$2,201.40 for
a 12-year lifetime, disabling V2G, to US$3,081.10 for a 7-year
lifetime, enabling V2G. Over a 1-year period, the estimated bat-
tery replacement cost to be reimbursed to each EV-V2G owner
would be US$879.70.

The proposed charging coordination approach can be incor-
porated into a simple market scheme in which an aggregator
synchronizes the charge and discharge operations of multiple
EVs, similar to the proposals in [11] and [17]. In such a scheme,
EV-V2G owners may be remunerated for different services
provided by their vehicles. The aggregator ensures that EVs
provide a practical service to the EDS through the utilization
of V2G technology. In addition, the aggregator must elaborate
and sign bilateral contracts with the EV owners and the EDS.
The aggregator receives payments from the EDS due to, among
others, V2G energy delivery, energy quality improvements, and
avoidance of technical limit violations. On the other hand, the
aggregator make payments to the EV owners due to the energy
delivered from V2G, battery depreciation, and available power
capacity, among others.

Assuming that the benefit obtained from using V2G technol-
ogy is equally divided among the EV-V2G owners annually,
each owner would receive an amount of US$219,65. This

amount is 25% of the battery replacement amount due to the
utilization of V2G. Hence, it may be assumed that for the sim-
ulated case and from an EV owner’s point of view, it is not
economically appealing to allow the use of the V2G service.
Nevertheless, it is important to note, that this only considers
the economic enhancement of the EDS operation as related
to energy costs. Meanwhile, important features that are highly
affected by V2G enabling are disregarded, such as voltage and
frequency regulation, voltage and current profile improvements,
technical limit violation avoidance and power capacity avail-
ability. Considering these features and with the decreasing trend
of battery prices, V2G utilization may become appealing to
EV owners over the mid-term. In light of this, the presented
charging control methodology is increasingly important.

VI. CONCLUSION

A step-by-step methodology based on a mixed integer linear
programming formulation was presented to solve the optimal
charging coordination of electrical vehicles (EV) in unbalanced
electrical distribution systems (EDS) considering vehicle-to-
grid (V2G) technology. The proposed method can be used to
define optimal charging schedules in order to avoid operational
concerns associated with uncontrolled EV recharging.

The methodology was proven to efficiently handle EV load
imbalance; randomness in EVs’ arrival and departure times,
and initial state of charge; different battery sizes; and forecast
uncertainties. For every scenario, the methodology found charg-
ing schedules with no EV energy curtailment. In addition, the
charging schedules satisfied operational constraints, taking into
account the imbalance of the system circuits and loads; they
also achieved a better economical operation of the EDS.

These results show the methodology to be very useful, as it
defines each step to be implemented and gives a broad view
of the state of the EDS throughout the whole time period. The
methodology also offers great adaptability for incorporating
new loads, e.g. EV plugs for recharge. Also, from the tests
carried out, it can be concluded that the utilization of V2G in
EDS is economically unsound, because the impact on the bat-
tery lifetime outstrips the economical improvement shown by
this technology.
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